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Implementation of Bayesian mixture models for copy number estimation

1 Introduction

CNPBayes models multi-modal densities via a hierarchical Bayesian Gaussian mixture model.
The major application of this model is the estimation of copy number at copy number
polymorphic loci (CNPs). As described in the overview, four versions of the mixture model
are implemented: SB, MB, SBP, and MBP. In each case, approximation of the posterior is by
Markov Chain Monte Carlo (MCMC) written in C++ using the Rcpp package [@Rcpp].
For an EM-implementation of Gaussian mixture models for CNPs, see the Bioconductor
package CNVtools [@Barnes2008]. A Bayesian extension of this model by some of the
same authors was developed to automate the analysis of the Welcome Trust Case Control
Consortium (WTCCC) genotype data [@cardin] and implemented in the R package CNVCALL
(http://niallcardin.com/CNVCALL).
The key distinction of this package is an emphasis on exploring models that account for
batch effects – differences between groups of samples that were processed at different times
and/or by different labs. For smaller studies, the more standard ‘SingleBatchModel may be
reasonable. This package provides an infrastructure for fitting all of these models and then
comparing these models by marginal likelihoods or Bayes factors. The main applications we
envision these models for are in studies of germline diseases containing thousands of samples
and several hundred CNPs. We suggest parallelizing by CNP (e.g., devoting a single core to
each CNP), though leave the details on parallelization to the user.
library(CNPBayes)

library(ggplot2)

2 Implementation

CNPBayes uses several S4 classes to encapsulate key parameters of the MCMC simulation,
reducing the need for functions with a large number of arguments and providing an explicit
contract for the arguments passed to the C++ back-end. The three core classes are

• McmcParams: parameters for the number of burnin simulations (burnin), the number
of independent chains to initialize (nStarts), the number of simulations after burnin
(iter), and how often simulated values are to be saved (thin). For example, the
following code indicates that we will run four independent chains (nStarts = 4) each
with a burnin of 100 iterations. Following the burnin, we will save the first 1000
simulations and no simulations will be discarded for thinning.

mp <- McmcParams(iter=1000, burnin=100, thin=1, nStarts=4)

• Hyperparameters: a virtual class extended by HyperparametersMultiBatch and Hyper

parametersSingleBatch for the multi-batch (MB and MBP) and single-batch (SB and
SBP) mixture model implementations. The MBP and SBP models have a pooled
estimate of the variance across mixture components. Additional details are provided in
the following section.
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• MixtureModel: a virtual class with slots for data and hyperparameters, as well as a slot
for each parameter. The class is extended by SingleBatchModel (SB), MultiBatchModel
(MB), SingleBatchPooled (SBP) and MultiBatchPooled (MBP). S4 dispatch on these
classes is used to handle MCMC updates that are specific to the single- and multi-batch
models.

• After selecting a mixture model by some criteria (e.g., marginal likelihood or Bayes
Factor), methods for inferring the copy number of the mixture components are handled
by SingleBatchCopyNumber and MultiBatchCopyNumber classes.

3 Hyperparameters

Hyperparameters for the mixture model are specified as an instance of class Hyperparameters.
Hyperparameters include:

• k the number of components. Defaults to 2.
• mu.0 and tau2.0 priors for µ ∼ N(mu.0, tau2.0), the overall mean of components.

Default to 0 and 0.4.
• eta.0 and m2.0 priors for τ2 ∼ Ga(shape=eta.0, rate=m2.0), the overall variance

across components. (For the MultiBatchModel discussed in greater detail below, τ2 is
component-specific, representing the cross-batch variance of means for each component.)
Defaults to 32 and 0.5.

• alpha the prior mixture probabilities. Does not have to sum to 1. Defaults to a k-length
vector of 1’s

• beta prior for ν0. Defaults to 0.1.
• a and b priors for σ2

0 ∼ Ga(shape=a, rate=b), the rate parameter for σ2, the variance
for each batch and component.

Instances of the hyperparameters class can be created by a constructor with the same name
of the class. For example,
Hyperparameters()

## An object of class 'Hyperparameters'

## k : 2

## mu.0 : 0

## tau2.0 : 0.4

## eta.0 : 32

## m2.0 : 0.5

## alpha : 1 1

## beta : 0.1

## a : 1.8

## b : 6

HyperparametersMultiBatch()

## An object of class 'Hyperparameters'

## k : 3

## mu.0 : 0

## tau2.0 : 0.4

## eta.0 : 32

## m2.0 : 0.5
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## alpha : 1 1 1

## beta : 0.1

## a : 1.8

## b : 6

hpList is a convenience function for creating a list of hyperparameter objects appropriate for
each of the four types of models:
hp.list <- hpList()

names(hp.list)

## [1] "SB" "MB" "SBP" "MBP" "TBM"

hp.list[["SB"]] ## hyperparameters for SB model

## An object of class 'Hyperparameters'

## k : 2

## mu.0 : 0

## tau2.0 : 0.4

## eta.0 : 32

## m2.0 : 0.5

## alpha : 1 1

## beta : 0.1

## a : 1.8

## b : 6

hp.list <- hpList(k=3) ## each object will have hyperparameters for a 3-component mixture model

k(hp.list[["SB"]])

## [1] 3

A graphical overview of the model.
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4 Simple example

CNPBayes allows for the simulation of test data. The number of observations, mixture
proportions, means for each component, and standard deviations for each component must
be specified.
set.seed(123)

sim.data <- simulateData(N=1000, p=rep(1/3, 3),
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theta=c(-1, 0, 1),

sds=rep(0.1, 3))

The workhorse function in this package is gibbs. This function allows the user to specify
one or all of the four possible mixture model types and for each type fit models with mixture
components specified by the argument k_range. Below, we run 4 chains for 1000 iterations
(100 iterations burnin) for only the k=3 SB model. (In practice, we would fit multiple
models and specify a range for k – e.g, k_range=c(1, 5)). As described in the convergence
vignette, an attempt is made by gibbs to adapt the thinning and burnin parameters to attain
convergence. The models evaluated by gibbs are returned in a list where all chains have been
combined and the models are sorted by decreasing value of the marginal likelihood. In order
to properly assess convergence, this function requires that one run at least 2 independent
chains.
## Create McmcParams for batch model

mp <- McmcParams(iter=600, burnin=100, thin=1, nStarts=4)

model.list <- gibbs(model="SB", dat=y(sim.data),

k_range=c(3, 3), mp=mp)

## Fitting SB models

## k: 3, burnin: 100, thin: 1

## Gelman-Rubin: 21.27

## eff size (median): 473

## eff size (mean): 1480.3

## k: 3, burnin: 200, thin: 3

## Gelman-Rubin: 50.56

## eff size (median): 786.8

## eff size (mean): 1716

## k: 3, burnin: 400, thin: 5

## Gelman-Rubin: 30.06

## eff size (median): 908.7

## eff size (mean): 1935.2

## k: 3, burnin: 800, thin: 7

## Gelman-Rubin: 1.01

## eff size (median): 1110.3

## eff size (mean): 1215.2

## marginal likelihood: -1018.32

We use Chib’s estimator [@chib], running a reduced Gibbs sample to estimate the marginal
likelihood of each model. Alternative methods for selection of k are also included. As an
example, the bic method can be used for calculating the Bayesian Information Criterion. As
the data is simulated from a three component distribution, SB3 should be chosen.
round(sapply(model.list, marginal_lik), 1)

## SB3.SB3

## -1018.3

names(model.list)[1]

## [1] "SB3"

For comparing models of the same type, one could also use the BIC.
round(sapply(model.list, bic), 1)

## SB3
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## 2121.8

4.1 Copy number

The mixture components may not necessarily correspond to distinct copy number states. For
example, if the number of probes in a CNP region is small, the average log R ratio calculated
for each sample is more likely to be skewed. In practice, one would fit many models (e.g., k = 1
- 4), select the best model by the marginal likelihood, and then map components from the best
model to distinct copy number states. Mapping mixture components to copy number states
can be done manually using the mapping<- function. The constructor CopyNumberModel will
automatically create a mapping based on the overlap of the component densities. By mapping
mixture components to copy number states, the posterior probability can be computed for
each copy number state as opposed to the mixture components.
model <- model.list[[1]]

cn.model <- CopyNumberModel(model)

mapping(cn.model)

## [1] "1" "2" "3"

The above mapping (1 2 3) proposes a one-to-one mapping between the 3 mixture components
and the copy number states. Visualization of the model-based density estimates overlaying
the data can be helpful for assessing the adequacy of this particular model:
ggMixture(cn.model)

  n=1000

B
atch 1

−2 −1 0 1 2

0.4

0.8

1.2

average copy number

de
ns

ity

copynumber 1 2 3

As our interest is in the posterior probability of the copy number state (not the posterior
probability of the mixture components), these probabilities can be computed from a copy
number model by the function probCopyNumber.
head(probCopyNumber(cn.model))

## [,1] [,2] [,3]

## [1,] 0.0000000000 0.0000000 0.999166667
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## [2,] 0.0000000000 0.0000000 0.999166667

## [3,] 0.0000000000 0.0000000 0.999166667

## [4,] 0.9991666667 0.0000000 0.000000000

## [5,] 0.0008326389 0.9941708 0.004163194

## [6,] 0.9991666667 0.0000000 0.000000000

One can explicitly set the mapping using the mapping<- replacement method. For example,
here we map the first 2 components to the same state and the probability matrix now has
only two columns:
cn.model2 <- cn.model

mapping(cn.model2) <- c("1", "1", "2")

head(probCopyNumber(cn.model2))

## [,1] [,2]

## [1,] 0.0000000 0.999166667

## [2,] 0.0000000 0.999166667

## [3,] 0.0000000 0.999166667

## [4,] 0.9991667 0.000000000

## [5,] 0.9950035 0.004163194

## [6,] 0.9991667 0.000000000

Again, ggMixture can be helpful for assessing the model. Here, mapping the first 2 components
to the same state would only be reasonable if the differences between the first 2 components
could be explained by batch effects. To evaluate this, one would want to identify the batches
(next section) and fit the MB or MBP models in the gibbs function illustrated above.
ggMixture(cn.model2)

  n=1000
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5 Batch Estimation

Differences in the one-dimensional summaries between groups of samples can arise due to
technical sources of variation referred to as batch effects. For example, date, temperature,
machine calibration, and lab technician are all potentially important technical sources of
variation [@batch-effect]. Batch effects can vary by locus, with some loci more susceptible
to technical factors that may affect measurement. The 96 well chemistry plate on which
the samples were processed is often a useful surrogate for batch effects since this tends to
capture samples that were processed (e.g., PCR amplification) and scanned at approximately
the same time. However, in large studies involving potentially hundreds of chemistry plates, it
is not computationally feasible to fit fully Bayesian plate-specific mixture models. Because
chemistry plates are often processed at similar times and may be comparable in terms of the
distribution of a statistic of interest, it may be more useful (and computationally scalable) to
batch the chemistry plates. Here, we implement a simple two-sample Kolmogorov-Smirnov
(KS) test for each pairwise combination of chemistry plates in the function collapseBatch.
The two-sample KS test is applied recursively until no two combinations of grouped plates
can be combined. We illustrate with a trivial example.
k <- 3

nbatch <- 3

means <- matrix(c(-1.2, -1.0, -1.0,

-0.2, 0, 0,

0.8, 1, 1), nbatch, k, byrow=FALSE)

sds <- matrix(0.1, nbatch, k)

N <- 500

sim.data <- simulateBatchData(N=N,

batch=rep(letters[1:3], length.out=N),

theta=means,

sds=sds,

p=c(1/5, 1/3, 1-1/3-1/5))

Again, one could apply the gibbs function to fit this data. Since we know the truth (same
variance for each of the 3 mixture component and multiple batches), we could simply run the
pooled variance multi-batch model (MBP) with 3 components:
gibbs(model="MBP", dat=y(sim.data), k_range=c(3, 3))

In practice, we would evaluate many model and select the best model by the marginal likelihood
or the Bayes factor:
model.list <- gibbs(model=c("SBP", "MBP"), k_range=c(1, 5),

dat=y(sim.data),

batches=batch(sim.data), mp=mp)

6 References
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