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scater-package Single-cell analysis toolkit for expression in R

Description

scater provides a class and numerous functions for the quality control, normalisation and visualisa-
tion of single-cell RNA-seq expression data.

Details

In particular, scater provides easy generation of quality control metrics and simple functions to
visualise quality control metrics and their relationships.

arrange Arrange columns (cells) of a SingleCellExperiment object (depre-
cated).

Description

The SingleCellExperiment returned will have cells ordered by the corresponding variable in
colData(object).

Usage

arrange(object, ...)

## S4 method for signature 'SingleCellExperiment'
arrange(object, ...)

Arguments

object A SingleCellExperiment object.

... Additional arguments to be passed to dplyr::arrange to act on colData(object).

Details

Refer to https://github.com/sa-lee/plyexperiment for replacement functionality.

https://github.com/sa-lee/plyexperiment


4 bootstraps

Value

An SingleCellExperiment object.

bootstraps Accessor and replacement for bootstrap results in a
SingleCellExperiment object

Description

SingleCellExperiment objects can contain bootstrap expression values (for example, as generated
by the kallisto software for quantifying feature abundance). These functions conveniently access
and replace the ’bootstrap’ elements in the assays slot with the value supplied, which must be an
matrix of the correct size, namely the same number of rows and columns as the SingleCellExperiment
object as a whole.

Usage

bootstraps(object)

bootstraps(object) <- value

## S4 method for signature 'SingleCellExperiment'
bootstraps(object)

## S4 replacement method for signature 'SingleCellExperiment,array'
bootstraps(object) <- value

Arguments

object a SingleCellExperiment object.

value an array of class "numeric" containing bootstrap expression values

Value

If accessing bootstraps slot of an SingleCellExperiment, then an array with the bootstrap values,
otherwise an SingleCellExperiment object containing new bootstrap values.

Author(s)

Davis McCarthy

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
bootstraps(example_sce)
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calculateAverage Calculate average counts, adjusting for size factors or library size

Description

Calculate average counts per feature, adjusting them to account for normalization due to size factors
or library sizes.

Usage

calculateAverage(object, exprs_values = "counts",
use_size_factors = TRUE, subset_row = NULL,
BPPARAM = SerialParam())

calcAverage(object, exprs_values = "counts", use_size_factors = TRUE,
subset_row = NULL, BPPARAM = SerialParam())

Arguments

object A SingleCellExperiment object or count matrix.

exprs_values A string specifying the assay of object containing the count matrix, if object
is a SingleCellExperiment.

use_size_factors

a logical scalar specifying whether the size factors in object should be used to
construct effective library sizes.

subset_row A vector specifying the subset of rows of object for which to return a result.

BPPARAM A BiocParallelParam object specifying whether the calculations should be par-
allelized.

Details

The size-adjusted average count is defined by dividing each count by the size factor and taking the
average across cells. All sizes factors are scaled so that the mean is 1 across all cells, to ensure that
the averages are interpretable on the scale of the raw counts.

Assuming that object is a SingleCellExperiment:

• If use_size_factors=TRUE, size factors are automatically extracted from the object. Note
that different size factors may be used for features marked as spike-in controls. This is due to
the presence of control-specific size factors in object, see normalizeSCE for more details.

• If use_size_factors=FALSE, all size factors in object are ignored. Size factors are instead
computed from the library sizes, using librarySizeFactors.

• If use_size_factors is a numeric vector, it will override the any size factors for non-spike-in
features in object. The spike-in size factors will still be used for the spike-in transcripts.

If no size factors are available, they will be computed from the library sizes using librarySizeFactors.

If object is a matrix or matrix-like object, size factors can be supplied by setting use_size_factors
to a numeric vector. Otherwise, the sum of counts for each cell is used as the size factor through
librarySizeFactors.
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Value

Vector of average count values with same length as number of features, or the number of features
in subset_row if supplied.

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

list(counts = sc_example_counts),
colData = sc_example_cell_info)

## calculate average counts
ave_counts <- calculateAverage(example_sce)

calculateCPM Calculate counts per million (CPM)

Description

Calculate count-per-million (CPM) values from the count data.

Usage

calculateCPM(object, exprs_values = "counts", use_size_factors = TRUE,
subset_row = NULL)

Arguments

object A SingleCellExperiment object or count matrix.

exprs_values A string specifying the assay of object containing the count matrix, if object
is a SingleCellExperiment.

use_size_factors

A logical scalar indicating whether size factors in object should be used to
compute effective library sizes. If not, all size factors are deleted and library
size-based factors are used instead (see librarySizeFactors. Alternatively, a
numeric vector containing a size factor for each cell, which is used in place of
sizeFactor(object).

subset_row A vector specifying the subset of rows of object for which to return a result.

Details

If requested, size factors are used to define the effective library sizes. This is done by scaling all size
factors such that the mean scaled size factor is equal to the mean sum of counts across all features.
The effective library sizes are then used to in the denominator of the CPM calculation.

Assuming that object is a SingleCellExperiment:

• If use_size_factors=TRUE, size factors are automatically extracted from the object. Note
that effective library sizes may be computed differently for features marked as spike-in con-
trols. This is due to the presence of control-specific size factors in object, see normalizeSCE
for more details.
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• If use_size_factors=FALSE, all size factors in object are ignored. The total count for each
cell will be used as the library size for all features (endogenous genes and spike-in controls).

• If use_size_factors is a numeric vector, it will override the any size factors for non-spike-in
features in object. The spike-in size factors will still be used for the spike-in transcripts.

If no size factors are available, the library sizes will be used.

If object is a matrix or matrix-like object, size factors will only be used if use_size_factors is a
numeric vector. Otherwise, the sum of counts for each cell is directly used as the library size.

Value

Numeric matrix of CPM values.

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

list(counts = sc_example_counts),
colData = sc_example_cell_info)

cpm(example_sce) <- calculateCPM(example_sce, use_size_factors = FALSE)

calculateFPKM Calculate fragments per kilobase of exon per million reads mapped
(FPKM)

Description

Calculate fragments per kilobase of exon per million reads mapped (FPKM) values for expression
from counts for a set of features.

Usage

calculateFPKM(object, effective_length, ..., subset_row = NULL)

Arguments

object A SingleCellExperiment object or a numeric matrix of counts.
effective_length

Numeric vector providing the effective length for each feature in object.

... Further arguments to pass to calculateCPM.

subset_row A vector specifying the subset of rows of object for which to return a result.

Value

A numeric matrix of FPKM values.
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Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

list(counts = sc_example_counts),
colData = sc_example_cell_info)

eff_len <- runif(nrow(example_sce), 500, 2000)
fout <- calculateFPKM(example_sce, eff_len, use_size_factors = FALSE)

calculateQCMetrics Calculate QC metrics

Description

Compute quality control (QC) metrics for each feature and cell in a SingleCellExperiment object,
accounting for specified control sets.

Usage

calculateQCMetrics(object, exprs_values = "counts",
feature_controls = NULL, cell_controls = NULL, percent_top = c(50,
100, 200, 500), detection_limit = 0, use_spikes = TRUE,
compact = FALSE, BPPARAM = SerialParam())

Arguments

object A SingleCellExperiment object containing expression values, usually counts.

exprs_values A string indicating which assays in the object should be used to define ex-
pression.

feature_controls

A named list containing one or more vectors (a character vector of feature
names, a logical vector, or a numeric vector of indices), used to identify fea-
ture controls such as ERCC spike-in sets or mitochondrial genes.

cell_controls A named list containing one or more vectors (a character vector of cell (sample)
names, a logical vector, or a numeric vector of indices), used to identify cell
controls, e.g., blank wells or bulk controls.

percent_top An integer vector. Each element is treated as a number of top genes to compute
the percentage of library size occupied by the most highly expressed genes in
each cell. See pct_X_top_Y_features below for more details.

detection_limit

A numeric scalar to be passed to nexprs, specifying the lower detection limit
for expression.

use_spikes A logical scalar indicating whether existing spike-in sets in object should be
automatically added to feature_controls, see ?isSpike.

compact A logical scalar indicating whether the metrics should be returned in a compact
format as a nested DataFrame.

BPPARAM A BiocParallelParam object specifying whether the QC calculations should be
parallelized.
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Details

This function calculates useful quality control metrics to help with pre-processing of data and iden-
tification of potentially problematic features and cells.

Underscores in assayNames(object) and in feature_controls or cell_controls can cause
theoretically cause ambiguities in the names of the output metrics. While problems are highly
unlikely, users are advised to avoid underscores when naming their controls/assays.

If the expression values are double-precision, the per-row means may not be exactly identity for
different choices of BPPARAM. This is due to differences in rounding error when summation is per-
formed across different numbers of cores. If it is important to obtain numerically identical results
(e.g., when using the per-row means for sensitive procedures like t-SNE) across various paralleliza-
tion schemes, we suggest manually calculating those statistics using rowMeans.

Value

A SingleCellExperiment object containing QC metrics in the row and column metadata.

Cell-level QC metrics

Denote the value of exprs_values as X. Cell-level metrics are:

total_X: Sum of expression values for each cell (i.e., the library size, when counts are the expres-
sion values).

log10_total_X: Log10-transformed total_X after adding a pseudo-count of 1.

total_features_by_X: The number of features that have expression values above the detection
limit.

log10_total_features_by_X: Log10-transformed total_features_by_X after adding a pseudo-
count of 1.

pct_X_in_top_Y_features: The percentage of the total that is contained within the top Y most
highly expressed features in each cell. This is only reported when there are more than Y
features. The top numbers are specified via percent_top.

If any controls are specified in feature_controls, the above metrics will be recomputed using
only the features in each control set. The name of the set is appended to the name of the recom-
puted metric, e.g., total_X_F. A pct_X_F metric is also calculated for each set, representing the
percentage of expression values assigned to features in F.

In addition to the user-specified control sets, two other sets are automatically generated when
feature_controls is non-empty. The first is the "feature_control" set, containing a union
of all feature control sets; and the second is an "endogenous" set, containing all genes not in any
control set. Metrics are also computed for these sets in the same manner described above, suffixed
with _feature_control and _endogenous instead of _F.

Finally, there is the is_cell_control field, which indicates whether each cell has been defined as
a cell control by cell_controls. If multiple sets of cell controls are defined (e.g., blanks or bulk
libraries), a metric is_cell_control_C is produced for each cell control set C. The union of all
sets is stored in is_cell_control.

All of these cell-level QC metrics are added as columns to the colData slot of the SingleCellEx-
periment object. This allows them to be inspected by the user and makes them readily available for
other functions to use.
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Feature-level QC metrics

Denote the value of exprs_values as X. Feature-level metrics are:

mean_X: Mean expression value for each gene across all cells.

log10_mean_X: Log10-mean expression value for each gene across all cells.

n_cells_by_X: Number of cells with expression values above the detection limit for each gene.

pct_dropout_by_X: Percentage of cells with expression values below the detection limit for each
gene.

total_X: Sum of expression values for each gene across all cells.

log10_total_X: Log10-sum of expression values for each gene across all cells.

If any controls are specified in cell_controls, the above metrics will be recomputed using only
the cells in each control set. The name of the set is appended to the name of the recomputed metric,
e.g., total_X_C. A pct_X_C metric is also calculated for each set, representing the percentage of
expression values assigned to cells in C.

In addition to the user-specified control sets, two other sets are automatically generated when
cell_controls is non-empty. The first is the "cell_control" set, containing a union of all
cell control sets; and the second is an "non_control" set, containing all genes not in any con-
trol set. Metrics are computed for these sets in the same manner described above, suffixed with
_cell_control and _non_control instead of_C.

Finally, there is the is_feature_control field, which indicates whether each feature has been
defined as a control by feature_controls. If multiple sets of feature controls are defined (e.g.,
ERCCs, mitochondrial genes), a metric is_feature_control_F is produced for each feature con-
trol set F. The union of all sets is stored in is_feature_control.

These feature-level QC metrics are added as columns to the rowData slot of the SingleCellExper-
iment object. They can be inspected by the user and are readily available for other functions to
use.

Compacted output

If compact=TRUE, the QC metrics are stored in the "scater_qc" field of the colData and rowData
as a nested DataFrame. This avoids cluttering the metadata with QC metrics, especially if many
results are to be stored in a single SingleCellExperiment object.

Assume we have a feature control set F and a cell control set C. The nesting structure in scater_qc
in the colData is:

scater_qc
|-- is_cell_control
|-- is_cell_control_C
|-- all
| |-- total_counts
| |-- total_features_by_counts
| \-- ...
+-- endogenous
| |-- total_counts
| |-- total_features_by_counts

|-- pct_counts
| \-- ...
+-- feature_control
| |-- total_counts
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| |-- total_features_by_counts
|-- pct_counts

| \-- ...
\-- feature_control_F

|-- total_counts
|-- total_features_by_counts
|-- pct_counts
\-- ...

The nesting in scater_qc in the rowData is:

scater_qc
|-- is_feature_control
|-- is_feature_control_F
|-- all
| |-- total_counts
| |-- total_features_by_counts
| \-- ...
+-- non_control
| |-- total_counts
| |-- total_features_by_counts

|-- pct_counts
| \-- ...
+-- cell_control
| |-- total_counts
| |-- total_features_by_counts

|-- pct_counts
| \-- ...
\-- cell_control_C

|-- total_counts
|-- total_features_by_counts
|-- pct_counts
\-- ...

No suffixing of the metric names by the control names is performed here. This is not necessary
when each control set has its own nested DataFrame.

Renamed metrics

Several metric names have been changed in scater 1.7.5:

• total_features was changed to total_features_by_X where X is the exprs_values. This
avoids ambiguities if calculateQCMetrics is called multiple times with different exprs_values.

• n_cells_X was changed to n_cells_by_X, to provide a more sensible name for the metric.

• pct_dropout_X was changed to pct_dropout_by_X.

• pct_X_top_Y_features was changed to pct_X_in_top_Y_features.

The old metric names have been removed in version 1.9.10.

Author(s)

Davis McCarthy, with (many!) modifications by Aaron Lun
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Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

)
example_sce <- calculateQCMetrics(example_sce)

## with a set of feature controls defined
example_sce <- calculateQCMetrics(example_sce,
feature_controls = list(set1 = 1:40))

## with a named set of feature controls defined
example_sce <- calculateQCMetrics(example_sce,

feature_controls = list(ERCC = 1:40))

calculateTPM Calculate transcripts-per-million (TPM)

Description

Calculate transcripts-per-million (TPM) values for expression from counts for a set of features.

Usage

calculateTPM(object, effective_length = NULL, exprs_values = "counts",
subset_row = NULL)

Arguments

object A SingleCellExperiment object or a count matrix.
effective_length

Numeric vector containing the effective length for each feature in object. If
NULL, it is assumed that exprs_values has already been adjusted for transcript
length.

exprs_values String or integer specifying the assay containing the counts in object, if it is a
SingleCellExperiment.

subset_row A vector specifying the subset of rows of object for which to return a result.

Details

For read count data, this function assumes uniform coverage along the (effective) length of the
transcript. Thus, the number of transcripts for a gene is proportional to the read count divided by
the transcript length.

For UMI count data, this function should be run with effective_length=NULL, i.e., no division
by the effective length. This is because the number of UMIs is a direct (albeit probably biased)
estimate of the number of transcripts.
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Value

A numeric matrix of TPM values.

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info)

eff_len <- runif(nrow(example_sce), 500, 2000)
tout <- calculateTPM(example_sce, effective_length = eff_len)

centreSizeFactors Centre size factors at unity

Description

Scales all size factors so that the average size factor across cells is equal to 1.

Usage

centreSizeFactors(object, centre = 1)

Arguments

object A SingleCellExperiment object containing any number (or zero) sets of size
factors.

centre A numeric scalar, the value around which all sets of size factors should be cen-
tred.

Details

Centering of size factors at unity ensures that division by size factors yields values on the same
scale as the raw counts. This is important for the interpretation of the normalized values, as well as
comaprisons between features normalized with different size factors (e.g., spike-ins).

Value

A SingleCellExperiment with modified size factors that are centred at unity.

Author(s)

Aaron Lun

See Also

normalizeSCE
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Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

)

sizeFactors(example_sce) <- runif(ncol(example_sce))
sizeFactors(example_sce, "ERCC") <- runif(ncol(example_sce))
example_sce <- centreSizeFactors(example_sce)

mean(sizeFactors(example_sce))
mean(sizeFactors(example_sce, "ERCC"))

filter Return SingleCellExperiment with cells matching conditions (dep-
recated).

Description

Subsets the columns (cells) of a SingleCellExperiment based on matching conditions in the rows
of colData(object).

Usage

filter(object, ...)

## S4 method for signature 'SingleCellExperiment'
filter(object, ...)

Arguments

object A SingleCellExperiment object.

... Additional arguments to be passed to dplyr::filter to act on colData(object).

Details

Refer to https://github.com/sa-lee/plyexperiment for replacement functionality.

Value

An SingleCellExperiment object.

https://github.com/sa-lee/plyexperiment
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getBMFeatureAnnos Get feature annotation information from Biomart

Description

Use the biomaRt package to add feature annotation information to an SingleCellExperiment.

Usage

getBMFeatureAnnos(object, ids = rownames(object),
filters = "ensembl_gene_id", attributes = c(filters, "mgi_symbol",
"chromosome_name", "gene_biotype", "start_position", "end_position"),
biomart = "ENSEMBL_MART_ENSEMBL", dataset = "mmusculus_gene_ensembl",
host = "www.ensembl.org")

Arguments

object A SingleCellExperiment object.
ids A character vector containing the identifiers for all rows of object, of the same

type specified by filters.
filters Character vector defining the filters to pass to the getBM function.
attributes Character vector defining the attributes to pass to getBM.
biomart String defining the biomaRt to be used, to be passed to useMart. Default is

"ENSEMBL_MART_ENSEMBL".
dataset String defining the dataset to use, to be passed to useMart. Default is "mmusculus_gene_ensembl",

which should be changed if the organism is not mouse.
host Character string argument which can be used to select a particular "host" to

pass to useMart. Useful for accessing archived versions of biomaRt data. De-
fault is "www.ensembl.org", in which case the current version of the biomaRt
(now hosted by Ensembl) is used.

Value

A SingleCellExperiment object containing feature annotation. The input feature_symbol appears
as the feature_symbol field in the rowData of the output object.

Examples

## Not run:
data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

)

mock_id <- paste0("ENSMUSG", sprintf("%011d", seq_len(nrow(example_sce))))
example_sce <- getBMFeatureAnnos(example_sce, ids=mock_id)

## End(Not run)
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getExplanatoryPCs Estimate the percentage of variance explained for each PC.

Description

Estimate the percentage of variance explained for each PC.

Usage

getExplanatoryPCs(object, use_dimred = "PCA", ncomponents = 10,
rerun = FALSE, run_args = list(), ...)

Arguments

object A SingleCellExperiment object containing expression values and per-cell exper-
imental information.

use_dimred String specifying the field in reducedDims(object) that contains the PCA re-
sults.

ncomponents Integer scalar specifying the number of the top principal components to use.

rerun Logical scalar indicating whether the PCA should be repeated, even if pre-
computed results are already present.

run_args A named list of arguments to pass to runPCA.

... Additional arguments passed to getVarianceExplained.

Details

This function computes the percentage of variance in PC scores that is explained by variables in the
sample-level metadata. It allows identification of important PCs that are driven by known experi-
mental conditions, e.g., treatment, disease. PCs correlated with technical factors (e.g., batch effects,
library size) can also be detected and removed prior to further analysis.

By default, the function will attempt to use pre-computed PCA results in object. This is done
by taking the top ncomponents PCs from the matrix identified by use_dimred. If these are not
available or if rerun=TRUE, the function will rerun the PCA using runPCA.

Value

A matrix containing the percentage of variance explained by each factor (column) and for each PC
(row).

Author(s)

Aaron Lun

See Also

plotExplanatoryPCs, getVarianceExplained
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Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info)

example_sce <- normalize(example_sce)

r2mat <- getExplanatoryPCs(example_sce)

getVarianceExplained Estimate the percentage of variance explained for each gene.

Description

Estimate the percentage of variance explained for each gene.

Usage

getVarianceExplained(object, exprs_values = "logcounts",
variables = NULL, chunk = 1000)

Arguments

object A SingleCellExperiment object containing expression values and per-cell exper-
imental information.

exprs_values String specifying the expression values for which to compute the variance.

variables Character vector specifying the explanatory factors in colData(object) to use.
Default is NULL, in which case all variables in colData(object) are considered.

chunk Integer scalar specifying the chunk size for chunk-wise processing. Only affects
the speed/memory usage trade-off.

Details

This function computes the percentage of variance in gene expression that is explained by variables
in the sample-level metadata. It allows problematic factors to be quickly identified, as well as the
genes that are most affected.

Value

A matrix containing the percentage of variance explained by each factor (column) and for each gene
(row).

Author(s)

Aaron Lun

See Also

plotExplanatoryVariables
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Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info)

example_sce <- normalize(example_sce)

r2mat <- getVarianceExplained(example_sce)

isOutlier Identify outlier values

Description

Convenience function to determine which values in a numeric vector are outliers based on the
median absolute deviation (MAD).

Usage

isOutlier(metric, nmads = 5, type = c("both", "lower", "higher"),
log = FALSE, subset = NULL, batch = NULL, min_diff = NA)

Arguments

metric Numeric vector of values.

nmads A numeric scalar, specifying the minimum number of MADs away from median
required for a value to be called an outlier.

type String indicating whether outliers should be looked for at both tails ("both"),
only at the lower tail ("lower") or the upper tail ("higher").

log Logical scalar, should the values of the metric be transformed to the log10 scale
before computing MADs?

subset Logical or integer vector, which subset of values should be used to calculate
the median/MAD? If NULL, all values are used. Missing values will trigger a
warning and will be automatically ignored.

batch Factor of length equal to metric, specifying the batch to which each observation
belongs. A median/MAD is calculated for each batch, and outliers are then
identified within each batch.

min_diff A numeric scalar indicating the minimum difference from the median to con-
sider as an outlier. The outlier threshold is defined from the larger of nmads
MADs and min_diff, to avoid calling many outliers when the MAD is very
small. If NA, it is ignored.

Details

Lower and upper thresholds are stored in the "threshold" attribute of the returned vector. This is
a numeric vector of length 2 when batch=NULL for the threshold on each side. Otherwise, it is a
matrix with one named column per level of batch and two rows (one per threshold).
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Value

A logical vector of the same length as the metric argument, specifying the observations that are
considered as outliers.

Author(s)

Aaron Lun

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

)
example_sce <- calculateQCMetrics(example_sce)

## with a set of feature controls defined
example_sce <- calculateQCMetrics(example_sce,
feature_controls = list(set1 = 1:40))
isOutlier(example_sce$total_counts, nmads = 3)

librarySizeFactors Compute library size factors

Description

Define size factors from the library sizes after centering. This ensures that the library size adjust-
ment yields values comparable to those generated after normalization with other sets of size factors.

Usage

librarySizeFactors(object, exprs_values = "counts", subset_row = NULL)

Arguments

object A count matrix or SingleCellExperiment object containing counts.

exprs_values A string indicating the assay of object containing the counts, if object is a
SingleCellExperiment.

subset_row A vector specifying whether the rows of object should be (effectively) subset-
ted before calculating library sizes.

Value

A numeric vector of size factors.

Examples

data("sc_example_counts")
summary(librarySizeFactors(sc_example_counts))
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multiplot Multiple plot function for ggplot2 plots

Description

Place multiple ggplot plots on one page.

Usage

multiplot(..., plotlist = NULL, cols = 1, layout = NULL)

Arguments

... One or more ggplot objects.

plotlist A list of ggplot objects, as an alternative to ....

cols A numeric scalar giving the number of columns in the layout.

layout A matrix specifying the layout. If present, cols is ignored.

Details

If the layout is something like matrix(c(1,2,3,3),nrow=2,byrow=TRUE), then:

• plot 1 will go in the upper left;

• plot 2 will go in the upper right;

• and plot 3 will go all the way across the bottom.

There is no way to tweak the relative heights or widths of the plots with this simple function. It was
adapted from http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)
/

Value

A ggplot object.

Examples

library(ggplot2)

## This example uses the ChickWeight dataset, which comes with ggplot2
## First plot
p1 <- ggplot(ChickWeight, aes(x = Time, y = weight, colour = Diet, group = Chick)) +

geom_line() +
ggtitle("Growth curve for individual chicks")

## Second plot
p2 <- ggplot(ChickWeight, aes(x = Time, y = weight, colour = Diet)) +

geom_point(alpha = .3) +
geom_smooth(alpha = .2, size = 1) +
ggtitle("Fitted growth curve per diet")

## Third plot
p3 <- ggplot(subset(ChickWeight, Time == 21), aes(x = weight, colour = Diet)) +

geom_density() +

http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/
http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/


mutate 21

ggtitle("Final weight, by diet")
## Fourth plot
p4 <- ggplot(subset(ChickWeight, Time == 21), aes(x = weight, fill = Diet)) +

geom_histogram(colour = "black", binwidth = 50) +
facet_grid(Diet ~ .) +
ggtitle("Final weight, by diet") +
theme(legend.position = "none") # No legend (redundant in this graph)

## Combine plots and display
multiplot(p1, p2, p3, p4, cols = 2)

mutate Add new variables to colData(object) (deprecated).

Description

Add new variables to colData(object) (deprecated).

Usage

mutate(object, ...)

## S4 method for signature 'SingleCellExperiment'
mutate(object, ...)

Arguments

object a SingleCellExperiment object.

... Additional arguments to be passed to dplyr::mutate to act on colData(object).

Details

Refer to https://github.com/sa-lee/plyexperiment for replacement functionality.

Value

An SingleCellExperiment object.

nexprs Count the number of non-zero counts per cell or feature

Description

An efficient internal function that counts the number of non-zero counts in each row (per feature)
or column (per cell). This avoids the need to construct an intermediate logical matrix.

Usage

nexprs(object, detection_limit = 0, exprs_values = "counts",
byrow = FALSE, subset_row = NULL, subset_col = NULL,
BPPARAM = SerialParam())

https://github.com/sa-lee/plyexperiment
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Arguments

object A SingleCellExperiment object or a numeric matrix of expression values.

detection_limit

Numeric scalar providing the value above which observations are deemed to be
expressed.

exprs_values String or integer specifying the assay of object to obtain the count matrix from,
if object is a SingleCellExperiment.

byrow Logical scalar indicating whether to count the number of detected cells per fea-
ture. If FALSE, the function will count the number of detected features per cell.

subset_row Logical, integer or character vector indicating which rows (i.e. features) to use.

subset_col Logical, integer or character vector indicating which columns (i.e., cells) to use.

BPPARAM A BiocParallelParam object specifying whether the calculations should be par-
allelized.

Details

Setting subset_row or subset_col is equivalent to subsetting object before calling nexprs, but
more efficient as a new copy of the matrix is not constructed.

Value

An integer vector containing counts per gene or cell, depending on the provided arguments.

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info)

nexprs(example_sce)[1:10]
nexprs(example_sce, byrow = TRUE)[1:10]

normalize Normalize a SingleCellExperiment object using pre-computed size
factors

Description

Compute normalized expression values from count data in a SingleCellExperiment object, using
the size factors stored in the object.
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Usage

normalizeSCE(object, exprs_values = "counts", return_log = TRUE,
log_exprs_offset = NULL, centre_size_factors = TRUE,
preserve_zeroes = FALSE)

## S4 method for signature 'SingleCellExperiment'
normalize(object,
exprs_values = "counts", return_log = TRUE,
log_exprs_offset = NULL, centre_size_factors = TRUE,
preserve_zeroes = FALSE)

Arguments

object A SingleCellExperiment object.

exprs_values String indicating which assay contains the count data that should be used to
compute log-transformed expression values.

return_log Logical scalar, should normalized values be returned on the log2 scale? If TRUE,
output is stored as "logcounts" in the returned object; if FALSE output is stored
as "normcounts".

log_exprs_offset

Numeric scalar specifying the pseudo-count to add when log-transforming ex-
pression values. If NULL, the value is taken from metadata(object)$log.exprs.offset
if defined, otherwise it is set to 1.

centre_size_factors

Logical scalar indicating whether size fators should be centred.
preserve_zeroes

Logical scalar indicating whether zeroes should be preserved when dealing with
non-unity offsets.

Details

Normalized expression values are computed by dividing the counts for each cell by the size factor
for that cell. This aims to remove cell-specific scaling biases, e.g., due to differences in sequenc-
ing coverage or capture efficiency. If log=TRUE, log-normalized values are calculated by adding
log_exprs_offset to the normalized count and performing a log2 transformation.

Features marked as spike-in controls will be normalized with control-specific size factors, if these
are available. This reflects the fact that spike-in controls are subject to different biases than those
that are removed by gene-specific size factors (namely, total RNA content). If size factors for a
particular spike-in set are not available, a warning will be raised.

If centre_size_factors=TRUE, all sets of size factors will be centred to have the same mean
prior to calculation of normalized expression values. This ensures that abundances are roughly
comparable between features normalized with different sets of size factors. By default, the centre
mean is unity, which means that the computed exprs can be interpreted as being on the same scale
as log-counts. It also means that the added log_exprs_offset can be interpreted as a pseudo-count
(i.e., on the same scale as the counts).

If preserve_zeroes=TRUE and the pseudo-count is not unity, size factors are instead centered at the
specified value of log_exprs_offset. The log-transformation is then performed on the normalized
expression values with a pseudo-count of 1, which ensures that zeroes remain so in the output
matrix. This yields the same results as preserve_zeroes=FALSE minus a matrix-wide constant of
log2(log_exprs_offset).
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In some cases, the function will return a DelayedMatrix with delayed division and log-transformation
operations. This requires that the assay specified by exprs_values contains a DelayedMatrix, and
only one set of size factors is used for all features. This avoids the need to explicitly calculate
normalized expression values across a very large (possibly file-backed) matrix.

Value

A SingleCellExperiment object containing normalized expression values in "normcounts" if log=FALSE,
and log-normalized expression values in "logcounts" if log=TRUE. All size factors will also be
centred in the output object if centre_size_factors=TRUE.

Author(s)

Davis McCarthy and Aaron Lun

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

)

example_sce <- normalize(example_sce)

normalizeCounts Divide columns of a count matrix by the size factors

Description

Compute (log-)normalized expression values by dividing counts for each cell by the corresponding
size factor.

Usage

normalizeCounts(x, size_factors, return_log = TRUE,
log_exprs_offset = 1, centre_size_factors = FALSE,
subset_row = NULL)

Arguments

x A count matrix, with cells in the columns and genes in the rows.

size_factors A numeric vector of size factors for all cells.

return_log Logical scalar, should normalized values be returned on the log2 scale?
log_exprs_offset

Numeric scalar specifying the offset to add when log-transforming expression
values.

centre_size_factors

Logical scalar indicating whether size fators should be centred.

subset_row A vector specifying the subset of rows of x for which to return a result.
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Details

This function will compute log-normalized expression values from x. It will endeavour to return an
object of the same class as x, with particular focus on DelayedMatrix inputs/outputs.

Note that the default centre_size_factors differs from that in normalizeSCE. Users of this func-
tion are assumed to know what they’re doing with respect to normalization.

Value

A matrix-like object of (log-)normalized expression values.

Author(s)

Aaron Lun

Examples

data("sc_example_counts")
normed <- normalizeCounts(sc_example_counts,

librarySizeFactors(sc_example_counts))

norm_exprs Additional accessors for the typical elements of a SingleCellExperi-
ment object.

Description

Convenience functions to access commonly-used assays of the SingleCellExperiment object.

Usage

norm_exprs(object)

norm_exprs(object) <- value

stand_exprs(object)

stand_exprs(object) <- value

fpkm(object)

fpkm(object) <- value

Arguments

object SingleCellExperiment class object from which to access or to which to as-
sign assay values. Namely: "exprs", norm_exprs", "stand_exprs", "fpkm". The
following are imported from SingleCellExperiment: "counts", "normcounts",
"logcounts", "cpm", "tpm".

value a numeric matrix (e.g. for exprs)
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Value

a matrix of normalised expression data

a matrix of standardised expressiond data

a matrix of FPKM values

A matrix of numeric, integer or logical values.

Author(s)

Davis McCarthy

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)

example_sce <- normalize(example_sce)
head(logcounts(example_sce)[,1:10])
head(exprs(example_sce)[,1:10]) # identical to logcounts()

example_sce <- SingleCellExperiment(
assays = list(norm_counts = sc_example_counts), colData = sc_example_cell_info)

counts(example_sce) <- sc_example_counts
norm_exprs(example_sce) <- log2(calculateCPM(example_sce, use_size_factors = FALSE) + 1)

stand_exprs(example_sce) <- log2(calculateCPM(example_sce, use_size_factors = FALSE) + 1)

tpm(example_sce) <- calculateTPM(example_sce, effective_length = 5e4)

cpm(example_sce) <- calculateCPM(example_sce, use_size_factors = FALSE)

fpkm(example_sce)

plotColData Plot column metadata

Description

Plot column-level (i.e., cell) metadata in an SingleCellExperiment object.

Usage

plotColData(object, y, x = NULL, colour_by = NULL, shape_by = NULL,
size_by = NULL, by_exprs_values = "logcounts",
by_show_single = FALSE, ...)



plotColData 27

Arguments

object A SingleCellExperiment object containing expression values and experimental
information.

y Specification of the column-level metadata to show on the y-axis, see ?"scater-vis-var"
for possible values. Note that only metadata fields will be searched, assays will
not be used.

x Specification of the column-level metadata to show on the x-axis, see ?"scater-vis-var"
for possible values. Again, only metadata fields will be searched, assays will
not be used.

colour_by Specification of a column metadata field or a feature to colour by, see ?"scater-vis-var"
for possible values.

shape_by Specification of a column metadata field or a feature to shape by, see ?"scater-vis-var"
for possible values.

size_by Specification of a column metadata field or a feature to size by, see ?"scater-vis-var"
for possible values.

by_exprs_values

A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see ?"scater-vis-var" for details.

by_show_single Logical scalar specifying whether single-level factors should be used for point
aesthetics, see ?"scater-vis-var" for details.

... Additional arguments for visualization, see ?"scater-plot-args" for details.

Details

If y is continuous and x=NULL, a violin plot is generated. If x is categorical, a grouped violin plot
will be generated, with one violin for each level of x. If x is continuous, a scatter plot will be
generated.

If y is categorical and x is continuous, horizontal violin plots will be generated. If x is missing or
categorical, rectangule plots will be generated where the area of a rectangle is proportional to the
number of points for a combination of factors.

Note that plotPhenoData and plotCellData are synonyms for plotColData. These are artifacts
of the transition from the old SCESet class, and will be deprecated in future releases.

Value

A ggplot object.

Author(s)

Davis McCarthy, with modifications by Aaron Lun

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

)
example_sce <- calculateQCMetrics(example_sce)
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example_sce <- normalize(example_sce)

plotColData(example_sce, y = "total_features_by_counts",
x = "log10_total_counts", colour_by = "Mutation_Status")

plotColData(example_sce, y = "total_features_by_counts",
x = "log10_total_counts", colour_by = "Mutation_Status",
size_by = "Gene_0001", shape_by = "Treatment")

plotColData(example_sce, y = "Treatment",
x = "log10_total_counts", colour_by = "Mutation_Status")

plotColData(example_sce, y = "total_features_by_counts",
x = "Cell_Cycle", colour_by = "Mutation_Status")

plotExplanatoryPCs Plot the explanatory PCs for each variable

Description

Plot the explanatory PCs for each variable

Usage

plotExplanatoryPCs(object, nvars_to_plot = 10, npcs_to_plot = 50,
theme_size = 10, ...)

Arguments

object A SingleCellExperiment object containing expression values and experimental
information. Alternatively, a matrix containing the output of getExplanatoryPCs.

nvars_to_plot Integer scalar specifying the number of variables with the greatest explanatory
power to plot. This can be set to Inf to show all variables.

npcs_to_plot Integer scalar specifying the number of PCs to plot.

theme_size numeric scalar providing base font size for ggplot theme.

... Parameters to be passed to getExplanatoryPCs.

Details

A density plot is created for each variable, showing the R-squared for each successive PC (up to
npcs_to_plot PCs). Only the nvars_to_plot variables with the largest maximum R-squared
across PCs are shown.

If object is a SingleCellExperiment object, getExplanatoryPCs will be called to compute the
variance in expression explained by each variable in each gene. Users may prefer to run getExplanatoryPCs
manually and pass the resulting matrix as object, in which case the R-squared values are used di-
rectly.

Value

A ggplot object.
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Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info)

example_sce <- normalize(example_sce)

plotExplanatoryPCs(example_sce)

plotExplanatoryVariables

Plot explanatory variables ordered by percentage of variance ex-
plained

Description

Plot explanatory variables ordered by percentage of variance explained

Usage

plotExplanatoryVariables(object, nvars_to_plot = 10,
min_marginal_r2 = 0, theme_size = 10, ...)

Arguments

object A SingleCellExperiment object containing expression values and experimental
information. Alternatively, a matrix containing the output of getVarianceExplained.

nvars_to_plot Integer scalar specifying the number of variables with the greatest explanatory
power to plot. This can be set to Inf to show all variables.

min_marginal_r2

Numeric scalar specifying the minimal value required for median marginal R-
squared for a variable to be plotted. Only variables with a median marginal
R-squared strictly larger than this value will be plotted.

theme_size Numeric scalar specifying the font size to use for the plotting theme

... Parameters to be passed to getVarianceExplained.

Details

A density plot is created for each variable, showing the distribution of R-squared across all genes.
Only the nvars_to_plot variables with the largest median R-squared across genes are shown.
Variables are also only shown if they have median R-squared values above min_marginal_r2.

If object is a SingleCellExperiment object, getVarianceExplained will be called to compute
the variance in expression explained by each variable in each gene. Users may prefer to run
getVarianceExplained manually and pass the resulting matrix as object, in which case the R-
squared values are used directly.

Value

A ggplot object.



30 plotExpression

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info)

example_sce <- normalize(example_sce)

plotExplanatoryVariables(example_sce)

plotExpression Plot expression values for all cells

Description

Plot expression values for a set of features (e.g. genes or transcripts) in a SingleExperiment object,
against a continuous or categorical covariate for all cells.

Usage

plotExpression(object, features, x = NULL, exprs_values = "logcounts",
log2_values = FALSE, colour_by = NULL, shape_by = NULL,
size_by = NULL, by_exprs_values = exprs_values,
by_show_single = FALSE, xlab = NULL, feature_colours = TRUE,
one_facet = TRUE, ncol = 2, scales = "fixed", ...)

Arguments

object A SingleCellExperiment object containing expression values and other meta-
data.

features A character vector (of feature names), a logical vector or numeric vector (of
indices) specifying the features to plot.

x Specification of a column metadata field or a feature to show on the x-axis, see
?"scater-vis-var" for possible values.

exprs_values A string or integer scalar specifying which assay in assays(object) to obtain
expression values from.

log2_values Logical scalar, specifying whether the expression values be transformed to the
log2-scale for plotting (with an offset of 1 to avoid logging zeroes).

colour_by Specification of a column metadata field or a feature to colour by, see ?"scater-vis-var"
for possible values.

shape_by Specification of a column metadata field or a feature to shape by, see ?"scater-vis-var"
for possible values.

size_by Specification of a column metadata field or a feature to size by, see ?"scater-vis-var"
for possible values.

by_exprs_values

A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see ?"scater-vis-var" for details.

by_show_single Logical scalar specifying whether single-level factors should be used for point
aesthetics, see ?"scater-vis-var" for details.
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xlab String specifying the label for x-axis. If NULL (default), x will be used as the
x-axis label.

feature_colours

Logical scalar indicating whether violins should be coloured by feature when x
and colour_by are not specified and one_facet=TRUE.

one_facet Logical scalar indicating whether grouped violin plots for multiple features should
be put onto one facet. Only relevant when x=NULL.

ncol Integer scalar, specifying the number of columns to be used for the panels of a
multi-facet plot.

scales String indicating whether should multi-facet scales be fixed ("fixed"), free
("free"), or free in one dimension ("free_x", "free_y"). Passed to the scales
argument in the facet_wrap when multiple facets are generated.

... Additional arguments for visualization, see ?"scater-plot-args" for details.

Details

This function plots expression values for one or more features. If x is not specified, a violin plot
will be generated of expression values. If x is categorical, a grouped violin plot will be generated,
with one violin for each level of x. If x is continuous, a scatter plot will be generated.

If multiple features are requested and x is not specified and one_facet=TRUE, a grouped violin plot
will be generated with one violin per feature. This will be coloured by feature if colour_by=NULL
and feature_colours=TRUE, to yield a more aesthetically pleasing plot. Otherwise, if x is speci-
fied or one_facet=FALSE, a multi-panel plot will be generated where each panel corresponds to a
feature. Each panel will be a scatter plot or (grouped) violin plot, depending on the nature of x.

Note that this assumes that the expression values are numeric. If not, and x is continuous, horizontal
violin plots will be generated. If x is missing or categorical, rectangule plots will be generated where
the area of a rectangle is proportional to the number of points for a combination of factors.

Value

A ggplot object.

Author(s)

Davis McCarthy, with modifications by Aaron Lun

Examples

## prepare data
data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

)
example_sce <- calculateQCMetrics(example_sce)
sizeFactors(example_sce) <- colSums(counts(example_sce))
example_sce <- normalize(example_sce)

## default plot
plotExpression(example_sce, 1:15)

## plot expression against an x-axis value
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plotExpression(example_sce, c("Gene_0001", "Gene_0004"), x="Mutation_Status")
plotExpression(example_sce, c("Gene_0001", "Gene_0004"), x="Gene_0002")

## add visual options
plotExpression(example_sce, 1:6, colour_by = "Mutation_Status")
plotExpression(example_sce, 1:6, colour_by = "Mutation_Status",

shape_by = "Treatment", size_by = "Gene_0010")

## plot expression against expression values for Gene_0004
plotExpression(example_sce, 1:4, "Gene_0004", show_smooth = TRUE)

plotExprsFreqVsMean Plot frequency against mean for each feature

Description

Plot the frequency of expression (i.e., percentage of expressing cells) against the mean expression
level for each feature in a SingleCellExperiment object.

Usage

plotExprsFreqVsMean(object, freq_exprs, mean_exprs, controls,
exprs_values = "counts", by_show_single = FALSE,
show_smooth = TRUE, show_se = TRUE, ...)

Arguments

object A SingleCellExperiment object.

freq_exprs Specification of the row-level metadata field containing the number of express-
ing cells per feature, see ?"scater-vis-var" for possible values. Note that
only metadata fields will be searched, assays will not be used. If not supplied
or NULL, this defaults to "n_cells_by_counts" or equivalent for compacted
data.

mean_exprs Specification of the row-level metadata field containing the mean expression of
each feature, see ?"scater-vis-var" for possible values. Again, only metadata
fields will be searched, assays will not be used. If not supplied or NULL, this
defaults to "mean_counts" or equivalent for compacted data.

controls Specification of the row-level metadata column indicating whether a feature is
a control, see ?"scater-vis-var" for possible values. Only metadata fields
will be searched, assays will not be used. If not supplied, this defaults to
"is_feature_control" or equivalent for compacted data.

exprs_values String specifying the assay used for the default freq_exprs and mean_exprs.
This can be set to, e.g., "logcounts" so that freq_exprs defaults to "n_cells_by_logcounts".

by_show_single Logical scalar specifying whether a single-level factor for controls should be
used for colouring, see ?"scater-vis-var" for details.

show_smooth Logical scalar, should a smoothed fit (through feature controls if available; all
features otherwise) be shown on the plot? See geom_smooth for details.

show_se Logical scalar, should the standard error be shown for a smoothed fit?

... Further arguments passed to plotRowData.
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Details

This function plots gene expression frequency versus mean expression level, which can be useful
to assess the effects of technical dropout in the dataset. We fit a non-linear least squares curve for
the relationship between expression frequency and mean expression. We use this curve to define
the number of genes above high technical dropout and the numbers of genes that are expressed in
at least 50% and at least 25% of cells.

The plot will attempt to colour the points based on whether the corresponding features are labelled
as feature controls in object. This can be turned off by setting controls=NULL.

Value

A ggplot object.

See Also

plotRowData

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

)
example_sce <- normalize(example_sce)

example_sce <- calculateQCMetrics(example_sce,
feature_controls = list(set1 = 1:500))

plotExprsFreqVsMean(example_sce)

plotExprsFreqVsMean(example_sce, size_by = "is_feature_control")

plotExprsVsTxLength Plot expression against transcript length

Description

Plot mean expression values for all features in a SingleCellExperiment object against transcript
length values.

Usage

plotExprsVsTxLength(object, tx_length = "median_feat_eff_len",
length_is_assay = FALSE, exprs_values = "logcounts",
log2_values = FALSE, colour_by = NULL, shape_by = NULL,
size_by = NULL, by_exprs_values = exprs_values,
by_show_single = FALSE, xlab = "Median transcript length",
show_exprs_sd = FALSE, ...)
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Arguments

object A SingleCellExperiment object.

tx_length Transcript lengths for all features, to plot on the x-axis. If length_is_assay=FALSE,
this can take any of the values described in ?"scater-vis-var" for feature-
level metadata; data in assays(object) will not be searched. Otherwise, if
length_is_assay=TRUE, tx_length should be the name or index of an assay
in object.

length_is_assay

Logical scalar indicating whether tx_length refers to an assay of object con-
taining transcript lengths for all features in all cells.

exprs_values A string or integer scalar specifying which assay in assays(object) to obtain
expression values from.

log2_values Logical scalar, specifying whether the expression values be transformed to the
log2-scale for plotting (with an offset of 1 to avoid logging zeroes).

colour_by Specification of a column metadata field or a feature to colour by, see ?"scater-vis-var"
for possible values.

shape_by Specification of a column metadata field or a feature to shape by, see ?"scater-vis-var"
for possible values.

size_by Specification of a column metadata field or a feature to size by, see ?"scater-vis-var"
for possible values.

by_exprs_values

A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see ?"scater-vis-var" for details.

by_show_single Logical scalar specifying whether single-level factors should be used for point
aesthetics, see ?"scater-vis-var" for details.

xlab String specifying the label for x-axis.

show_exprs_sd Logical scalar indicating whether the standard deviation of expression values for
each feature should be plotted.

... Additional arguments for visualization, see ?"scater-plot-args" for details.

Details

If length_is_assay=TRUE, the median transcript length of each feature across all cells is used.
This may be necessary if the effective transcript length differs across cells, e.g., as observed in the
results from pseudo-aligners.

Value

A ggplot object.

Author(s)

Davis McCarthy, with modifications by Aaron Lun

Examples

data("sc_example_counts")
data("sc_example_cell_info")
rd <- DataFrame(gene_id = rownames(sc_example_counts),

feature_id = paste("feature", rep(1:500, each = 4), sep = "_"),
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median_tx_length = rnorm(2000, mean = 5000, sd = 500),
other = sample(LETTERS, 2000, replace = TRUE)

)
rownames(rd) <- rownames(sc_example_counts)
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info, rowData = rd

)
example_sce <- normalize(example_sce)

plotExprsVsTxLength(example_sce, "median_tx_length")
plotExprsVsTxLength(example_sce, "median_tx_length", show_smooth = TRUE)
plotExprsVsTxLength(example_sce, "median_tx_length", show_smooth = TRUE,

colour_by = "other", show_exprs_sd = TRUE)

## using matrix of tx length values in assays(object)
mat <- matrix(rnorm(ncol(example_sce) * nrow(example_sce), mean = 5000,

sd = 500), nrow = nrow(example_sce))
dimnames(mat) <- dimnames(example_sce)
assay(example_sce, "tx_len") <- mat

plotExprsVsTxLength(example_sce, "tx_len", show_smooth = TRUE,
length_is_assay = TRUE, show_exprs_sd = TRUE)

## using a vector of tx length values
plotExprsVsTxLength(example_sce,

data.frame(rnorm(2000, mean = 5000, sd = 500)))

plotHeatmap Plot heatmap of gene expression values

Description

Create a heatmap of expression values for each cell and specified features in a SingleCellExperiment
object.

Usage

plotHeatmap(object, features, columns = NULL,
exprs_values = "logcounts", center = FALSE, zlim = NULL,
symmetric = FALSE, color = NULL, colour_columns_by = NULL,
by_exprs_values = exprs_values, by_show_single = FALSE,
show_colnames = TRUE, ...)

Arguments

object A SingleCellExperiment object.

features A character vector of row names, a logical vector of integer vector of indices
specifying rows of object to show in the heatmap.

columns A vector specifying the subset of columns in object to show as columns in the
heatmp. By default, all columns are used in their original order.
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exprs_values A string or integer scalar indicating which assay of object should be used as
expression values for colouring in the heatmap.

center A logical scalar indicating whether each row should have its mean expression
centered at zero prior to plotting.

zlim A numeric vector of length 2, specifying the upper and lower bounds for the
expression values. This winsorizes the expression matrix prior to plotting (but
after centering, if center=TRUE). If NULL, it defaults to the range of the expres-
sion matrix.

symmetric A logical scalar specifying whether the default zlim should be symmetric around
zero. If TRUE, the maximum absolute value of zlim will be computed and mul-
tiplied by c(-1,1) to redefine zlim.

color A vector of colours specifying the palette to use for mapping expression values
to colours. This defaults to the default setting in pheatmap.

colour_columns_by

A list of values specifying how the columns should be annotated with colours.
Each entry of the list can be of the form described by ?"scater-vis-var". A
character vector can also be supplied and will be treated as a list of strings.

by_exprs_values

A string or integer scalar specifying which assay to obtain expression values
from, for colouring of column-level data - see ?"scater-vis-var" for details.

by_show_single Logical scalar specifying whether single-level factors should be used for column-
level colouring, see ?"scater-vis-var" for details.

show_colnames Logical scalar specifying whether column names should be shown, if available
in object.

... Additional arguments to pass to pheatmap.

Details

Setting center=TRUE is useful for examining log-fold changes of each cell’s expression profile
from the average across all cells. This avoids issues with the entire row appearing a certain colour
because the gene is highly/lowly expressed across all cells.

Setting zlim preserves the dynamic range of colours in the presence of outliers. Otherwise, the
plot may be dominated by a few genes, which will “flatten” the observed colours for the rest of the
heatmap.

Value

A heatmap is produced on the current graphics device. The output of pheatmap is invisibly returned.

Author(s)

Aaron Lun

See Also

pheatmap
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Examples

example(normalizeSCE) # borrowing the example objects in here.
plotHeatmap(example_sce, features=rownames(example_sce)[1:10])
plotHeatmap(example_sce, features=rownames(example_sce)[1:10],

center=TRUE, symmetric=TRUE)

plotHeatmap(example_sce, features=rownames(example_sce)[1:10],
colour_columns_by=c("Mutation_Status", "Cell_Cycle"))

plotHighestExprs Plot the highest expressing features

Description

Plot the features with the highest average expression across all cells, along with their expression in
each individual cell.

Usage

plotHighestExprs(object, n = 50, controls, colour_cells_by,
drop_features = NULL, exprs_values = "counts",
by_exprs_values = exprs_values, by_show_single = TRUE,
feature_names_to_plot = NULL, as_percentage = TRUE)

Arguments

object A SingleCellExperiment object.
n A numeric scalar specifying the number of the most expressed features to show.
controls Specification of the row-level metadata column indicating whether a feature is

a control, see ?"scater-vis-var" for possible values. Only metadata fields
will be searched, assays will not be used. If not supplied, this defaults to
"is_feature_control" or equivalent for compacted data.

colour_cells_by

Specification of a column metadata field or a feature to colour by, see ?"scater-vis-var"
for possible values. If not supplied, this defaults to "total_features_by_counts"
or equivalent for compacted data.

drop_features A character, logical or numeric vector indicating which features (e.g. genes,
transcripts) to drop when producing the plot. For example, spike-in transcripts
might be dropped to examine the contribution from endogenous genes.

exprs_values A integer scalar or string specifying the assay to obtain expression values from.
by_exprs_values

A string or integer scalar specifying which assay to obtain expression values
from, for use in colouring - see ?"scater-vis-var" for details.

by_show_single Logical scalar specifying whether single-level factors should be used for colour-
ing, see ?"scater-vis-var" for details. Default is NULL, in which case rownames(object)
are used.

feature_names_to_plot

Specification of which row-level metadata column contains the feature names,
see ?"scater-vis-var" for possible values.

as_percentage logical scalar indicating whether percentages should be plotted. If FALSE, the
raw exprs_values are shown instead.
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Details

This function will plot the percentage of counts accounted for by the top n most highly expressed
features across the dataset. Each feature corresponds to a row on the plot, sorted by average expres-
sion (denoted by the point).

The plot will attempt to colour the points based on whether the corresponding feature is labelled as
a control in object. This can be turned off by setting controls=NULL.

The distribution of expression across all cells is shown as tick marks for each feature. These
ticks can be coloured according to cell-level metadata, as specified by colour_cells_by. Setting
colour_cells_by=NULL will disable all tick colouring.

Value

A ggplot object.

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

)
example_sce <- calculateQCMetrics(example_sce,

feature_controls = list(set1 = 1:500)
)

plotHighestExprs(example_sce, colour_cells_by ="total_features_by_counts")
plotHighestExprs(example_sce, controls = NULL)
plotHighestExprs(example_sce, colour_cells_by="Mutation_Status")

plotPlatePosition Plot cells in plate positions

Description

Plots cells in their position on a plate, coloured by metadata variables or feature expression values
from a SingleCellExperiment object.

Usage

plotPlatePosition(object, plate_position = NULL, colour_by = NULL,
size_by = NULL, shape_by = NULL, by_exprs_values = "logcounts",
by_show_single = FALSE, add_legend = TRUE, theme_size = 24,
point_alpha = 0.6, point_size = 24)

Arguments

object A SingleCellExperiment object.
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plate_position A character vector specifying the plate position for each cell (e.g., A01, B12,
and so on, where letter indicates row and number indicates column). If NULL,
the function will attempt to extract this from object$plate_position. Alter-
natively, a list of two factors ("row" and "column") can be supplied, specifying
the row (capital letters) and column (integer) for each cell in object.

colour_by Specification of a column metadata field or a feature to colour by, see ?"scater-vis-var"
for possible values.

size_by Specification of a column metadata field or a feature to size by, see ?"scater-vis-var"
for possible values.

shape_by Specification of a column metadata field or a feature to shape by, see ?"scater-vis-var"
for possible values.

by_exprs_values

A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see ?"scater-vis-var" for details.

by_show_single Logical scalar specifying whether single-level factors should be used for point
aesthetics, see ?"scater-vis-var" for details.

add_legend Logical scalar specifying whether a legend should be shown.

theme_size Numeric scalar, see ?"scater-plot-args" for details.

point_alpha Numeric scalar specifying the transparency of the points, see ?"scater-plot-args"
for details.

point_size Numeric scalar specifying the size of the points, see ?"scater-plot-args" for
details.

Details

This function expects plate positions to be given in a charcter format where a letter indicates the
row on the plate and a numeric value indicates the column. Each cell has a plate position such
as "A01", "B12", "K24" and so on. From these plate positions, the row is extracted as the letter,
and the column as the numeric part. Alternatively, the row and column identities can be directly
supplied by setting plate_position as a list of two factors.

Value

A ggplot object.

Author(s)

Davis McCarthy, with modifications by Aaron Lun

Examples

## prepare data
data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

)
example_sce <- normalize(example_sce)
example_sce <- calculateQCMetrics(example_sce)

## define plate positions
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example_sce$plate_position <- paste0(
rep(LETTERS[1:5], each = 8),
rep(formatC(1:8, width = 2, flag = "0"), 5)

)

## plot plate positions
plotPlatePosition(example_sce, colour_by = "Mutation_Status")

plotPlatePosition(example_sce, shape_by = "Treatment", colour_by = "Gene_0004")

plotPlatePosition(example_sce, shape_by = "Treatment", size_by = "Gene_0001",
colour_by = "Cell_Cycle")

plotReducedDim Plot reduced dimensions

Description

Plot cell-level reduced dimension results stored in a SingleCellExperiment object.

Usage

plotReducedDim(object, use_dimred, ncomponents = 2, percentVar = NULL,
colour_by = NULL, shape_by = NULL, size_by = NULL,
by_exprs_values = "logcounts", by_show_single = FALSE,
text_by = NULL, text_size = 5, text_colour = "black", ...)

Arguments

object A SingleCellExperiment object.

use_dimred A string or integer scalar indicating the reduced dimension result in reducedDims(object)
to plot.

ncomponents A numeric scalar indicating the number of dimensions to plot, starting from the
first dimension. Alternatively, a numeric vector specifying the dimensions to be
plotted.

percentVar A numeric vector giving the proportion of variance in expression explained by
each reduced dimension. Only expected to be used in PCA settings, e.g., in the
plotPCA function.

colour_by Specification of a column metadata field or a feature to colour by, see ?"scater-vis-var"
for possible values.

shape_by Specification of a column metadata field or a feature to shape by, see ?"scater-vis-var"
for possible values.

size_by Specification of a column metadata field or a feature to size by, see ?"scater-vis-var"
for possible values.

by_exprs_values

A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see ?"scater-vis-var" for details.

by_show_single Logical scalar specifying whether single-level factors should be used for point
aesthetics, see ?"scater-vis-var" for details.
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text_by Specification of a column metadata field for which to add text - see ?"scater-vis-var"
for possible values. This must refer to a categorical field, i.e., coercible into a
factor.

text_size Numeric scalar specifying the size of added text.

text_colour String specifying the colour of the added text.

... Additional arguments for visualization, see ?"scater-plot-args" for details.

Details

If ncomponents is a scalar equal to 2, a scatterplot of the first two dimensions is produced. If
ncomponents is greater than 2, a pairs plots for the top dimensions is produced.

Alternatively, if ncomponents is a vector of length 2, a scatterplot of the two specified dimensions
is produced. If it is of length greater than 2, a pairs plot is produced containing all pairwise plots
between the specified dimensions.

The text_by option will add factor levels as labels onto the plot, placed at the median coordinate
across all points in that level. This is useful for annotating position-related metadata (e.g., clusters)
when there are too many levels to distinguish by colour. It is only available for scatterplots.

Value

A ggplot object

Author(s)

Davis McCarthy, with modifications by Aaron Lun

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

)
example_sce <- normalize(example_sce)

example_sce <- runPCA(example_sce, ncomponents=5)
plotReducedDim(example_sce, "PCA")
plotReducedDim(example_sce, "PCA", colour_by="Cell_Cycle")
plotReducedDim(example_sce, "PCA", colour_by="Gene_0001")

plotReducedDim(example_sce, "PCA", ncomponents=5)
plotReducedDim(example_sce, "PCA", ncomponents=5, colour_by="Cell_Cycle",

shape_by="Treatment")
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plotRLE Plot a relative log expression (RLE) plot

Description

Produce a relative log expression (RLE) plot of one or more transformations of cell expression
values.

Usage

plotRLE(object, exprs_values = "logcounts", exprs_logged = TRUE,
style = "minimal", legend = TRUE, ordering = NULL,
colour_by = NULL, by_exprs_values = exprs_values, ...)

Arguments

object A SingleCellExperiment object.

exprs_values A string or integer scalar specifying the expression matrix in object to use.

exprs_logged A logical scalar indicating whether the expression matrix is already log-transformed.
If not, a log2-transformation (+1) will be performed prior to plotting.

style String defining the boxplot style to use, either "minimal" (default) or "full";
see Details.

legend Logical scalar specifying whether a legend should be shown.

ordering A vector specifying the ordering of cells in the RLE plot. This can be useful for
arranging cells by experimental conditions or batches.

colour_by Specification of a column metadata field or a feature to colour by, see ?"scater-vis-var"
for possible values.

by_exprs_values

A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see ?"scater-vis-var" for details.

... further arguments passed to geom_boxplot when style="full".

Details

Relative log expression (RLE) plots are a powerful tool for visualising unwanted variation in high
dimensional data. These plots were originally devised for gene expression data from microarrays
but can also be used on single-cell expression data. RLE plots are particularly useful for assessing
whether a procedure aimed at removing unwanted variation (e.g., scaling normalisation) has been
successful.

If style is “full”, the usual ggplot2 boxplot is created for each cell. Here, the box shows the inter-
quartile range and whiskers extend no more than 1.5 times the IQR from the hinge (the 25th or 75th
percentile). Data beyond the whiskers are called outliers and are plotted individually. The median
(50th percentile) is shown with a white bar. This approach is detailed and flexible, but can take a
long time to plot for large datasets.

If style is “minimal”, a Tufte-style boxplot is created for each cell. Here, the median is shown with
a circle, the IQR in a grey line, and “whiskers” (as defined above) for the plots are shown with
coloured lines. No outliers are shown for this plot style. This approach is more succinct and faster
for large numbers of cells.
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Value

A ggplot object

Author(s)

Davis McCarthy, with modifications by Aaron Lun

References

Gandolfo LC, Speed TP. RLE Plots: Visualising Unwanted Variation in High Dimensional Data.
arXiv [stat.ME]. 2017. Available: http://arxiv.org/abs/1704.03590

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

)
example_sce <- normalize(example_sce)

plotRLE(example_sce, colour_by = "Mutation_Status", style = "minimal")

plotRLE(example_sce, colour_by = "Mutation_Status", style = "full",
outlier.alpha = 0.1, outlier.shape = 3, outlier.size = 0)

plotRowData Plot row metadata

Description

Plot row-level (i.e., gene) metadata from a SingleCellExperiment object.

Usage

plotRowData(object, y, x = NULL, colour_by = NULL, shape_by = NULL,
size_by = NULL, by_exprs_values = "logcounts",
by_show_single = FALSE, ...)

Arguments

object A SingleCellExperiment object containing expression values and experimental
information.

y Specification of the row-level metadata to show on the y-axis, see ?"scater-vis-var"
for possible values. Note that only metadata fields will be searched, assays will
not be used.

x Specification of the row-level metadata to show on the x-axis, see ?"scater-vis-var"
for possible values. Again, only metadata fields will be searched, assays will
not be used.
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colour_by Specification of a row metadata field or a cell to colour by, see ?"scater-vis-var"
for possible values.

shape_by Specification of a row metadata field or a cell to shape by, see ?"scater-vis-var"
for possible values.

size_by Specification of a row metadata field or a cell to size by, see ?"scater-vis-var"
for possible values.

by_exprs_values

A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see ?"scater-vis-var" for details.

by_show_single Logical scalar specifying whether single-level factors should be used for point
aesthetics, see ?"scater-vis-var" for details.

... Additional arguments for visualization, see ?"scater-plot-args" for details.

Details

If y is continuous and x=NULL, a violin plot is generated. If x is categorical, a grouped violin plot
will be generated, with one violin for each level of x. If x is continuous, a scatter plot will be
generated.

If y is categorical and x is continuous, horizontal violin plots will be generated. If x is missing or
categorical, rectangule plots will be generated where the area of a rectangle is proportional to the
number of points for a combination of factors.

Note that plotFeatureData is a synonym for plotRowData. This is an artifact of the transition
from the old SCESet class, and will be deprecated in future releases.

Value

A ggplot object.

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

)
example_sce <- calculateQCMetrics(example_sce,

feature_controls = list(ERCC=1:40))
example_sce <- normalize(example_sce)

plotRowData(example_sce, y="n_cells_by_counts", x="log10_total_counts")
plotRowData(example_sce, y="n_cells_by_counts",

size_by ="log10_total_counts",
colour_by = "is_feature_control")
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plotScater Plot an overview of expression for each cell

Description

Plot the relative proportion of the library size that is accounted for by the most highly expressed
features for each cell in a SingleCellExperiment object.

Usage

plotScater(x, nfeatures = 500, exprs_values = "counts",
colour_by = NULL, by_exprs_values = exprs_values,
by_show_single = FALSE, block1 = NULL, block2 = NULL, ncol = 3,
line_width = 1.5, theme_size = 10)

Arguments

x A SingleCellExperiment object.

nfeatures Numeric scalar indicating the number of top-expressed features to show n the
plot.

exprs_values String or integer scalar indicating which assay of object should be used to
obtain the expression values for this plot.

colour_by Specification of a column metadata field or a feature to colour by, see ?"scater-vis-var"
for possible values. The curve for each cell will be coloured according to this
specification.

by_exprs_values

A string or integer scalar specifying which assay to obtain expression values
from, for use in line colouring - see ?"scater-vis-var" for details.

by_show_single Logical scalar specifying whether single-level factors should be used for line
colouring, see ?"scater-vis-var" for details.

block1 Specification of a factor by which to separate the cells into blocks (separate pan-
els) in the plot. This can be any type of value described in ?"scater-vis-var"
for column-level metadata. Default is NULL, in which case there is no blocking.

block2 Same as block1, providing another level of blocking.

ncol Number of columns to use for facet_wrap if only one block is defined.

line_width Numeric scalar specifying the line width.

theme_size Numeric scalar specifying the font size to use for the plotting theme.

Details

For each cell, the features are ordered from most-expressed to least-expressed. The cumulative
proportion of the total expression for the cell is computed across the top nfeatures features. These
plots can flag cells with a very high proportion of the library coming from a small number of
features; such cells are likely to be problematic for downstream analyses.

Using the colour and blocking arguments can flag overall differences in cells under different ex-
perimental conditions or affected by different batch and other variables. If only one of block1 and
block2 are specified, each panel corresponds to a separate level of the specified blocking factor. If
both are specified, each panel corresponds to a combination of levels.
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Value

a ggplot plot object

Author(s)

Davis McCarthy, with modifications by Aaron Lun

Examples

## Set up an example SingleCellExperiment
data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

)

plotScater(example_sce)
plotScater(example_sce, exprs_values = "counts", colour_by = "Cell_Cycle")
plotScater(example_sce, block1 = "Treatment", colour_by = "Cell_Cycle")

cpm(example_sce) <- calculateCPM(example_sce, use_size_factors = FALSE)
plotScater(example_sce, exprs_values = "cpm", block1 = "Treatment",

block2 = "Mutation_Status", colour_by = "Cell_Cycle")

readSparseCounts Read sparse count matrix from file

Description

Reads a sparse count matrix from file containing a dense tabular format.

Usage

readSparseCounts(file, sep = "\t", quote = NULL, comment.char = "",
row.names = TRUE, col.names = TRUE, ignore.row = 0L,
skip.row = 0L, ignore.col = 0L, skip.col = 0L, chunk = 1000L)

Arguments

file A string containing a file path to a count table, or a connection object opened in
read-only text mode.

sep A string specifying the delimiter between fields in file.

quote A string specifying the quote character, e.g., in column or row names.

comment.char A string specifying the comment character after which values are ignored.

row.names A logical scalar specifying whether row names are present.

col.names A logical scalar specifying whether column names are present.

ignore.row An integer scalar specifying the number of rows to ignore at the start of the file,
before the column names.
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skip.row An integer scalar specifying the number of rows to ignore at the start of the file,
after the column names.

ignore.col An integer scalar specifying the number of columns to ignore at the start of the
file, before the column names.

skip.col An integer scalar specifying the number of columns to ignore at the start of the
file, after the column names.

chunk A integer scalar indicating the chunk size to use, i.e., number of rows to read at
any one time.

Details

This function provides a convenient method for reading dense arrays from flat files into a sparse
matrix in memory. Memory usage can be further improved by setting chunk to a smaller positive
value.

The ignore.* and skip.* parameters allow irrelevant rows or columns to be skipped. Note that
the distinction between the two parameters is only relevant when row.names=FALSE (for skip-
ping/ignoring columns) or col.names=FALSE (for rows).

Value

A dgCMatrix containing double-precision values (usually counts) for each row (gene) and column
(cell).

Author(s)

Aaron Lun

See Also

read.table, readMM

Examples

outfile <- tempfile()
write.table(data.frame(A=1:5, B=0, C=0:4, row.names=letters[1:5]),

file=outfile, col.names=NA, sep="\t", quote=FALSE)

readSparseCounts(outfile)

Reduced dimension plots

Plot specific reduced dimensions

Description

Wrapper functions to create plots for specific types of reduced dimension results in a SingleCellEx-
periment object, or, if they are not already present, to calculate those results and then plot them.
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Usage

plotPCASCE(object, ..., rerun = FALSE, ncomponents = 2,
run_args = list())

plotTSNE(object, ..., rerun = FALSE, ncomponents = 2,
run_args = list())

plotUMAP(object, ..., rerun = FALSE, ncomponents = 2,
run_args = list())

plotDiffusionMap(object, ..., rerun = FALSE, ncomponents = 2,
run_args = list())

plotMDS(object, ..., rerun = FALSE, ncomponents = 2,
run_args = list())

## S4 method for signature 'SingleCellExperiment'
plotPCA(object, ..., rerun = FALSE,
ncomponents = 2, run_args = list())

Arguments

object A SingleCellExperiment object.

... Additional arguments to pass to plotReducedDim.

rerun Logical, should the reduced dimensions be recomputed even if object contains
an appropriately named set of results in the reducedDims slot?

ncomponents Numeric scalar indicating the number of dimensions components to (calculate
and) plot. This can also be a numeric vector, see ?plotReducedDim for details.

run_args Arguments to pass to runPCA, runTSNE, etc.

Details

Each function will search the reducedDims slot for an appropriately named set of results and pass
those coordinates onto plotReducedDim. If the results are not present or rerun=TRUE, they will
be computed using the relevant run* function. The result name and run* function for each plot*
function are:

• "PCA" and runPCA for plotPCA

• "TSNE" and runTSNE for plotTSNE

• "DiffusionMap" and runDiffusionMap for plotDiffusionMap

• "MDS" and runMDS for "plotMDS"

Users can specify arguments to the run* functions via run_args.

If ncomponents is a numeric vector, the maximum value will be used to determine the required
number of dimensions to compute in the run* functions. However, only the specified dimensions
in ncomponents will be plotted.

Value

A ggplot object.
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Author(s)

Davis McCarthy, with modifications by Aaron Lun

See Also

runPCA, runDiffusionMap, runTSNE, runMDS, plotReducedDim

Examples

## Set up an example SingleCellExperiment
data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

)
example_sce <- normalize(example_sce)

## Examples plotting PC1 and PC2
plotPCA(example_sce)
plotPCA(example_sce, colour_by = "Cell_Cycle")
plotPCA(example_sce, colour_by = "Cell_Cycle", shape_by = "Treatment")
plotPCA(example_sce, colour_by = "Cell_Cycle", shape_by = "Treatment",

size_by = "Mutation_Status")

## Force legend to appear for shape:
example_subset <- example_sce[, example_sce$Treatment == "treat1"]
plotPCA(example_subset, colour_by = "Cell_Cycle", shape_by = "Treatment",

by_show_single = TRUE)

## Examples plotting more than 2 PCs
plotPCA(example_sce, ncomponents = 4, colour_by = "Treatment",

shape_by = "Mutation_Status")

## Same for TSNE:
plotTSNE(example_sce, run_args=list(perplexity = 10))

## Same for DiffusionMaps:
plotDiffusionMap(example_sce)

## Same for MDS plots:
plotMDS(example_sce)

rename Rename variables of colData(object) (deprecated).

Description

Rename variables of colData(object) (deprecated).
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Usage

rename(object, ...)

## S4 method for signature 'SingleCellExperiment'
rename(object, ...)

Arguments

object A SingleCellExperiment object.
... Additional arguments to be passed to dplyr::rename to act on colData(object).

Details

Refer to https://github.com/sa-lee/plyexperiment for replacement functionality.

Value

An SingleCellExperiment object.

runDiffusionMap Create a diffusion map from cell-level data

Description

Produce a diffusion map for the cells, based on the data in a SingleCellExperiment object.

Usage

runDiffusionMap(object, ncomponents = 2, ntop = 500,
feature_set = NULL, exprs_values = "logcounts",
scale_features = TRUE, use_dimred = NULL, n_dimred = NULL, ...)

Arguments

object A SingleCellExperiment object
ncomponents Numeric scalar indicating the number of diffusion components to obtain.
ntop Numeric scalar specifying the number of most variable features to use for con-

structing the diffusion map.
feature_set Character vector of row names, a logical vector or a numeric vector of indices

indicating a set of features to use to construct the diffusion map. This will over-
ride any ntop argument if specified.

exprs_values Integer scalar or string indicating which assay of object should be used to ob-
tain the expression values for the calculations.

scale_features Logical scalar, should the expression values be standardised so that each feature
has unit variance?

use_dimred String or integer scalar specifying the entry of reducedDims(object) to use as
input to DiffusionMap. Default is to not use existing reduced dimension results.

n_dimred Integer scalar, number of dimensions of the reduced dimension slot to use when
use_dimred is supplied. Defaults to all available dimensions.

... Additional arguments to pass to DiffusionMap.

https://github.com/sa-lee/plyexperiment
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Details

The function DiffusionMap is used internally to compute the diffusion map.

Setting use_dimred allows users to easily construct a diffusion map from low-rank approxima-
tions of the original expression matrix (e.g., after PCA). In such cases, arguments such as ntop,
feature_set, exprs_values and scale_features will be ignored.

The behaviour of DiffusionMap seems to be non-deterministic, in a manner that is not responsive
to any set.seed call. The reason for this is unknown.

Value

A SingleCellExperiment object containing the coordinates of the first ncomponent diffusion map
components for each cell. This is stored in the "DiffusionMap" entry of the reducedDims slot.

Author(s)

Aaron Lun, based on code by Davis McCarthy

References

Haghverdi L, Buettner F, Theis FJ. Diffusion maps for high-dimensional single-cell analysis of
differentiation data. Bioinformatics. 2015; doi:10.1093/bioinformatics/btv325

See Also

destiny, plotDiffusionMap

Examples

## Set up an example SingleCellExperiment
data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

)
example_sce <- normalize(example_sce)

example_sce <- runDiffusionMap(example_sce)
reducedDimNames(example_sce)
head(reducedDim(example_sce))

runMDS Perform MDS on cell-level data

Description

Perform multi-dimensional scaling (MDS) on cells, based on the data in a SingleCellExperiment
object.
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Usage

runMDS(object, ncomponents = 2, ntop = 500, feature_set = NULL,
exprs_values = "logcounts", scale_features = TRUE,
use_dimred = NULL, n_dimred = NULL, method = "euclidean")

Arguments

object A SingleCellExperiment object.

ncomponents Numeric scalar indicating the number of MDS dimensions to obtain.

ntop Numeric scalar specifying the number of most variable features to use for MDS.

feature_set Character vector of row names, a logical vector or a numeric vector of indices
indicating a set of features to use for MDS. This will override any ntop argument
if specified.

exprs_values Integer scalar or string indicating which assay of object should be used to ob-
tain the expression values for the calculations.

scale_features Logical scalar, should the expression values be standardised so that each feature
has unit variance?

use_dimred String or integer scalar specifying the entry of reducedDims(object) to use as
input to cmdscale. Default is to not use existing reduced dimension results.

n_dimred Integer scalar, number of dimensions of the reduced dimension slot to use when
use_dimred is supplied. Defaults to all available dimensions.

method String specifying the type of distance to be computed between cells.

Details

The function cmdscale is used internally to compute the multidimensional scaling components to
plot.

Setting use_dimred allows users to easily perform MDS on low-rank approximations of the orig-
inal expression matrix (e.g., after PCA). In such cases, arguments such as ntop, feature_set,
exprs_values and scale_features will be ignored.

Value

A SingleCellExperiment object containing the coordinates of the first ncomponent MDS dimen-
sions for each cell. This is stored in the "MDS" entry of the reducedDims slot.

Author(s)

Aaron Lun, based on code by Davis McCarthy

See Also

cmdscale, plotMDS

Examples

## Set up an example SingleCellExperiment
data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
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colData = sc_example_cell_info
)
example_sce <- normalize(example_sce)

example_sce <- runMDS(example_sce)
reducedDimNames(example_sce)
head(reducedDim(example_sce))

runPCA,SingleCellExperiment-method

Perform PCA on cell-level data

Description

Perform a principal components analysis (PCA) on cells, based on the data in a SingleCellExperi-
ment object.

Usage

## S4 method for signature 'SingleCellExperiment'
runPCA(x, ncomponents = 2,
method = NULL, ntop = 500, exprs_values = "logcounts",
feature_set = NULL, scale_features = TRUE, use_coldata = FALSE,
selected_variables = NULL, detect_outliers = FALSE,
BSPARAM = ExactParam(), BPPARAM = SerialParam())

Arguments

x A SingleCellExperiment object.

ncomponents Numeric scalar indicating the number of principal components to obtain.

method Deprecated, string specifying how the PCA should be performed.

ntop Numeric scalar specifying the number of most variable features to use for PCA.

exprs_values Integer scalar or string indicating which assay of object should be used to ob-
tain the expression values for the calculations.

feature_set Character vector of row names, a logical vector or a numeric vector of indices
indicating a set of features to use for PCA. This will override any ntop argument
if specified.

scale_features Logical scalar, should the expression values be standardised so that each feature
has unit variance? This will also remove features with standard deviations below
1e-8.

use_coldata Logical scalar specifying whether the column data should be used instead of
expression values to perform PCA.

selected_variables

List of strings or a character vector indicating which variables in colData(object)
to use for PCA when use_coldata=TRUE. If a list, each entry can take the form
described in ?"scater-vis-var".

detect_outliers

Logical scalar, should outliers be detected based on PCA coordinates generated
from column-level metadata?
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BSPARAM A BiocSingularParam object specifying which algorithm should be used to per-
form the PCA.

BPPARAM A BiocParallelParam object specifying whether the PCA should be parallelized.

Details

The function prcomp is used internally to do the PCA when method="prcomp". Alternatively, the
irlba package can be used, which performs a fast approximation of PCA through the prcomp_irlba
function. This is especially useful for large, sparse matrices.

Note that prcomp_irlba involves a random initialization, after which it converges towards the exact
PCs. This means that the result will change slightly across different runs. For full reproducibility,
users should call set.seed prior to running runPCA with method="irlba".

If use_coldata=TRUE, PCA will be performed on column-level metadata instead of the gene ex-
pression matrix. The selected_variables defaults to a vector containing:

• "pct_counts_top_100_features"

• "total_features_by_counts"

• "pct_counts_feature_control"

• "total_features_feature_control"

• "log10_total_counts_endogenous"

• "log10_total_counts_feature_control"

This can be useful for identifying outliers cells based on QC metrics, especially when combined
with detect_outliers=TRUE. If outlier identification is enabled, the outlier field of the output
colData will contain the identified outliers.

Value

A SingleCellExperiment object containing the first ncomponent principal coordinates for each cell.
If use_coldata=FALSE, this is stored in the "PCA" entry of the reducedDims slot. Otherwise, it is
stored in the "PCA_coldata" entry.

The proportion of variance explained by each PC is stored as a numeric vector in the "percentVar"
attribute of the reduced dimension matrix. Note that this will only be of length equal to ncomponents
when method is not "prcomp". This is because approximate PCA methods do not compute singular
values for all components.

Author(s)

Aaron Lun, based on code by Davis McCarthy

See Also

prcomp, plotPCA

Examples

## Set up an example SingleCellExperiment
data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info
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)
example_sce <- normalize(example_sce)

example_sce <- runPCA(example_sce)
reducedDimNames(example_sce)
head(reducedDim(example_sce))

runTSNE Perform t-SNE on cell-level data

Description

Perform t-stochastic neighbour embedding (t-SNE) for the cells, based on the data in a SingleCell-
Experiment object.

Usage

runTSNE(object, ncomponents = 2, ntop = 500, feature_set = NULL,
exprs_values = "logcounts", scale_features = TRUE,
use_dimred = NULL, n_dimred = NULL, perplexity = min(50,
floor(ncol(object)/5)), pca = TRUE, initial_dims = 50,
normalize = TRUE, theta = 0.5, external_neighbors = FALSE,
BNPARAM = KmknnParam(), BPPARAM = SerialParam(), ...)

Arguments

object A SingleCellExperiment object.

ncomponents Numeric scalar indicating the number of t-SNE dimensions to obtain.

ntop Numeric scalar specifying the number of most variable features to use for t-SNE.

feature_set Character vector of row names, a logical vector or a numeric vector of indices
indicating a set of features to use for t-SNE. This will override any ntop argu-
ment if specified.

exprs_values Integer scalar or string indicating which assay of object should be used to ob-
tain the expression values for the calculations.

scale_features Logical scalar, should the expression values be standardised so that each feature
has unit variance?

use_dimred String or integer scalar specifying the entry of reducedDims(object) to use as
input to Rtsne. Default is to not use existing reduced dimension results.

n_dimred Integer scalar, number of dimensions of the reduced dimension slot to use when
use_dimred is supplied. Defaults to all available dimensions.

perplexity Numeric scalar defining the perplexity parameter, see ?Rtsne for more details.

pca Logical scalar passed to Rtsne, indicating whether an initial PCA step should
be performed. This is ignored if use_dimred is specified.

initial_dims Integer scalar passed to Rtsne, specifying the number of principal components
to be retained if pca=TRUE.

normalize Logical scalar indicating if input values should be scaled for numerical preci-
sion, see normalize_input.
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theta Numeric scalar specifying the approximation accuracy of the Barnes-Hut algo-
rithm, see Rtsne for details.

external_neighbors

Logical scalar indicating whether a nearest neighbors search should be com-
puted externally with findKNN.

BNPARAM A BiocNeighborParam object specifying the neighbor search algorithm to use
when external_neighbors=TRUE.

BPPARAM A BiocParallelParam object specifying how the neighbor search should be par-
allelized when external_neighbors=TRUE.

... Additional arguments to pass to Rtsne.

Details

The function Rtsne is used internally to compute the t-SNE. Note that the algorithm is not deter-
ministic, so different runs of the function will produce differing results. Users are advised to test
multiple random seeds, and then use set.seed to set a random seed for replicable results.

The value of the perplexity parameter can have a large effect on the results. By default, the
function will try to provide a reasonable setting, by scaling the perplexity with the number of cells
until it reaches a maximum of 50. However, it is often worthwhile to manually try multiple values
to ensure that the conclusions are robust.

Setting use_dimred allows users to easily perform t-SNE on low-rank approximations of the orig-
inal expression matrix (e.g., after PCA). In such cases, arguments such as ntop, feature_set,
exprs_values and scale_features will be ignored.

If external_neighbors=TRUE, the nearest neighbor search step is conducted using a different algo-
rithm to that in the Rtsne function. This can be parallelized or approximate to achieve greater speed
for large data sets. The neighbor search results are then used for t-SNE via the Rtsne_neighbors
function.

Value

A SingleCellExperiment object containing the coordinates of the first ncomponent t-SNE dimen-
sions for each cell. This is stored in the "TSNE" entry of the reducedDims slot.

Author(s)

Aaron Lun, based on code by Davis McCarthy

References

L.J.P. van der Maaten. Barnes-Hut-SNE. In Proceedings of the International Conference on Learn-
ing Representations, 2013.

See Also

Rtsne, plotTSNE

Examples

## Set up an example SingleCellExperiment
data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
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assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

)
example_sce <- normalize(example_sce)

example_sce <- runTSNE(example_sce)
reducedDimNames(example_sce)
head(reducedDim(example_sce))

runUMAP Perform UMAP on cell-level data

Description

Perform uniform manifold approximation and projection (UMAP) for the cells, based on the data
in a SingleCellExperiment object.

Usage

runUMAP(object, ncomponents = 2, ntop = 500, feature_set = NULL,
exprs_values = "logcounts", scale_features = TRUE,
use_dimred = NULL, n_dimred = NULL, pca = 50, n_neighbors = 15,
external_neighbors = FALSE, BNPARAM = KmknnParam(),
BPPARAM = SerialParam(), ...)

Arguments

object A SingleCellExperiment object.

ncomponents Numeric scalar indicating the number of UMAP dimensions to obtain.

ntop Numeric scalar specifying the number of most variable features to use for UMAP.

feature_set Character vector of row names, a logical vector or a numeric vector of indices
indicating a set of features to use for UMAP. This will override any ntop argu-
ment if specified.

exprs_values Integer scalar or string indicating which assay of object should be used to ob-
tain the expression values for the calculations.

scale_features Logical scalar, should the expression values be standardised so that each feature
has unit variance?

use_dimred String or integer scalar specifying the entry of reducedDims(object) to use as
input to Rtsne. Default is to not use existing reduced dimension results.

n_dimred Integer scalar, number of dimensions of the reduced dimension slot to use when
use_dimred is supplied. Defaults to all available dimensions.

pca Integer scalar specifying how many PCs should be used as input into UMAP,
if the PCA is to be recomputed on the subsetted expression matrix. Only used
when codeuse_dimred=NULL, and if pca=NULL, no PCA is performed at all.

n_neighbors Integer scalar, number of nearest neighbors to identify when constructing the
initial graph.

external_neighbors

Logical scalar indicating whether a nearest neighbors search should be com-
puted externally with findKNN.
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BNPARAM A BiocNeighborParam object specifying the neighbor search algorithm to use
when external_neighbors=TRUE.

BPPARAM A BiocParallelParam object specifying how the neighbor search should be par-
allelized when external_neighbors=TRUE.

... Additional arguments to pass to umap.

Details

The function umap is used internally to compute the UMAP. Note that the algorithm is not deter-
ministic, so different runs of the function will produce differing results. Users are advised to test
multiple random seeds, and then use set.seed to set a random seed for replicable results.

Setting use_dimred allows users to easily perform UMAP on low-rank approximations of the orig-
inal expression matrix (e.g., after PCA). In such cases, arguments such as ntop, feature_set,
exprs_values and scale_features will be ignored.

If external_neighbors=TRUE, the nearest neighbor search step is conducted using a different al-
gorithm to that in the umap function. This can be parallelized or approximate to achieve greater
speed for large data sets. The neighbor search results are then used directly to create the UMAP
embedding.

Value

A SingleCellExperiment object containing the coordinates of the first ncomponent UMAP dimen-
sions for each cell. This is stored in the "UMAP" entry of the reducedDims slot.

Author(s)

Aaron Lun

References

McInnes L, Healy J (2018). UMAP: Uniform Manifold Approximation and Projection for Dimen-
sion Reduction. arXiv.

See Also

umap, plotUMAP

Examples

## Set up an example SingleCellExperiment
data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

)
example_sce <- normalize(example_sce)

example_sce <- runUMAP(example_sce)
reducedDimNames(example_sce)
head(reducedDim(example_sce))
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scater-plot-args General visualization parameters

Description

scater functions that plot points share a number of visualization parameters, which are described
on this page.

Aesthetic parameters

add_legend: Logical scalar, specifying whether a legend should be shown. Defaults to TRUE.

theme_size: Integer scalar, specifying the font size. Defaults to 10.

point_alpha: Numeric scalar in [0, 1], specifying the transparency. Defaults to 0.6.

point_size: Numeric scalar, specifying the size of the points. Defaults to NULL.

jitter_type: String to define how points are to be jittered in a violin plot. This is either with
random jitter on the x-axis ("jitter") or in a “beeswarm” style (if "swarm", default). The
latter usually looks more attractive, but for datasets with a large number of cells, or for dense
plots, the jitter option may work better.

Distributional calculations

show_median: Logical, should the median of the distribution be shown for violin plots? Defaults
to FALSE.

show_violin: Logical, should the outline of a violin plot be shown? Defaults to TRUE.

show_smooth: Logical, should a smoother be fitted to a scatter plot? Defaults to FALSE.

show_se: Logical, should standard errors for the fitted line be shown on a scatter plot when show_smooth=TRUE?
Defaults to TRUE.

See Also

plotColData, plotRowData, plotReducedDim, plotExpression, plotPlatePosition, and most
other plotting functions.

scater-vis-var Variable selection for visualization

Description

A number of scater functions accept a SingleCellExperiment object and extract (meta)data from it
for use in a plot. These values are then used on the x- or y-axes (e.g., plotColData) or for tuning
visual parameters, e.g., colour_by, shape_by, size_by. This page describes how the selection of
these values can be controlled by the user, by passing appropriate values to the arguments of the
desired plotting function.
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When plotting by cells

Here, we assume that each visual feature of interest (e.g., point or line) corresponds to a cell in the
SingleCellExperiment object sce. We will also assume that the user wants to change the colour of
each feature according to the cell (meta)data. To do so, the user can pass as an argument:

• An unnamed character vector of length 1, i.e., a string. This is initially assumed to be the
name of a column-level metadata field. The function will first search the column names of
colData(sce), and extract metadata for all cells if a matching field is found. If no match
is found, the function will assume that the string represents a gene name. It will search
rownames(sce) and extract gene expression values for any matching row across all cells.
Otherwise, an error is raised.

• A named character vector of length 1, where the name is either "exprs" or "metadata". This
forces the function to only search for the string in rownames(sce) or colnames(colData(sce)),
respectively. Adding an explicit name is useful when the same field exists in both the row
names and column metadata names.

• A character vector of length greater than 1. This will search for nested fields in colData(sce).
For example, supplying a character vector c("A","B","C") will retrieve colData(sce)$A$B$C,
where both A and B contain nested DataFrames. See calculateQCMetrics with compact=TRUE
for an example of how these can be constructed. The concatenated name "A:B:C" will be used
in the legend.

• A character vector of length greater than 1 and the first element set to NA. This will search for
nested fields in the internal column data of a SingleCellExperiment, i.e., in int_colData. For
example, c(NA,"size_factor") would retrieve the values corresponding to sizeFactors(object).
The concatenated name without the NA is used in the legend. Note that internal fields are only
searched when NA is the first element.

• A data frame with one column and number of rows equal to the number of cells. This should
contain values to use for visualization, e.g., for plotting on the x-/y-axis, or for colouring by.
In this manner, the user can use new information without manually adding it to the Single-
CellExperiment object. The column name of the data frame will be used in the legend.

The same logic applies for other visualization parameters such as shape_by and size_by. Other
arguments may also use the same scheme, but this depends on the context; see the documentation
for each function for details. In particular, if an argument explicitly refers to a metadata field, any
names for the character string will be ignored. Similarly, a character vector of length > 1 is not
allowed for an argument that explicitly refers to expression values.

When plotting by features

Here, we assume that each visual feature of interest (e.g., point or line) corresponds to a feature in
the SingleCellExperiment object sce. The scheme is mostly the same as described above, with a
few differences:

• rowData is searched instead of colData, as we are extracting metadata for each feature.

• When extracting expression values, the name of a single cell must be specified. Visualization
will then use the expression profile for all features in that cell. (This tends to be a rather
unusual choice for colouring.)

• Character strings named with "exprs" will search for the string in colnames(sce).

• A data frame input should have number of rows equal to the number of features.
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Miscellaneous details

Most functions will have a by_exprs_values parameter. This defines the assay of the Single-
CellExperiment object from which expression values are extracted for use in colouring, shaping or
sizing the points. The setting of by_exprs_values will usually default to "logcounts", or to the
value of exprs_values in functions such as plotExpression. However, it can be specified sepa-
rately from exprs_values, which is useful for visualizing two different types of expression values
on the same plot.

Most functions will also have a by_show_single parameter. If FALSE, variables with only one level
are not used for visualization, i.e., the visual aspect (colour or shape or size) is set to the default
for all points. No guide is created for this aspect, avoiding clutter in the legend when that aspect
provides no information. If TRUE, all supplied variables are used for visualization, regardless of how
many levels they have.

See Also

plotColData, plotRowData, plotReducedDim, plotExpression, plotPlatePosition, and most
other plotting functions.

SCESet The "Single Cell Expression Set" (SCESet) class

Description

S4 class and the main class used by scater to hold single cell expression data. SCESet extends the
basic Bioconductor ExpressionSet class.

Details

This class is initialized from a matrix of expression values.

Methods that operate on SCESet objects constitute the basic scater workflow.

Slots

logExprsOffset: Scalar of class "numeric", providing an offset applied to expression data in the
‘exprs‘ slot when undergoing log2-transformation to avoid trying to take logs of zero.

lowerDetectionLimit: Scalar of class "numeric", giving the lower limit for an expression value
to be classified as "expressed".

cellPairwiseDistances: Matrix of class "numeric", containing pairwise distances between cells.

featurePairwiseDistances: Matrix of class "numeric", containing pairwise distances between
features.

reducedDimension: Matrix of class "numeric", containing reduced-dimension coordinates for
cells (generated, for example, by PCA).

bootstraps: Array of class "numeric" that can contain bootstrap estimates of the expression or
count values.

sc3: List containing results from consensus clustering from the SC3 package.

featureControlInfo: Data frame of class "AnnotatedDataFrame" that can contain informa-
tion/metadata about sets of control features defined for the SCESet object. bootstrap estimates
of the expression or count values.
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References

Thanks to the Monocle package (github.com/cole-trapnell-lab/monocle-release/) for their CellDataSet
class, which provided the inspiration and template for SCESet.

sc_example_cell_info Cell information for the small example single-cell counts dataset to
demonstrate capabilities of scater

Description

This data.frame contains cell metadata information for the 40 cells included in the example counts
dataset included in the package.

Usage

sc_example_cell_info

Format

a data.frame instance, 1 row per cell.

Value

NULL, but makes aavailable a data frame with cell metadata

Author(s)

Davis McCarthy, 2015-03-05

Source

Wellcome Trust Centre for Human Genetics, Oxford

sc_example_counts A small example of single-cell counts dataset to demonstrate capabil-
ities of scater

Description

This data set contains counts for 2000 genes for 40 cells. They are from a real experiment, but
details have been anonymised.

Usage

sc_example_counts

Format

a matrix instance, 1 row per gene.
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Value

NULL, but makes aavailable a matrix of count data

Author(s)

Davis McCarthy, 2015-03-05

Source

Wellcome Trust Centre for Human Genetics, Oxford

sumCountsAcrossCells Sum counts across a set of cells

Description

Create a count matrix where counts for all cells in a set are summed together.

Usage

sumCountsAcrossCells(object, ids, exprs_values = "counts",
BPPARAM = SerialParam())

Arguments

object A SingleCellExperiment object or a count matrix.

ids A factor specifying the set to which each cell in object belongs.

exprs_values A string or integer scalar specifying the assay of object containing counts, if
object is a SingleCellExperiment.

BPPARAM A BiocParallelParam object specifying how summation should be parallelized.

Details

This function provides a convenient method for aggregating counts across multiple columns for
each feature. A typical application would be to sum counts across all cells in each cluster to obtain
“pseudo-bulk” samples for further analysis.

Any NA values in ids are implicitly ignored and will not be considered or reported. This may be
useful, e.g., to remove undesirable cells by setting their entries in ids to NA.

Value

A count matrix where counts for all cells in the same set are summed together for each feature.

Author(s)

Aaron Lun
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Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info)

ids <- sample(LETTERS[1:5], ncol(example_sce), replace=TRUE)
out <- sumCountsAcrossCells(example_sce, ids)
dimnames(out)

sumCountsAcrossFeatures

Sum counts across a feature set

Description

Create a count matrix where counts for all features in a set are summed together.

Usage

sumCountsAcrossFeatures(object, ids, exprs_values = "counts",
BPPARAM = SerialParam())

Arguments

object A SingleCellExperiment object or a count matrix.

ids A factor specifying the set to which each feature in object belongs.

exprs_values A string or integer scalar specifying the assay of object containing counts, if
object is a SingleCellExperiment.

BPPARAM A BiocParallelParam object specifying whether summation should be paral-
lelized.

Details

This function provides a convenient method for aggregating counts across multiple rows for each
cell. For example, genes with multiple mapping locations in the reference will often manifest as
multiple rows with distinct Ensembl/Entrez IDs. These counts can be aggregated into a single
feature by setting the shared identifier (usually the gene symbol) as ids.

It is theoretically possible to aggregate transcript-level counts to gene-level counts with this func-
tion. However, it is often better to do so with dedicated functions (e.g., from the tximport or
tximeta packages) that account for differences in length across isoforms.

Any NA values in ids are implicitly ignored and will not be considered or reported. This may be
useful, e.g., to remove undesirable feature sets by setting their entries in ids to NA.

Value

A count matrix where counts for all features in the same set are summed together within each cell.
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Author(s)

Aaron Lun

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info)

ids <- sample(LETTERS, nrow(example_sce), replace=TRUE)
out <- sumCountsAcrossFeatures(example_sce, ids)
dimnames(out)

uniquifyFeatureNames Make feature names unique

Description

Combine a user-interpretable feature name (e.g., gene symbol) with a standard identifier that is
guaranteed to be unique and valid (e.g., Ensembl) for use as row names.

Usage

uniquifyFeatureNames(ID, names)

Arguments

ID A character vector of unique identifiers.
names A character vector of feature names.

Details

This function will attempt to use names if it is unique. If not, it will append the _ID to any non-
unique value of names. Missing names will be replaced entirely by ID.

The output is guaranteed to be unique, assuming that ID is also unique. This can be directly used as
the row names of a SingleCellExperiment object.

Value

A character vector of unique-ified feature names.

Author(s)

Aaron Lun

Examples

uniquifyFeatureNames(
ID=paste0("ENSG0000000", 1:5),
names=c("A", NA, "B", "C", "A")

)
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updateSCESet Convert an SCESet object to a SingleCellExperiment object

Description

Convert an SCESet object produced with an older version of the package to a SingleCellExperiment
object compatible with the current version.

Usage

updateSCESet(object)

toSingleCellExperiment(object)

Arguments

object an SCESet object to be updated

Value

a SingleCellExperiment object

Examples

## Not run:
updateSCESet(example_sceset)

## End(Not run)
## Not run:
toSingleCellExperiment(example_sceset)

## End(Not run)
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