Package 'brainImageR'

January 15, 2019

Type Package

Title A Framework for visualizing gene set enrichment throughout neurodevelopment

Version 1.1.0

Author Sara Linker [aut, cre]

Maintainer Sara B Linker < sara.linker@gmail.com>

Description BrainImageR is a package that provides the user with information of where in the human brain their gene set corresponds to. This is provided both as a continuous variable and as a easily-interpretable image. BrainImageR has additional functionality of identifying approximately when in developmental time that a gene expression dataset corresponds to. Both the spatial gene set enrichment and the developmental time point prediction are assessed in comparison to the Allen Brain Atlas reference data.

License CC BY-SA 4.0

LazyData TRUE

biocViews Software, Transcription, GeneSetEnrichment, GeneExpression, GenePrediction

VignetteBuilder knitr

Depends R (>= 3.5)

Imports BiocGenerics, ExperimentHub, ggplot2, grDevices, grid, gridExtra, methods, randomForest, RColorBrewer, stats, testthat

Suggets BiocStyle, utils

RoxygenNote 6.0.1

Suggests knitr, rmarkdown

URL https://github.com/saralinker/brainImageR

BugReports https://github.com/saralinker/brainImageR/issues

git_url https://git.bioconductor.org/packages/brainImageR

git_branch master

git_last_commit 6bf20b6

 $\textbf{git_last_commit_date} \hspace{0.1cm} 2018\text{-}10\text{-}30$

Date/Publication 2019-01-14

2 available_areanames

R topics documented:

	available_areanames	2
	BrainMap	3
	brainrange	4
	Comp-class	4
	CreateBrain	5
	dat	6
	GetGenes	6
	hipp	7
	InABA	7
	PlotBrain	8
	PlotEnrich	9
	PlotPred	9
	Pred-class	10
	predict_time	10
	PValue.onetail	11
	RandomTissueSummary	12
	reColor	13
	SpatialEnrichment	14
	testEnrich	14
	TissueSummary	15
	tis_in_region	16
	tis_set	16
	vth	17
	whichtissues	17
dex		18

available_areanames List of areas that are present in a plotted brain slice

Description

provides all brain areas within a slice for a refset.

Usage

```
available_areanames(composite, slice = NULL)
```

Arguments

composite Object from either SpatialEnrichment or CreateBrain

slice Section of the brain to be queried

Value

all areas present in the brain section of interest

BrainMap 3

Examples

```
#brainImageR:::loadworkspace()
##Load in a gene set
data(vth)
##calculate spatial enrichment
#composite <- SpatialEnrichment(vth, reps = 20, refset = "developing")
#available_areanames(composite, slice = 5)</pre>
```

BrainMap

Internal- Overlaps regional enrichment into a single section

Description

BrainMap Merges maps from reColor

Usage

Arguments

dim numeric dimensions of the original image

tissueExp counts of genes per tissue, from SpatialEnrichment.

Abrev character of all regions in the given section

Files character of tiff images for each region

slice integer of current slice

refset character of reference brain map

Value

returns a matrix weighted by the gene overlap

```
##Internal to brainImageR, called within CreateBrain
#brainImageR:::loadworkspace()
##First load in a gene set
data(vth)
##calculate the spatial enrichment
#composite <- SpatialEnrichment(vth, reps = 20, refset = "developing")
#tissueExp <- Boot(composite)

##Select the slice of interest
#slice <- 4
#Files <- .cache[["EH1434"]][[slice]]
#dim <- .cache[["EH1436"]][[slice]]
#Select the region of interest
#Abrev <- .cache[["EH1438"]]</pre>
```

4 Comp-class

```
#abrev <- "VZ"

# map <- BrainMap(dim = dim ,
# tissueExp = tissueExp,
# Abrev = Abrev, Files = Files,
# slice = slice,
# refset = "developing")</pre>
```

brainrange

brainrange

Description

creates a sequence of numbers from first to last by the given interval

Usage

```
brainrange(first = 0, last = 1, by = 1)
```

Arguments

first starting value number

last ending value

by amount to move by in sequence

Value

vector of numbers

Examples

```
brainrange(1,10,0.5)
```

Comp-class

Comp keeps track of Spatial Enrichment calculations and parameters

Description

Comp tracks the parameters and calculations throughout spatial gene set enrichment.

CreateBrain 5

Slots

```
genes character vector of query genes

tissueExp1 named numeric vector of query gene count in tissues

tissueExp2 named numeric vector of avg.

random.matrix matrix of overlap at random, size = boot replicates

refset character noting developing or adult reference

background gene count in tissues

composite composite image matrix
```

Examples

```
comp <- methods::new(Class="Comp",
genes = c("a","b"),
tissueExp1 = c(10,12),
tissueExp2 = c(10,13),
composite = matrix(0,nrow=10,ncol=10),
random.matrix = data.frame(matrix(0,nrow=10,ncol=10)),
refset = "developing"
)</pre>
```

CreateBrain

Overlap spatial enrichment information and anatomical organization

Description

CreateBrain convert spatial enrichment into anatomical coordinates.

Usage

```
CreateBrain(composite, boot, slice, pcut = 0.05)
```

Arguments

composite Comp object returned from SpatialEnrichment
boot result from testEnrich including significance estimates
slice integer brain section
pcut numeric padj filter.

Value

Comp object

6 GetGenes

Examples

```
#brainImageR:::loadworkspace()
##First put together a gene list, or load in the default vth dataset
data(vth)
##Calculate the spatial enrichment.
#composite <- SpatialEnrichment(vth, reps = 20, refset = "developing")
#tissueExp1 <- composite@tissueExp1
#random.matrix <- composite@random.matrix
##Calculate the significance estimates
#boot <- testEnrich(composite)
##Color the brain section of interest with enrichment
#composite <- CreateBrain(composite, boot, slice = 6, pcut = 0.05)
##Plot the brain
#PlotBrain(composite, Breaks = 12)</pre>
```

dat

In vitro temporal data of human neural progenitor cells and neurons

Description

RNA-seq data: Induced pluripotent stem cells were differentiated into neural progenitor cells (NPC.1, NPC.2, NPC.3, NPC.4) that were patterned for the forebrain lineage. Neurons were differentiated from these neural progenitor cells (Neurons.5, Neurons.6). RNA was collected from both NPCs and neurons, poly(A) cDNA libraries were generated, and sequenced on an Illumina HiSeq 2500. RNA-seq data was aligned to the human Hg19 reference, and counts were normalized into log2(TPM + 1) values. Gene names are in human symbol format.

Usage

dat

Format

10193 X 6 data.frame

GetGenes

GenGenes

Description

GetGenes returns the genes that are expressed within a given tissue

Usage

```
GetGenes(genes, composite, tissue_abrev = NULL)
```

Arguments

genes Query gene list.

composite Result from SpatialEnrichment

tissue_abrev The tissue of interest.

hipp 7

Value

Gene overlap between query and tissue of interest

Examples

```
#brainImageR:::loadworkspace()
##First put together a gene list, or load in the default vth dataset
data(vth)
##Calculate the spatial enrichment.
#composite <- SpatialEnrichment(vth, reps = 20, refset = "developing")
##Ask which genes are present in any given tissue.
#available_areanames(composite, slice = 4)
#vth_in_VZ <- GetGenes(vth, composite, tissue_abrev = "VZ")</pre>
```

hipp

Hippocampal genes using the adult human brain as reference

Description

Hippocampal genes were identified using the differential search tool on the Allen Brain Atlas Human brain map. The hippocampal formation was contrasted to neighboring regions to identify a gene list that was enriched within the hippocampus.

Usage

hipp

Format

a vector with 1302 gene names

InABA

Quick search for presence of genes in the ABA list

Description

InABA checks for the gene name in the ABA dataset

Usage

```
InABA(genes, refset = c("developing", "adult"))
```

Arguments

genes genes to search

refset reference brain map. developing (default) or adult

Value

returns the list of genes that are also present in the ABA dataset

8 PlotBrain

Examples

```
#brainImageR:::loadworkspace()
##First load in a gene set
data(vth)
##Then query the dataset to see which genes are present
#vth_in <- InABA(vth)
#head(vth_in)
#length(vth_in) / length(vth)</pre>
```

PlotBrain

Color and Plot the SGSE image

Description

PlotBrain Plots CreateBrain. The gene set enrichment observe within the microdissected tissues (results of testEnrich) are combined here to show gene set enrichment across broad brain regions. Enriched regions are colored in red, and regions depleted for the query gene list are colored in blue.

Usage

```
PlotBrain(composite, legend = TRUE)
```

Arguments

composite Comp object returned from CreateBrain.

legend Boolean whether the legend should be included. Default = TRUE

Details

PlotBrain plots your spatial gene set enrichment image.

Value

plots the SGSE brain image

```
##First put together a gene list, or load in the default vth dataset
#brainImageR:::loadworkspace()
data(vth)
##Calculate the spatial enrichment.
#composite <- SpatialEnrichment(vth, reps = 20, refset = "developing")
##Calculate the significance of the gene set enrichment
#boot <- testEnrich(composite)
##Color the brain section of interest
#composite <- CreateBrain(composite, boot, slice = 5, pcut = 0.05)
##Plot the brain
#PlotBrain(composite)</pre>
```

PlotEnrich 9

PlotEnrich

PlotEnrich

Description

A quick plot to assess the enrichments returned from testEnrich. Gene overlap calculated by random chance is plotted on the x-axis and the gene overlap from the query set on the y-axis. Each dot represents an individual microdissected tissue. Note that the signficance estimate is only dependent on the randomly generated overlaps if the p-values were calculated with the bootstrap procedure.

Usage

```
PlotEnrich(boot)
```

Arguments

boot

Comp object returned from the testEnrich function

Value

Spatial enrichment plot

Examples

```
#brainImageR:::loadworkspace()
##First put together a gene list, or load in the default vth dataset
data(vth)
##Calculate the spatial enrichment
#composite <- SpatialEnrichment(vth, 20, "developing")
#tissueExp1 <- composite@tissueExp1
#random.matrix <- composite@random.matrix
##Calculate the significance estimates
#boot <- testEnrich(composite)
#PlotEnrich(boot)</pre>
```

PlotPred

Plot your temporal predictions

Description

PlotPred Plots the temporal predictions.

Usage

```
PlotPred(time)
```

Arguments

time

Object returned from predict_time

10 predict_time

Value

prediction plot

Examples

```
#brainImageR:::loadworkspace()
##Load in data
data(dat)
##predict time
#time <- predict_time(dat)
##plot the predictions
#PlotPred(time)</pre>
```

Pred-class

Pred

Description

keeps track of parameters and results from predict_time

Slots

```
pred_age data.frame of results from predict_time
model randomForest model
minage minimum age filter from predict_time
maxage maximum age filter from predict_time
tissue tissue filter from predict_time
```

Examples

```
prep <- methods::new(Class="Pred",
pred_age = data.frame(matrix(0,nrow=10,ncol=10)),
model = list(c(rep("A",5), rep("B",5))),
minage = 8,
maxage = 2120,
tissue = "HIP"
)</pre>
```

predict_time

Predict developmental time from gene expression data

Description

Predict human developmental time from expression dataset

Usage

```
predict_time(dat = NULL, genelist = NULL, minage = 8, maxage = 2120,
    tissue = NULL, minrsq = 0.6)
```

PValue.onetail 11

Arguments

dat	Normalized expression matrix
genelist	Optional: restrict analysis to gene list
minage	min pcw of the reference set. default = 8
maxage	max pcw of the reference set. default = 2120
tissue	Optional: restrict analysis to tissue (available)
minrsq	(range $0-1$) model leniency. default = 0.5 .

Value

spatiotemporal predictions.

Examples

```
#brainImageR:::loadworkspace()
##Load in the data
data(dat)
##predict time
#time <- predict_time(dat)</pre>
```

PValue.onetail

Calculate p-value from bootstrapped sample

Description

The distribution of microdissected tissues supporting each larger brain region is not equal across all regions. We therefore provide an option to bootstrap gene set enrichment. This function calculates the signficance of that enrichment.

PValue.onetail Calculates the p-value from a bootstrapped sample

Usage

```
PValue.onetail(regions, tissueExp1, random.matrix)
```

Arguments

regions character regions to search

tissueExp1 numeric vector presence of genes in query random.matrix numeric presence of genes at random

Value

p-value of the significance of tissueExp1 given the random.matrix

Examples

```
##Internal to brainImageR, called within testEnrich
#brainImageR:::loadworkspace()
##First put together a gene list, or load in the default vth dataset
data(vth)
##Calculate the spatial enrichment.
#composite <- SpatialEnrichment(vth, reps = 20, refset = "developing")
#tissueExp1 <- composite@tissueExp1
#random.matrix <- composite@random.matrix
#boot <- PValue.onetail(regions = names(tissueExp1),
#tissueExp1,
#random.matrix)</pre>
```

RandomTissueSummary

Generate a random overlap

Description

random overlap for background correction and bootstrapping

Usage

```
RandomTissueSummary(i, genes, samplesize, refset = c("developing", "adult"))
```

Arguments

i current iteration

genes all genes to sample from

sample size to select from gene list

refset reference map. developing (default) or adult

Value

returns a list of the random gene overlap for each tissue

```
##Internal to brainImageR, called within SpatialEnrichment
#brainImageR:::loadworkspace()
##First load in a gene set
data(vth)
#tissueExp <- RandomTissueSummary(1, vth, 20)</pre>
```

reColor 13

reColor	Color in the brain images based on enrichment values
	0

Description

reColor quantifies the presence of a gene list within each tissue

Usage

Arguments

i	tissue region from within the specified rostral-caudal section
slice	current slice
tissueExp	tissueExp1 from SpatialEnrichment.
dim	Original dimensions of the image
Abrev	list of tissue regions
Files	list of tiff images
refset	reference map. developing (default) or adult

Value

returns genes counts for each tissue

```
#brainImageR:::loadworkspace()
##First load a gene set
data(vth)
##calculate spatial enrichment
#composite <- SpatialEnrichment(vth,20,"developing")</pre>
#boot <- Boot(composite)</pre>
#subboot <- c(boot[boot$pvalue < 0.05 & is.finite(boot$FC), "FC"])</pre>
#names(subboot) <- rownames(boot[boot$pvalue < 0.05 & is.finite(boot$FC), ])</pre>
#tissueExp <- subboot</pre>
##Select the slice of interest
#slice <- 4
#Files <- .cache[["EH1434"]][[slice]]</pre>
#dim <- .cache[["EH1436"]][[slice]]</pre>
##Select the region of interest
#Abrev <- .cache[["EH1438"]][[4]]
#abrev <- "VZ"
#tmp <- reColor(abrev, slice, tissueExp, dim, Abrev, Files)</pre>
```

14 testEnrich

SpatialEnrichment Calculate the presence of your gene set within each brain region

Description

Calculates the presence of gene set within each region

Usage

```
SpatialEnrichment(genes, background = NULL, reps = 10,
    refset = c("developing", "adult"))
```

Arguments

genes query gene set

background background gene list, default = NULL (uses all ABA genes)

reps replicates for bootstrap, default = 10

refset reference brain map. developing (default) or adult

Value

"Comp" object

Examples

```
#brainImageR:::loadworkspace()
##First load in a gene set
data(vth)
##Then calculate the spatial enrichment
#composite <- SpatialEnrichment(vth, 20, "developing")</pre>
```

testEnrich

Calculate significance of gene set enrichment

Description

testEnrich test the enrichment of the observed enrichment

Usage

```
testEnrich(composite, method = c("fisher", "bootstrap"))
```

Arguments

 $composite \qquad \quad Comp\ object\ returned\ from\ Spatial Enrichment.$

method character either "bootstrap" or "fisher"

Value

spatiotemporal prediction

TissueSummary 15

Examples

```
#brainImageR:::loadworkspace()
##First put together a gene list, or load in the default vth dataset
data(vth)
##Calculate the spatial enrichment.
#composite <- SpatialEnrichment(vth, reps = 20, refset = "developing")
##Calculate the significance estimates
#boot <- testEnrich(composite)
#boot <- boot[order(boot$FC, decreasing=TRUE),]
#head(boot)</pre>
```

TissueSummary

Internal-Identify the number of genes expressed in each tissue

Description

. Quantifies the presence of gene list within each tissue

Usage

```
TissueSummary(genes, refset = c("developing", "adult"))
```

Arguments

genes Genes to query for tissue location

refset reference map. developing (default) or adult

Value

returns genes counts for each tissue

```
#Internal to brainImageR, used within SpatialEnrichment
#First load in a gene set
#brainImageR:::loadworkspace()
data(vth)
#tissueExp <- TissueSummary(vth, refset = "developing")</pre>
```

tis_in_region

List of regions that are supported by given tissue

Description

Brain areas supported by tissue of interest. Opposite=tis_set()

Usage

```
tis_in_region(composite, tissue_abrev)
```

Arguments

composite object returned from SpatialEnrichment or CreateBrain tissue_abrev abreviation of the microdissected tissue of interest.

Value

general brain areas

Examples

```
#brainImageR:::loadworkspace()
##Load in a gene set
data(vth)
##calculate spatial enrichment
#composite <- SpatialEnrichment(vth, reps = 20, refset = "developing")
#tis_in_region(composite, "LHAa")</pre>
```

tis_set

List of tissues that support a given region in the brain plot

Description

Tissues that support brain area. Opposite=tis_in_region()'

Usage

```
tis_set(composite, area.name, slice)
```

Arguments

composite object returned from SpatialEnrichment or CreateBrain

area.name abreviation of the brain area of interest. slice section of the brain to query (1-10)

Value

all areas supported by the tissue

vth 17

Examples

```
#brainImageR:::loadworkspace()
##Load in a gene set
data(vth)
##calculate spatial enrichment
#composite <- SpatialEnrichment(vth, reps = 20, refset = "developing")
#get the set of tissues that are present within a given region
#tis_set(composite, area.name = "Pu", slice = 6)</pre>
```

vth

VTH genes identified from Allen Brain Atlas developing human

Description

Ventral thalamus genes were identified using the differential search tool on the Allen Brain Atlas brain span (prenatal brain). The ventral thalamus was contrasted to neighboring regions to identify a gene list that was enriched within the vth.

Usage

vth

Format

A vector with 1389 gene names

whichtissues

Identify the tissues where a set of genes are expressed

Description

Identifies which tissues express genes

Usage

```
whichtissues(g, refset = c("developing", "adult"))
```

Arguments

g gene list

refset reference map. developing (default) or adult

Value

Tissue regions

```
#brainImageR:::loadworkspace()
genes <- c("HOXB9", "HOXB10", "VIM")
#whichtissues(genes, refset = "developing")</pre>
```

Index

```
*Topic datasets
    dat, 6
    hipp, 7
    vth, 17
available\_areanames, 2
BrainMap, 3
brainrange, 4
Comp (Comp-class), 4
Comp-class, 4
CreateBrain, 5
dat, 6
GetGenes, 6
hipp, 7
InABA, 7
PlotBrain, 8
PlotEnrich, 9
PlotPred, 9
Pred (Pred-class), 10
Pred-class, 10
predict_time, 10
PValue.onetail, 11
{\tt RandomTissueSummary}, 12
reColor, 13
SpatialEnrichment, 14
testEnrich, 14
tis_in_region, 16
tis_set, 16
{\tt TissueSummary}, {\tt 15}
vth, 17
whichtissues, 17
```