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batchCorrect Batch correction methods
Description

A common interface for single-cell batch correction methods.

Usage

batchCorrect(..., batch = NULL, restrict = NULL, subset.row = NULL,
correct.all = FALSE, assay.type = NULL, get.spikes = FALSE, PARAM)

## S4 method for signature 'ClassicMnnParam'
batchCorrect(..., batch = NULL,
restrict = NULL, subset.row = NULL, correct.all = FALSE,
assay.type = "logcounts"”, get.spikes = FALSE, PARAM)

## S4 method for signature 'FastMnnParam'
batchCorrect(..., batch = NULL,
restrict = NULL, subset.row = NULL, correct.all = FALSE,
assay.type = "logcounts"”, get.spikes = FALSE, PARAM)

## S4 method for signature 'RescaleParam'’
batchCorrect(..., batch = NULL,
restrict = NULL, subset.row = NULL, correct.all = FALSE,
assay.type = "logcounts"”, get.spikes = FALSE, PARAM)

Arguments
Named data-dependent parameters to pass to the dispatched batch correction
methods. This should contain one or more matrix-like objects containing single-
cell gene expression matrices. Alternatively, one or more SingleCellExperiment
objects can be supplied.
batch A factor specifying the batch of origin for each cell if only one batch is supplied.

This will be ignored if two or more batches are supplied.
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restrict A list of length equal to the number of objects in . ... Each entry of the list
corresponds to one batch and specifies the cells to use when computing the cor-
rection.

subset.row A vector specifying the subset of genes to use for correction. Defaults to NULL,

in which case all genes are used.

correct.all A logical scalar indicating whether to return corrected expression values for all
genes, even if subset.row is set. Used to ensure that the output is of the same
dimensionality as the input.

assay.type A string or integer scalar specifying the assay to use for correction. Only used
for SingleCellExperiment inputs.

get.spikes A logical scalar indicating whether to retain rows corresponding to spike-in tran-
scripts. Only used for SingleCellExperiment inputs.

PARAM A BatchelorParam object specifying the batch correction method to dispatch to.
ClassicMnnParam will dispatch to mnnCorrect; FastMnnParam will dispatch to
fastMNN; and RescaleParam will dispatch to rescaleBatches.

Details

Users can pass parameters to each method directly via . . . or via the constructors for PARAM. While
there is no restriction on which parameters go where, we recommend only passing data-agnostic and
method-specific parameters to PARAM. Data-dependent parameters - and indeed, the data themselves
- should be passed in via . ... This means that different data sets can be used without modifying
PARAM, and allows users to switch to a different algorithm by only changing PARAM.

Note that get . spikes=FALSE effectively modifies subset . row to exclude spike-in transcripts when
SingleCellExperiment inputs are supplied. This means that the reported SingleCellExperiment will
not, by default, contain corrected expression values for spike-in transcripts unless get . spikes=TRUE.

Value

A SingleCellExperiment where the first assay contains corrected gene expression values for all
genes. Corrected values should be returned for all genes if subset. row=NULL or if correct.all=TRUE;
otherwise they should only be returned for the genes in the subset.

Cells should be reported in the same order that they are supplied. In cases with multiple batches,
the cell identities are simply concatenated from successive objects in their specified order, i.e., all
cells from the first object (in their provided order), then all cells from the second object, and so on.
For a single input object, cells should be reported in the same order as the input.

The colData slot should contain batch, a vector specifying the batch of origin for each cell.

Author(s)

Aaron Lun

See Also

BatchelorParam classes to determine dispatch.

Examples

B1 <- matrix(rnorm(10000), ncol=50) # Batch 1
B2 <- matrix(rnorm(10000), ncol=50) # Batch 2
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# Switching easily between batch correction methods.

m.out <- batchCorrect(B1, B2, PARAM=ClassicMnnParam())

f.out <- batchCorrect(B1, B2, PARAM=FastMnnParam(d=20))

r.out <- batchCorrect(B1, B2, PARAM=RescaleParam(pseudo.count=0))

BatchelorParam-class  BatchelorParam methods

Description

Constructors and methods for the batchelor parameter classes.

Usage

ClassicMnnParam(...)
FastMnnParam(...)

RescaleParam(...)

Arguments
Named arguments to pass to individual methods upon dispatch. These should
not include arguments named in the batchCorrect generic.

Details

BatchelorParam objects are intended to store method-specific parameter settings to pass to the
batchCorrect generic. These values should refer to data-agnostic parameters; parameters that
depend on data (or the data itself) should be specified directly in the batchCorrect call.

The BatchelorParam classes are all derived from SimpleList objects and have the same available
methods, e.g., [[, $. These can be used to access or modify the object after construction.

Note that the BatchelorParam class itself is not useful and should not be constructed directly. In-
stead, users should use the constructors shown above to create instances of the desired subclass.

Value

The constructors will return a BatchelorParam object of the specified subclass, containing parameter
settings for the corresponding batch correction method.

Author(s)

Aaron Lun

See Also

batchCorrect, where the BatchelorParam objects are used for dispatch to individual methods.
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Examples

# Specifying the number of neighbors, dimensionality.
fp <- FastMnnParam(k=20, d=10)
fp

# List-like behaviour:
fp$k

fp$k <- 10

fp$k

checkBatchConsistency Check batch inputs

Description

Utilities to check inputs into batch correction functions.

Usage

checkBatchConsistency(batches, cells.in.columns = TRUE)
checkSpikeConsistency(batches)
checkIfSCE(batches)

checkRestrictions(batches, restrictions, cells.in.columns = TRUE)

Arguments

batches A list of batches, usually containing gene expression matrices or SingleCellEx-
periment objects.

cells.in.columns
A logical scalar specifying whether batches contain cells in the columns.

restrictions A list of length equal to batches, specifying the cells in each batch that should
be used for correction.

Details

These functions are intended for internal use and other package developers.

checkBatchConsistency will check whether the input batches are consistent with respect to the
size of the dimension containing features (i.e., not cells). It will also verify that the dimension
names are consistent, to avoid problems from variable ordering of rows/columns in the inputs.

checkSpikeConsistency will check whether the spike-in information is consistent across all batches.
This only works for SingleCellExperiment objects, so one should only run this function if checkIfSCE
returns TRUE.

checkRestrictions will check whether restrictions are consistent with the supplied batches,
in terms of the length and names of the two lists. It will also check that each batch contains at least
one usable cell after restriction.
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Value

checkBatchConsistency and checkSpikeConsistency will return an invisible NULL if there are
No errors.

checkIfSCE will return a logical vector specifying whether each element of batches is a Single-
CellExperiment objects.

checkRestrictions will return NULL if restrictions=NULL. Otherwise, it will return a list by
taking restrictions and converting each non-NULL element into an integer subsetting vector.

Author(s)

Aaron Lun

See Also

divideIntoBatches

Examples

checkBatchConsistency(list(cbind(1:5), cbind(1:5, 2:6)))
try( # fails

checkBatchConsistency(list(cbind(1:5), cbind(1:4, 2:5)))
)

cosineNorm Cosine normalization

Description

Perform cosine normalization on the column vectors of an expression matrix.

Usage
cosineNorm(x, mode = c("matrix”, "all", "12norm"))

Arguments
X A gene expression matrix with cells as columns and genes as rows.
mode A string specifying the output to be returned.

Details

Cosine normalization removes scaling differences between expression vectors. In the context of
batch correction, this is usually applied to remove differences between batches that are normalized
separately. For example, fastMNN uses this function on the log-expression vectors by default.

Technically, separate normalization introduces scaling differences in the normalized expression,
which should manifest as a shift in the log-transformed expression. However, in practice, single-
cell data will contain many small counts (where the log function is near-linear) or many zeroes
(which remain zero when the pseudo-count is 1). In these applications, scaling differences due to
separate normalization are better represented as scaling differences in the log-transformed values.
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If applied to the raw count vectors, cosine normalization is similar to library size-related (i.e., L1)
normalization. However, we recommend using dedicated methods for computing size factors to
normalize raw count data.

While the default is to directly return the cosine-normalized matrix, it may occasionally be desirable
to obtain the L2 norm, e.g., to apply an equivalent normalization to other matrices. This can be
achieved by setting mode accordingly.

The function will return a DelayedMatrix if x is a DelayedMatrix. This aims to delay the calculation
of cosine-normalized values for very large matrices.

Value

If mode="matrix", a double-precision matrix of the same dimensions as X is returned, containing
cosine-normalized values.

If mode="12norm", a double-precision vector is returned containing the L2 norm for each cell.

If mode="all", a named list is returned containing the fields "matrix” and "12norm”, which are as
described above.

Author(s)

Aaron Lun

See Also

mnnCorrect and fastMNN, where this function gets used.

Examples

A <- matrix(rnorm(1000), nrow=10)
str(cosineNorm(A))
str(cosineNorm(A, mode="12norm"))

divideIntoBatches Divide into batches

Description

Divide a single input object into multiple separate objects according to their batch of origin.

Usage
divideIntoBatches(x, batch, byrow = FALSE, restrict = NULL)

Arguments
X A matrix-like object where one dimension corresponds to cells and another rep-
resents features.
batch A factor specifying the batch to which each cell belongs.
byrow A logical scalar indicating whether rows correspond to cells.

restrict A subsetting vector specifying which cells should be used for correction.
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Details

This function is intended for internal use and other package developers. It splits a single input object
into multiple batches, allowing developers to use the same code for the scenario where batch is
supplied with a single input.

Value

A list containing:
* batches, a named list of matrix-like objects where each element corresponds to a level of
batch and contains all cells from that batch.

* reorder, an integer vector to be applied to the combined batches to recover the ordering of
cells in x.

* restricted, a named list of integer vectors specifying which cells are to be used for correc-
tion. Set to NULL if the input restrict was also NULL.

Author(s)

Aaron Lun

Examples

X <= matrix(rnorm(1000), ncol=100)
out <- dividelIntoBatches(X, sample(3, 100, replace=TRUE))
names (out)

# Recovering original order.

Y <- do.call(cbind, out$batches)
Z <- Y[,out$reorder]

all.equal(Z, X) # should be TRUE.

fastMNN Fast mutual nearest neighbors correction

Description

Correct for batch effects in single-cell expression data using a fast version of the mutual nearest
neighbors (MNN) method.

Usage

fastMNN(..., batch = NULL, k = 20, restrict = NULL,
cos.norm = TRUE, ndist = 3, d = 50, auto.order = FALSE,
min.batch.skip = @, subset.row = NULL, correct.all = FALSE,
pc.input = FALSE, assay.type = "logcounts”, get.spikes = FALSE,
use.dimred = NULL, BSPARAM = ExactParam(), BNPARAM = KmknnParam(),
BPPARAM = SerialParam())
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Arguments

batch

restrict

Cos.norm

ndist

d
auto.order

min.batch.skip
subset.row

correct.all

pc.input

One or more log-expression matrices where genes correspond to rows and cells
correspond to columns, if pc.input=FALSE. Each matrix should contain the
same number of rows, corresponding to the same genes in the same order.
Alternatively, one or more matrices of low-dimensional representations can be
supplied if pc. input=TRUE, where rows are cells and columns are dimensions.
Each object should contain the same number of columns, corresponding to the
same dimensions.

Alternatively, one or more SingleCellExperiment objects can be supplied con-
taining a log-expression matrix in the assay . type assay. Note the same restric-
tions described above for gene expression matrix inputs.

Alternatively, the SingleCellExperiment objects can contain reduced dimension
coordinates in the reducedDims slot if use.dimred is specified. Note the same
restrictions described above for low-dimensional matrix inputs.

Alternatively, one or more DataFrame objects produced by previous calls to
fastMNN. This should contain a corrected field of low-dimensional corrected
coordinates, along with information required for orthogonalization in the meta-
data.

In all cases, each object contains cells from a single batch; multiple objects
represent separate batches of cells. Objects of different types can be mixed
together if all or none are low-dimensional.

A factor specifying the batch of origin for all cells when only a single object is
supplied in . ... This is ignored if multiple objects are present.

An integer scalar specifying the number of nearest neighbors to consider when
identifying MNNSs.

A list of length equal to the number of objects in . ... Each entry of the list
corresponds to one batch and specifies the cells to use when computing the cor-
rection.

A logical scalar indicating whether cosine normalization should be performed
on the input data prior to PCA.

A numeric scalar specifying the threshold beyond which neighbours are to be
ignored when computing correction vectors. Each threshold is defined as a mul-
tiple of the number of median distances.

Number of dimensions to use for dimensionality reduction in multiBatchPCA.

Logical scalar indicating whether re-ordering of batches should be performed to
maximize the number of MNN pairs at each step.

Alternatively, an integer vector containing a permutation of 1:N where N is the
number of batches.

Numeric scalar specifying the minimum relative magnitude of the batch effect,
below which no correction will be performed at a given merge step.

A vector specifying which features to use for correction. Only relevant for gene
expression inputs (i.e., pc. input=FALSE and use.dimred=NULL).

Logical scalar indicating whether a rotation matrix should be computed for
genes not in subset.row. Only used for gene expression inputs, i.e., when
pc.input=FALSE.

Logical scalar indicating whether the values in . . . are already low-dimensional,
e.g., the output of multiBatchPCA. Only used when . .. does not contain Sin-
gleCellExperiment objects - in those cases, set use.dimred instead. This is also
assumed to be TRUE if any element of . . . is a DataFrame.
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assay. type A string or integer scalar specifying the assay containing the log-expression
values. Only used for SingleCellExperiment inputs with use.dimred=NULL.

get.spikes A logical scalar indicating whether to retain rows corresponding to spike-in tran-
scripts. Only used for SingleCellExperiment inputs with use.dimred=NULL.

use.dimred A string or integer scalar specifying which reduced dimension result to use, if
any. Only used for SingleCellExperiment inputs.

BSPARAM A BiocSingularParam object specifying the algorithm to use for PCA.

BNPARAM A BiocNeighborParam object specifying the nearest neighbor algorithm.

BPPARAM A BiocParallelParam object specifying whether the PCA and nearest-neighbor

searches should be parallelized.

Details

This function provides a variant of the mnnCorrect function, modified for speed and more robust
performance. In particular:

e It performs a multi-sample PCA via multiBatchPCA and subsequently performs all calcu-
lations in the PC space. This reduces computational work and provides some denoising for
improved neighbour detection. As a result, though, the corrected output cannot be interpreted
on a gene level and is useful only for cell-level comparisons, e.g., clustering and visualization.

» The correction vector for each cell is directly computed from its k nearest neighbours in the
same batch. Specifically, only the k nearest neighbouring cells that also participate in MNN
pairs are used. Each MNN-participating neighbour is weighted by distance from the current
cell, using a tricube scheme with bandwidth equal to the median distance multiplied by ndist.
This ensures that the correction vector only uses information from the closest cells, improving
the fidelity of local correction.

* Issues with “kissing” are avoided with a two-step procedure that removes variation along the
batch effect vector. First, the average correction vector across all MNN pairs is computed.
Cell coordinates are adjusted such that all cells in a single batch have the same position along
this vector. The correction vectors are then recalculated with the adjusted coordinates (but the
same MNN pairs).

The default setting of cos.norm=TRUE provides some protection against differences in scaling be-
tween log-expression matrices from batches that are normalized separately (see cosineNorm for
details). However, if possible, we recommend using the output of multiBatchNorm as input to
fastMNN. This will equalize coverage on the count level before the log-transformation, which is a
more accurate rescaling than cosine normalization on the log-values.

The batch argument allows users to easily perform batch correction when all cells have already
been combined into a single object. This avoids the need to manually split the matrix or SingleCell-
Experiment object into separate objects for input into fastMNN. In this situation, the order of input
batches is defined by the order of levels in batch.

Value
The output of this function depends on whether a PCA is performed on the input . ... This will
be the case if pc. input=FALSE for matrix inputs or if use.dimred=NULL for SingleCellExperiment
inputs.

If a PCA is performed, a SingleCellExperiment is returned where each row is a gene and each
column is a cell. This contains:
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* A corrected matrix in the reducedDims slot, containing corrected low-dimensional coordi-
nates for each cell. This has number of columns equal to d and number of rows equal to the
total number of cellsin . . ..

* A batch column in the colData slot, containing the batch of origin for each row (i.e., cell) in
corrected.

* A rotation column the rowData slot, containing the rotation matrix used for the PCA. This
has d columns and number of rows equal to the number of genes to report (see the “Choice of
genes” section).

* A reconstructed matrix in the assays slot, containing the low-rank reconstruction of the
original expression matrix. This can be interpreted as per-gene corrected log-expression val-
ues (after cosine normalization, if cos.norm=TRUE) but should not be used for quantitative
analyses.

Otherwise, a DataFrame is returned where each row corresponds to a cell. It contains:

e corrected, the matrix of corrected low-dimensional coordinates for each cell.

* batch, the Rle specifying the batch of origin for each row.

Cells in the output object are always ordered in the same manner as supplied in . ... For a single
input object, cells will be reported in the same order as they are arranged in that object. In cases
with multiple input objects, the cell identities are simply concatenated from successive objects, i.e.,
all cells from the first object (in their provided order), then all cells from the second object, and so
on. This is true regardless of the value of auto.order, which only affects the internal merge order
of the batches.

The metadata of the output object contains:

* merge.order, a vector of batch names or indices, specifying the order in which batches were
merged.

* merge.info, a DataFrame of information about each merge step (corresponding to each row).
This contains the following fields:

— pairs, aList of DataFrames specifying which pairs of cells in corrected were identified
as MNNs at each step.

— batch.vector, a List of numeric vectors specifying the average batch vector at each step.

— batch.size, a numeric vector specifying the relative magnitude of the batch effect at
each merge.

— skipped, a logical vector indicating whether the correction was skipped if the magnitude
was below min.batch. skip.

— lost.var, a numeric matrix specifying the percentage of variance lost due to orthogonal-
ization at each merge step. This is reported separately for each batch (columns, ordered
according to the input order, not the merge order).

* pre.orthog, a DataFrame containing information about pre-correction orthogonalization.
This is only reported if ... contains one or more DataFrames. Each row corresponds to a
vector used for orthogonalization in one of the DataFrames in . ... The vector is stored in
batch.vector and the variance lost due to orthogonalization in each batch is reported in
lost.var.

Controlling the merge order

By default, batches are merged in the user-supplied order. However, if auto.order=TRUE, batches
are ordered to maximize the number of MNN pairs at each step. The aim is to improve the stability
of the correction by first merging more similar batches with more MNN pairs. This can be somewhat
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time-consuming as MNN pairs need to be iteratively recomputed for all possible batch pairings. It
is often more convenient for the user to specify an appropriate ordering based on prior knowledge
about the batches.

If auto.order is an integer vector, it is treated as an ordering permutation with which to merge
batches. For example, if auto.order=c(4,1,3,2), batches 4 and 1 in ... are merged first, fol-
lowed by batch 3 and then batch 2. This is often more convenient than changing the order manually
in ..., which would alter the order of batches in the output corrected matrix. Indeed, no matter
what the setting of auto.order is, the order of cells in the output corrected matrix is always the
same.

Further control of the merge order can be achieved by performing the multi-sample PCA outside
of this function with multiBatchPCA. Batches can then be progressively merged by repeated calls
to fastMNN with low-dimensional inputs (see below). This is useful in situations where the batches
need to be merged in a hierarhical manner, e.g., combining replicate samples before merging them
across different conditions. For example, we could merge batch 1 with 4 to obtain a corrected 1+4;
and then batch 2 with 3 to obtain a corrected 2+3; before merging the corrected 1+4 and 2+3 to
obtain the final set of corrected values.

Choice of genes

All genes are used with the default setting of subset.row=NULL. Users can set subset.row to
subset the inputs to highly variable genes or marker genes. This improves the quality of the PCA
and identification of MNN pairs by reducing the noise from irrelevant genes. Note that users should
not be too restrictive with subsetting, as high dimensionality is required to satisfy the orthogonality
assumption in MNN detection.

For SingleCellExperiment inputs, spike-in transcripts are automatically removed unless get . spikes=TRUE.
If subset.rowis specified and get . spikes=FALSE, only the non-spike-in specified features will be
used. All SingleCellExperiment objects should have the same set of spike-in transcripts.

By default, only the selected genes are used to compute rotation vectors and a low-rank representa-
tion of the input matrix. However, rotation vectors can be obtained that span all genes in the supplied
input data with correct.all=TRUE. This will not affect the corrected low-dimension coordinates
or the output for the selected genes.

Note that these settings for the choice of genes are completely ignored when using low-dimensional
inputs (see below).

Using low-dimensional inputs

Low-dimensional inputs can be supplied directly to fastMNN if the PCA (or some other projection
to low-dimensional space) is performed outside the function. This intructs the function to skip the
multiBatchPCA step. To enable this, set pc.input=TRUE for matrix-like inputs in . . ., or specify
use.dimred with SingleCellExperiment inputs.

If ... contains any DataFrame objects, these are assumed to be the output of a previous fastMNN
call. Allinputs are subsequently treated as low-dimensional inputs and any other setting of pc. input
is ignored. If any SingleCellExperiment objects are also present in . . ., use.dimred must be spec-
ified.

Note that multiBatchPCA will not perform cosine-normalization, so it is the responsibility of
the user to cosine-normalize each batch beforehand with cosineNorm to recapitulate results with
cos.norm=TRUE. In addition, mul tiBatchPCA must be run on all samples at once, to ensure that all
cells are projected to the same low-dimensional space.

Users are referred to the Examples for a demonstration of this functionality.
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Using restriction

It is possible to compute the correction using only a subset of cells in each batch, and then extrapo-
late that correction to all other cells. This may be desirable in experimental designs where a control
set of cells from the same source population were run on different batches. Any difference in the
controls must be artificial in origin and can be directly removed without making further biological
assumptions.

To do this, users should set restrict to specify the subset of cells in each batch to be used for
correction. This should be set to a list of length equal to the length of . . ., where each element is a
subsetting vector to be applied to the columns of the corresponding batch. A NULL element indicates
that all the cells from a batch should be used. In situations where one input object contains multiple
batches, restrict is simply a list containing a single subsetting vector for that object.

fastMNN will only use the restricted subset of cells in each batch to identify MNN pairs and the
center of the orthogonalization. However, it will apply the correction to all cells in each batch -
hence the extrapolation. This means that the output is always of the same dimensionality, regardless
of whether restrict is specified.

Note that all cells are used to perform the PCA, regardless of whether restrict is set. Constructing
the projection vectors with only control cells will not guarantee resolution of unique non-control
populations in each batch. The function will only completely ignore cells that are not in restrict
if pc. input=TRUE or, for SingleCellExperiment inputs, use.dimred is set.

Orthogonalization details

fastMNN will compute the percentage of variance that is lost from each batch during orthogonal-
ization at each merge step. This represents the variance in each batch that is parallel to the average
correction vectors (and hence removed during orthogonalization) at each merge step. Large propor-
tions suggest that there is biological structure that is parallel to the batch effect, corresponding to
violations of the assumption that the batch effect is orthogonal to the biological subspace.

If fastMNN is called with DataFrame inputs, each DataFrame is assumed to be the result of a pre-
vious fastMNN call and have a set of vectors used for orthogonalization in the merge steps of that
previous call. In the current call, fastMNN will gather all such batch vectors across all DataFrame
inputs. Each batch is then re-orthogonalized with respect to each of these vectors. This ensures
that the same variation is removed from each batch prior to merging. The variance lost due to this
pre-correction orthogonalization is reported in the pre.orthog field in the output metadata.

Orthogonalization may cause problems if there is actually no batch effect, resulting in large losses
of variance. To avoid this, fastMNN will not perform any correction if the relative magnitude of
the batch effect is less than min.batch.skip. The relative magnitude is defined as the L2 norm
of the average correction vector divided by the root-mean-square of the L2 norms of the per-MNN
pair correction vectors. This will be large when the per-pair vectors are all pointing in the same
direction, and small when the per-pair vectors point in random directions due to the absence of a
consistent batch effect. If a large loss of variance is observed along with a small batch effect in a
given merge step, users can set min.batch.skip to simply skip correction in that step.

Author(s)

Aaron Lun

References

Haghverdi L, Lun ATL, Morgan MD, Marioni JC (2018). Batch effects in single-cell RNA-sequencing
data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36(5):421
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Lun ATL (2018). Further MNN algorithm development. https://MarionilLab.github.io/FurtherMNN2018/
theory/description.html

See Also

cosineNorm and multiBatchPCA to obtain the values to be corrected.

mnnCorrect for the “classic” version of the MNN correction algorithm.

Examples

B1 <- matrix(rnorm(10000), ncol=50) # Batch 1
B2 <- matrix(rnorm(10000), ncol=50) # Batch 2
out <- fastMNN(B1, B2)

str(reducedDim(out)) # corrected values

# An equivalent approach with PC input.

cB1 <- cosineNorm(B1)

cB2 <- cosineNorm(B2)

pcs <- multiBatchPCA(cB1, cB2)

out2 <- fastMNN(pcs[[1]1, pcs[[2]], pc.input=TRUE)

all.equal(reducedDim(out), out2$corrected) # should be TRUE

# Extracting corrected expression values for gene 10.
summary (assay(out)[10,])

findMutualNN Find mutual nearest neighbors

Description

Find mutual nearest neighbors (MNN) across two data sets.

Usage

findMutualNN(datal, data2, ki1, k2 = k1, BNPARAM = KmknnParam(),
BPPARAM = SerialParam())

Arguments
datail A numeric matrix containing samples (e.g., cells) in the rows and variables/dimensions
in the columns.
data2 A numeric matrix like datal for another data set with the same variables/dimensions.
k1 Integer scalar specifying the number of neighbors to search for in data1l.
k2 Integer scalar specifying the number of neighbors to search for in data2.
BNPARAM A BiocNeighborParam object specifying the neighbour search algorithm to use.

BPPARAM A BiocParallelParam object specifying how parallelization should be performed.


https://MarioniLab.github.io/FurtherMNN2018/theory/description.html
https://MarioniLab.github.io/FurtherMNN2018/theory/description.html
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Details

The concept of a MNN pair can be explained by considering cells in each of two data sets. For
each cell in data set 1, the set of k2 nearest cells in data set 2 is identified, based on the Euclidean
distance in expression space. For each cell in data set 2, the set of k1 nearest cells in data set 1 is
similarly identified. Two cells in different batches are considered to be MNNS if each cell is in the
other’s set.

The value of k can be interpreted as the minimum size of a subpopulation in each batch. Larger
values allow for more MNN pairs to be obtained, which improves the stability of batch correction in
fastMNN and mnnCorrect. It also increases robustness against non-orthogonality, which would oth-
erwise result in MNN pairs being detected on the “surface” of the distribution. Obviously, though,
values of k should not be too large, as this would result in MNN pairs being inappropriately identi-
fied between biologically distinct populations.

Value
A list containing the integer vectors first and second. Corresponding entries in first and second
specify a MNN pair of cells from datal and data2, respectively.

Author(s)

Aaron Lun

See Also

queryKNN for the underlying neighbor search code.

Examples

B1 <- matrix(rnorm(10000), ncol=50) # Batch 1
B2 <- matrix(rnorm(10000), ncol=50) # Batch 2
out <- findMutualNN(B1, B2, k1=20)
head(out$first)

head(out$second)

mnnCorrect Mutual nearest neighbors correction

Description

Correct for batch effects in single-cell expression data using the mutual nearest neighbors method.

Usage

mnnCorrect(..., batch = NULL, restrict = NULL, k = 20, sigma = 0.1,
cos.norm.in = TRUE, cos.norm.out = TRUE, svd.dim = 0oL,
var.adj = TRUE, subset.row = NULL, correct.all = FALSE,
auto.order = FALSE, assay.type = "logcounts"”, get.spikes = FALSE,
BSPARAM = ExactParam(), BNPARAM = KmknnParam(),
BPPARAM = SerialParam())
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Arguments

batch

restrict

sigma

cos.norm.in

cos.norm.out

svd.dim

var.adj

subset.row

correct.all

auto.order

assay.type

get.spikes

BSPARAM
BNPARAM
BPPARAM

Details

mnnCorrect

Two or more log-expression matrices where genes correspond to rows and cells
correspond to columns. Each matrix should contain cells from the same batch;
multiple matrices represent separate batches of cells. Each matrix should con-
tain the same number of rows, corresponding to the same genes (in the same
order).

Alternatively, one or more SingleCellExperiment objects can be supplied con-
taining a log-expression matrix in the assay.type assay. Note the same con-
straints described above for matrix inputs.

A factor specifying the batch of origin for all cells when only a single object is
supplied in . . .. This is ignored if multiple objects are present.

A list of length equal to the number of objects in . ... Each entry of the list
corresponds to one batch and specifies the cells to use when computing the cor-
rection.

An integer scalar specifying the number of nearest neighbors to consider when
identifying mutual nearest neighbors.

A numeric scalar specifying the bandwidth of the Gaussian smoothing kernel
used to compute the correction vector for each cell.

A logical scalar indicating whether cosine normalization should be performed
on the input data prior to calculating distances between cells.

A logical scalar indicating whether cosine normalization should be performed
prior to computing corrected expression values.

An integer scalar specifying the number of dimensions to use for summarizing
biological substructure within each batch.

A logical scalar indicating whether variance adjustment should be performed on
the correction vectors.

A vector specifying which features to use for correction.

A logical scalar specifying whether correction should be applied to all genes,
even if only a subset is used for the MNN calculations.

Logical scalar indicating whether re-ordering of batches should be performed to
maximize the number of MNN pairs at each step.

Alternatively, an integer vector containing a permutation of 1:N where N is the
number of batches.

A string or integer scalar specifying the assay containing the log-expression
values, if SingleCellExperiment objects are presentin . . ..

A logical scalar indicating whether to retain rows corresponding to spike-in tran-
scripts. Only used for SingleCellExperiment inputs.

A BiocSingularParam object specifying the SVD algorithm to use.
A BiocNeighborParam object specifying the neighbor search algorithm to use.

A BiocParallelParam object specifying the parallelization scheme to use.

This function is designed for batch correction of single-cell RNA-seq data where the batches are
partially confounded with biological conditions of interest. It does so by identifying pairs of mutual
nearest neighbors (MNN) in the high-dimensional log-expression space. Each MNN pair represents
cells in different batches that are of the same cell type/state, assuming that batch effects are mostly
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orthogonal to the biological manifold. Correction vectors are calculated from the pairs of MNN’s and
corrected (log-)expression values are returned for use in clustering and dimensionality reduction.

The threshold to define nearest neighbors is defined by k, which is passed to findMutualNN to
identify MNN pairs. The size of k can be interpreted as the minimum size of a subpopulation
in each batch. Values that are too small will not yield enough MNN pairs, while values that are
too large will ignore substructure within each batch. The algorithm is generally robust to various
choices of k.

For each MNN pair, a pairwise correction vector is computed based on the difference in the log-
expression profiles. The correction vector for each cell is computed by applying a Gaussian smooth-
ing kernel with bandwidth sigma is the pairwise vectors. This stabilizes the vectors across many
MNN pairs and extends the correction to those cells that do not have MNNs. The choice of sigma
determines the extent of smoothing - a value of 0.1 is used by default, corresponding to 10% of the
radius of the space after cosine normalization.

Value

A SingleCellExperiment object containing the corrected assay. This contains corrected (log-
)Jexpression values for each gene (row) in each cell (column) in each batch. A batch field is present
in the column data, specifying the batch of origin for each cell.

Cells in the output object are always ordered in the same manner as supplied in . ... For a single
input object, cells will be reported in the same order as they are arranged in that object. In cases
with multiple input objects, the cell identities are simply concatenated from successive objects, i.e.,
all cells from the first object (in their provided order), then all cells from the second object, and so
on.

The metadata of the SingleCellExperiment contains:

* merge.order: a vector of batch names or indices, specifying the order in which batches were
merged.

* merge.info, a DataFrame of information about each merge step (corresponding to each row).
This contains pairs, a List of DataFrames specifying which pairs of cells in corrected were
identified as MNNS at each step.

Choosing the gene set

All genes are used with the default setting of subset.row=NULL. Users can set subset.row to
subset the inputs to highly variable genes or marker genes. This may provide more meaningful
identification of MNN pairs by reducing the noise from irrelevant genes. Note that users should
not be too restrictive with subsetting, as high dimensionality is required to satisfy the orthogonality
assumption in MNN detection.

For SingleCellExperiment inputs, spike-in transcripts are automatically removed unless get . spikes=TRUE.
If subset.rowis specified and get . spikes=FALSE, only the non-spike-in specified features will be
used. All SingleCellExperiment objects should have the same set of spike-in transcripts.

If subset.row is specified and correct.all=TRUE, corrected values are returned for all genes.
This is possible as subset . row is only used to identify the MNN pairs and other cell-based distance
calculations. Correction vectors between MNN pairs can then be computed in for all genes in the
supplied matrices.

Expected type of input data

The input expression values should generally be log-transformed, e.g., log-counts, see normalize
for details. They should also be normalized within each data set to remove cell-specific biases in
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capture efficiency and sequencing depth. By default, a further cosine normalization step is per-
formed on the supplied expression data to eliminate gross scaling differences between data sets.

* When cos.norm.in=TRUE, cosine normalization is performed on the matrix of expression
values used to compute distances between cells. This can be turned off when there are no
scaling differences between data sets.

* When cos.norm.out=TRUE, cosine normalization is performed on the matrix of values used
to calculate correction vectors (and on which those vectors are applied). This can be turned
off to obtain corrected values on the log-scale, similar to the input data.

The cosine normalization is achieved using the cosineNorm function.

Controlling the merge order

The order in which batches are corrected will affect the final results. The first batch in auto.order
is used as the reference batch against which the second batch is corrected. Corrected values of the
second batch are added to the reference batch, against which the third batch is corrected, and so
on. This strategy maximizes the chance of detecting sufficient MNN pairs for stable calculation of
correction vectors in subsequent batches.

If auto.order=TRUE, batches are ordered to maximize the number of MNN pairs at each step.
The aim is to improve the stability of the correction by first merging more similar batches with
more MNN pairs. This can be somewhat time-consuming as MNN pairs need to be iteratively
recomputed for all possible batch pairings. It is often more convenient for the user to specify an
appropriate ordering based on prior knowledge about the batches.

Note that, no matter what the setting of auto.order is, the order of cells in the output corrected
matrix is always the same.

Further options

The function depends on a shared biological manifold, i.e., one or more cell types/states being
present in multiple batches. If this is not true, MNNs may be incorrectly identified, resulting in
over-correction and removal of interesting biology. Some protection can be provided by removing
components of the correction vectors that are parallel to the biological subspaces in each batch.
The biological subspace in each batch is identified with a SVD on the expression matrix to obtain
svd.dim dimensions. (By default, this option is turned off by setting svd.dim=0.)

If var.adj=TRUE, the function will adjust the correction vector to equalize the variances of the
two data sets along the batch effect vector. In particular, it avoids “kissing” effects whereby MNN
pairs are identified between the surfaces of point clouds from different batches. Naive correction
would then bring only the surfaces into contact, rather than fully merging the clouds together. The
adjustment ensures that the cells from the two batches are properly intermingled after correction.
This is done by identifying each cell’s position on the correction vector, identifying corresponding
quantiles between batches, and scaling the correction vector to ensure that the quantiles are matched
after correction.

Using restriction

It is possible to compute the correction using only a subset of cells in each batch, and then extrapo-
late that correction to all other cells. This may be desirable in experimental designs where a control
set of cells from the same source population were run on different batches. Any difference in the
controls must be artificial in origin and can be directly removed without making further biological
assumptions.

To do this, users should set restrict to specify the subset of cells in each batch to be used for
correction. This should be set to a list of length equal to the length of . . ., where each element is a
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subsetting vector to be applied to the columns of the corresponding batch. A NULL element indicates
that all the cells from a batch should be used. In situations where one input object contains multiple
batches, restrict is simply a list containing a single subsetting vector for that object.

mnnCorrect will only use the restricted subset of cells in each batch to identify MNN pairs (and
to perform variance adjustment, if var.adj=TRUE). However, it will apply the correction to all
cells in each batch - hence the extrapolation. This means that the output is always of the same
dimensionality, regardless of whether restrict is specified.

Author(s)

Laleh Haghverdi, with modifications by Aaron Lun

References
Haghverdi L, Lun ATL, Morgan MD, Marioni JC (2018). Batch effects in single-cell RNA-sequencing
data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36(5):421

See Also

fastMNN for a faster equivalent.

Examples

B1 <- matrix(rnorm(10000), ncol=50) # Batch 1
B2 <- matrix(rnorm(10000), ncol=50) # Batch 2
out <- mnnCorrect(B1, B2) # corrected values

multiBatchNorm Per-batch scaling normalization

Description
Perform scaling normalization within each batch to provide comparable results to the lowest-coverage
batch.

Usage

multiBatchNorm(..., assay.type = "counts”, norm.args = list(),
min.mean = 1, subset.row = NULL, separate.spikes = FALSE)

Arguments

Two or more SingleCellExperiment objects containing counts and size factors.
Each object is assumed to represent one batch.

assay.type A string specifying which assay values contains the counts.

norm.args A named list of further arguments to pass to normalize.

min.mean A numeric scalar specifying the minimum (library size-adjusted) average count
of genes to be used for normalization.

subset. row A vector specifying which features to use for correction.

separate.spikes
Logical scalar indicating whether spike-in size factors should be rescaled sepa-
rately from endogenous genes.
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Details

When performing integrative analyses of multiple batches, it is often the case that different batches
have large differences in coverage. This function removes systematic differences in coverage across
batches to simplify downstream comparisons. It does so by resaling the size factors using median-
based normalization on the ratio of the average counts between batches. This is roughly equivalent
to the between-cluster normalization described by Lun et al. (2016).

This function will adjust the size factors so that counts in high-coverage batches are scaled down-
wards to match the coverage of the most shallow batch. The normalize function will then add
the same pseudo-count to all batches before log-transformation. By scaling downwards, we favour
stronger squeezing of log-fold changes from the pseudo-count, mitigating any technical differences
in variance between batches. Of course, genuine biological differences will also be shrunk, but this
is less of an issue for upregulated genes with large counts.

This function is preferred over running normalize directly when computing log-normalized values
for use in mnnCorrect or fastMNN. In most cases, size factors will be computed within each batch;
their direct application in normalize will not account for scaling differences between batches. In
contrast, multiBatchNorm will rescale the size factors so that they are comparable across batches.

Only genes with library size-adjusted average counts greater than min.mean will be used for com-
puting the rescaling factors. This improves precision and avoids problems with discreteness. Users
can also set subset.row to restrict the set of genes used for computing the rescaling factors. How-
ever, this only affects the rescaling of the size factors - normalized values for all genes will still be
returned.

Value

A list of SingleCellExperiment objects with normalized log-expression values in the "logcounts”
assay (depending on values in norm.args).

Handling spike-ins

Spike-in transcripts should be either absent in all batches or, if present, they should be the same
across all batches. Rows annotated as spike-in transcripts are not used to compute the rescaling
factors for endogenous genes.

By default, the spike-in size factors are rescaled using the same scaling factor for the endogenous
genes in the same batch. This preserves the abundances of the spike-in transcripts relative to the
endogenous genes, which is important if the returned SingleCellExperiments are to be used to model
technical noise.

If separate. spikes=TRUE, spike-in size factors are rescaled separately from those of the endoge-
nous genes. This will eliminate differences in spike-in quantities across batches at the cost of losing
the ability to compare between endogenous and spike-in transcripts within each batch.

Author(s)

Aaron Lun

References

Lun ATL, Bach K and Marioni JC (2016). Pooling across cells to normalize single-cell RNA
sequencing data with many zero counts. Genome Biol. 17:75
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See Also
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mnnCorrect and fastMNN for methods that can benefit from rescaling.

normalize for the calculation of log-transformed normalized expression values.

Examples

dl <- matrix(rnbinom(50000, mu=10, size=1), ncol=100)
scel <- SingleCellExperiment(list(counts=d1))
sizeFactors(scel) <- runif(ncol(d1))

d2 <- matrix(rnbinom(20000, mu=50, size=1), ncol=40)
sce2 <- SingleCellExperiment(list(counts=d2))
sizeFactors(sce2) <- runif(ncol(d2))

out <- multiBatchNorm(scel, sce2)
summary (sizeFactors(out[[1]1]))
summary (sizeFactors(out[[2]]))

multiBatchPCA

Multi-batch PCA

Description

Perform a principal components analysis across multiple gene expression matrices to project all
cells to a common low-dimensional space.

Usage
multiBatchPCA(..., batch = NULL, d = 50, subset.row = NULL,
rotate.all = FALSE, get.variance = FALSE, preserve.single = FALSE,
assay.type = "logcounts"”, get.spikes = FALSE,

BSPARAM = ExactParam(), BPPARAM = SerialParam())

Arguments

batch

subset.row

rotate.all

Two or more matrices containing expression values (usually log-normalized).
Each matrix is assumed to represent one batch.

Alternatively, two or more SingleCellExperiment objects containing these ma-
trices.

Alternatively, one matrix or SingleCellExperiment can be supplied containing
cells from all batches. This requires batch to also be specified.

A factor specifying the batch identity of each cell in the input data. Ignored if
. contains more than one argument.

An integer scalar specifying the number of dimensions to keep from the initial
multi-sample PCA.

A vector specifying which features to use for correction.

A logical scalar indicating whether the reported rotation vectors should include
genes that are excluded by a non-NULL value of subset. row.
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get.variance A logical scalar indicating whether to return the (weighted) variance explained
by each PC.

preserve.single
A logical scalar indicating whether to combine the results into a single matrix if
only one object was suppliedin . . ..

assay. type A string or integer scalar specifying the assay containing the expression values,
if SingleCellExperiment objects are presentin . . ..

get.spikes A logical scalar indicating whether to retain rows corresponding to spike-in tran-
scripts. Only used for SingleCellExperiment inputs.

BSPARAM A BiocSingularParam object specifying the algorithm to use for PCA, see runSVD
for details.

BPPARAM A BiocParallelParam object specifying whether the SVD should be parallelized.

Details
This function is roughly equivalent to cbinding all matrices in ... and performing PCA on the

merged matrix. The main difference is that each sample is forced to contribute equally to the
identification of the rotation vectors. Specifically, the mean vector used for centering is defined as
the grand mean of the mean vectors within each batch. Each batch’s contribution to the gene-gene
covariance matrix is also divided by the number of cells in that batch.

Our approach is to effectively weight the cells in each batch to mimic the situation where all batches
have the same number of cells. This ensures that the low-dimensional space can distinguish sub-
populations in smaller batches. Otherwise, batches with a large number of cells would dominate
the PCA, i.e., the definition of the mean vector and covariance matrix. This may reduce resolution
of unique subpopulations in smaller batches that differ in a different dimension to the subspace of
the larger batches.

If ... contains SingleCellExperiment objects, any spike-in transcripts should be the same across all
batches. These will be removed prior to PCA unless get. spikes=TRUE. If subset. row is specified
and get. spikes=FALSE, only the non-spike-in specified features will be used.

Setting rotate.all=TRUE will report rotation vectors that span all genes, even when only a sub-
set of genes are used for the PCA. This is done by projecting all non-used genes into the low-
dimensional “cell space” defined by the first d components.

If BSPARAM is defined with deferred=TRUE, the per-gene centering and per-cell scaling will be
manually deferred during matrix multiplication. This can greatly improve speeds when the input
matrices are sparse, as deferred operations avoids loss of sparsity (at the cost of numerical preci-
sion).

Value

A List of numeric matrices is returned where each matrix corresponds to a batch and contains the
first d PCs (columns) for all cells in the batch (rows).

If preserve.single=TRUE and ... contains a single object, the List will only contain a single
matrix. This contains the first d PCs (columns) for all cells in the same order as supplied in the
single input object.

The metadata contains rotation, a matrix of rotation vectors, which can be used to construct a
low-rank approximation of the input matrices. This has number of rows equal to the number of
genes after any subsetting, except if rotate.all=TRUE, where the number of rows is equal to the
genes before subsetting.

If get.variance=TRUE, the metadata will also contain var.explained, the weighted variance ex-
plained by each PC; and var. total, the total variance after weighting.



rescaleBatches

Author(s)

Aaron Lun

See Also
runSVD

Examples

23

d1l <- matrix(rnorm(5000), ncol=100)

d1[1:10,1:10] <- d1[1:10,1:10] + 2 # unique population in d1
d2 <- matrix(rnorm(2000), ncol=40)

d2[11:20,1:10] <- d2[11:20,1:10] + 2 # unique population in d2

out <- multiBatchPCA(d1, d2)

xlim <- range(c(out[[111[,11, out[[211L,11))

ylim <- range(c(out[[111[,2], out[[2]11[,21))

plot(out[[1]1]1[,1], out[[1]1[,2], col="red”, xlim=xlim, ylim=ylim)
points(out[[2]11[,1], out[[2]11[,2], col="blue")

rescaleBatches

Scale counts across batches

Description

Scale counts so that the average count within each batch is the same for each gene.

Usage

rescaleBatches(..., batch = NULL, restrict = NULL, log.base = 2,
pseudo.count = 1, subset.row = NULL, assay.type = "logcounts”,
get.spikes = FALSE)

Arguments

batch

restrict

log.base

Two or more log-expression matrices where genes correspond to rows and cells
correspond to columns. Each matrix should contain cells from the same batch;
multiple matrices represent separate batches of cells. Each matrix should con-
tain the same number of rows, corresponding to the same genes (in the same
order).

Alternatively, one or more SingleCellExperiment objects can be supplied con-
taining a count matrix in the assay.type assay. Note the same restrictions
described above for matrix inputs.

A factor specifying the batch of origin for all cells when only a single object is
supplied in . ... This is ignored if multiple objects are present.

A list of length equal to the number of objects in . ... Each entry of the list
corresponds to one batch and specifies the cells to use when computing the cor-
rection.

A numeric scalar specifying the base of the log-transformation.
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pseudo.count A numeric scalar specifying the pseudo-count used for the log-transformation.
subset. row A vector specifying which features to use for correction.

assay.type A string or integer scalar specifying the assay containing the log-expression
values, if SingleCellExperiment objects are presentin . . ..

get.spikes A logical scalar indicating whether to retain rows corresponding to spike-in tran-
scripts. Only used for SingleCellExperiment inputs.

Details

This function assumes that the log-expression values were computed by a log-transformation of
normalized count data, plus a pseudo-count. It reverses the log-transformation and scales the un-
derlying counts in each batch so that the average (normalized) count is equal across batches. The
assumption here is that each batch contains the same population composition. Thus, any scaling
difference between batches is technical and must be removed.

This function is equivalent to centering in log-expression space, the simplest application of linear
regression methods for batch correction. However, by scaling the raw counts, it avoids loss of
sparsity that would otherwise result from centering. It also mitigates issues with artificial differences
in variance due to log-transformation.

The output values are always re-log-transformed with the same log.base and pseudo.count.
These can be used directly in place of the input values for downstream operations.

Value

A SingleCellExperiment object containing the corrected assay. This contains corrected log-
expression values for each gene (row) in each cell (column) in each batch. A batch field is present
in the column data, specifying the batch of origin for each cell.

Cells in the output object are always ordered in the same manner as supplied in . . .. For a single
input object, cells will be reported in the same order as they are arranged in that object. In cases
with multiple input objects, the cell identities are simply concatenated from successive objects, i.e.,
all cells from the first object (in their provided order), then all cells from the second object, and so
on.

Choice of genes

All genes are used with the default setting of subset.row=NULL. Users can set subset.row to
subset the inputs, though this is purely for convenience as each gene is processed independently of
other genes.

For SingleCellExperiment inputs, spike-in transcripts are automatically removed unless get . spikes=TRUE.
If subset.rowis specified and get . spikes=FALSE, only the non-spike-in specified features will be
used. All SingleCellExperiment objects should have the same set of spike-in transcripts.

Using restriction

It is possible to compute the correction using only a subset of cells in each batch, and then extrapo-
late that correction to all other cells. This may be desirable in experimental designs where a control
set of cells from the same source population were run on different batches. Any difference in the
controls must be artificial in origin and can be directly removed without making further biological
assumptions.

To do this, users should set restrict to specify the subset of cells in each batch to be used for
correction. This should be set to a list of length equal to the length of . . ., where each element is a
subsetting vector to be applied to the columns of the corresponding batch. A NULL element indicates
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that all the cells from a batch should be used. In situations where one input object contains multiple
batches, restrict is simply a list containing a single subsetting vector for that object.

The function will compute the scaling differences using only the specified subset of cells. However,
the re-scaling will then be applied to all cells in each batch - hence the extrapolation. This means
that the output is always of the same dimensionality, regardless of whether restrict is specified.

Author(s)

Aaron Lun

Examples

means <- 2*rgamma(1000, 2, 1)
Al <- matrix(rpois(10000, lambda=means), ncol=50) # Batch 1
A2 <- matrix(rpois(10000, lambda=means*runif(1000, @, 2)), ncol=50) # Batch 2

B1 <- log2(A1 + 1)
B2 <- log2(A2 + 1)
out <- rescaleBatches(B1, B2)
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