Package 'adaptest'

October 12, 2019

Title Data-Adaptive Statistics for High-Dimensional Multiple Testing

Version 1.4.0

Author Weixin Cai [aut, cre, cph], Nima Hejazi [aut], Alan Hubbard [ctb, ths]

Maintainer Weixin Cai <wcai@berkeley.edu>

Description Data-adaptive test statistics represent a general methodology for performing multiple hypothesis testing on effects sizes while maintaining honest statistical inference when operating in high-dimensional settings (<doi here>). The utilities provided here extend the use of this general methodology to many common data analytic challenges that arise in modern computational and genomic biology.

Depends R (>= 3.5.0)

License GPL-2

URL https://github.com/wilsoncai1992/adaptest

BugReports https://github.com/wilsoncai1992/adaptest/issues

Encoding UTF-8

LazyData true

- **Imports** origami (>= 1.0.0), tmle, calibrate, methods, graphics, stats, utils, SummarizedExperiment
- Suggests testthat, Matrix, SuperLearner, earth, gam, nnls, airway, rmarkdown, knitr, BiocStyle

VignetteBuilder knitr

RoxygenNote 6.0.1.9000

biocViews Genetics, GeneExpression, DifferentialExpression, Sequencing, Microarray, Regression, DimensionReduction, MultipleComparison

git_url https://git.bioconductor.org/packages/adaptest

git_branch RELEASE_3_9

git_last_commit 5f46ff4

git_last_commit_date 2019-05-02

Date/Publication 2019-10-12

R topics documented:

adaptest	2
adapTMLE-class	4
bioadaptest	4
cv_param_est	6
data_adapt	7
get_composition	7
get_significant_biomarker	8
plot.data_adapt	9
print.data_adapt	10
rank_DE	10
rank_ttest	11
simulated_array	12
simulated_treatment	12
summary.data_adapt	13
	14

Index

adaptest

Data-adaptive Statistics for High-Dimensional Multiple Testing

Description

Computes marginal average treatment effects of a binary point treatment on multi-dimensional outcomes, adjusting for baseline covariates, using Targeted Minimum Loss-Based Estimation. A datamining algorithm is used to perform biomarker selection before multiple testing to increase power.

Usage

```
adaptest(Y, A, W = NULL, n_top, n_fold, parameter_wrapper = rank_DE,
learning_library = c("SL.glm", "SL.step", "SL.glm.interaction", "SL.gam",
"SL.earth"), absolute = FALSE, negative = FALSE, p_cutoff = 0.05,
q_cutoff = 0.05)
```

Arguments

Y	(numeric vector) - A data.frame or matrix of binary or continuous biomarker measures (outcome variables). Alternatively, this will be an object of class adapTMLE if the wrapper bioadaptest is invoked (n.b., the wrapper is the pre- ferred interface for standard data analytic use-cases arising in computational and genomic biology).						
A	umeric vector) - binary treatment indicator: $1 = \text{treatment}, 0 = \text{control}$						
W	(numeric vector, numeric matrix, or numeric data.frame) - matrix of baseline covariates where each column correspond to one baseline covariate and each row corresponds to one observation.						
n_top	(integer vector) - value for the number of candidate covariates to generate using the data-adaptive estimation algorithm						
n_fold	(integer vector) - number of cross-validation folds.						

adaptest

parameter_wrapp	er
	(function) - user-defined function that takes input (Y, A, W, absolute, negative) and outputs a (integer vector) containing ranks of biomarkers (outcome vari-
	ables). For details, please refer to the documentation for rank_DE
learning_librar	У
	(character vector) - library of learning algorithms to be used in fitting the "Q" and "g" step of the standard TMLE procedure.
absolute	(logical) - whether or not to test for absolute effect size. If FALSE, test for directional effect. This overrides argument negative.
negative	(logical) - whether or not to test for negative effect size. If FALSE = test for positive effect size. This is effective only when absolute = FALSE.
p_cutoff	(numeric) - p-value cutoff (default as 0.05) at and below which to be considered significant. Used in inference stage.
q_cutoff	(numeric) - q-value cutoff (default as 0.05) at and below which to be considered significant. Used in multiple testing stage.

Value

S4 object of class data_adapt, sub-classed from the container class SummarizedExperiment, with the following additional slots containing data-mining selected biomarkers and their TMLE-based differential expression and inference, as well as the original call to this function (for user reference), respectively.

top_index (integer vector) - indices for the data-mining selected biomarkers

top_colname (character vector) - names for the data-mining selected biomarkers

top_colname_significant_q (character vector) - names for the data-mining selected biomarkers, which are significant after multiple testing stage

DE (numeric vector) - differential expression effect sizes for the biomarkers in top_colname

p_value (numeric vector) - p-values for the biomarkers in top_colname

q_value (numeric vector) - q-values for the biomarkers in top_colname

significant_q (integer vector) - indices of top_colname which is significant after multiple testing
stage.

mean_rank_top (numeric vector) - average ranking across folds of cross-validation folds for the biomarkers in top_colname

folds (origami::folds class) - cross validation object

Examples

adapTMLE-class

Description

Constructor for class adaptmle

Value

class adaptmle object, sub-classed from SummarizedExperiment.

Examples

```
library(SummarizedExperiment)
library(airway)
data(airway)
example_adaptmle_class <- function(se, n_top = 20, n_fold = 10) {</pre>
    call <- match.call(expand.dots = TRUE)</pre>
    adaptmle <- .adaptmle(</pre>
         SummarizedExperiment::SummarizedExperiment(
            assays = SummarizedExperiment::assay(se),
            colData = SummarizedExperiment::colData(se)
         ),
         call = call,
         folds = list(), # folds (from origami)
         plot_ingredients = list(), # top_colname
         diff_exp = as.numeric(rep(NaN, n_top)), # DE
         p_value = as.numeric(rep(NaN, n_top)), # p_value
         q_value = as.numeric(rep(NaN, n_top)), # q_value
         q_sig = as.numeric(rep(NaN, n_top)), # significant_q
         q_sig_names = list(), # top_colname_significant_q
         rank_mean = as.numeric(rep(NaN, n_top * n_fold)), # mean_rank_top
         prob_top = as.numeric(rep(NaN, n_top * n_fold)), # prob_in_top
         top_index = as.numeric(rep(NaN, n_top * n_fold)) # top_index
    )
    return(adaptmle)
}
example_class <- example_adaptmle_class(se = airway)</pre>
```

bioadaptest

Data Adaptive Multiple Testing for Computational Biology

Description

A thin wrapper that implements the main data-adaptive multiple hypothesis testing strategy for data structures commonly found in computational biology experiments, using the popular Summarized-Experiment container class.

bioadaptest

Usage

```
bioadaptest(data_in, var_int, cntrl_set = NULL, n_top = 25, n_fold = 10,
parameter_wrapper = rank_DE, learning_library = c("SL.mean", "SL.glm"),
absolute = FALSE, negative = FALSE, p_cutoff = 0.05, q_cutoff = 0.05)
```

Arguments

data_in	An object of class SummarizedExperiment, a common container class for com- putational biology and bioinformatics. This object is used to construct the output object of class adaptmle.		
var_int	A numeric vector of binary treatment assignment whose effect on the biological units is to be assessed. The data-adpative target parameter approach finds any biological sites strongly impacted by this quantity across the observed experi- mental units (subjects).		
cntrl_set	A matrix of discrete variables representing baseline covariates that are con- trolled for in the estimation of the data-adaptive target parameter via targeted maximum likelihood estimation. If NULL, an identity vector is generated inter- nally.		
n_top	(integer vector) - value for the number of candidate covariates to generate using the data-adaptive estimation algorithm.		
n_fold	(integer vector) - number of cross-validation folds.		
parameter_wrap	per		
	(function) - user-defined function that takes input (Y, A, W, absolute, negative) and outputs a (integer vector) containing ranks of biomarkers (outcome variables). For detail, please refer to the documentation for rank_DE.		
learning_library			
	(character vector) - library of learning algorithms to be used in fitting the "Q" and "g" step of the standard TMLE procedure.		
absolute	(logical) - whether or not to test for absolute effect size. If FALSE, test for direc- tional effect. This overrides argument negative.		
negative	(logical) - whether or not to test for negative effect size. If FALSE = test for positive effect size. This is effective only when absolute = FALSE.		
p_cutoff	The minimum p-value required to evaluate a given biological unit (e.g., gene) as statistically significant.		
q_cutoff	The minimum p-value required to evaluate a given biological unit (e.g., gene) as statistically significant after applying a correction for multiple hypothesis testing.		

Value

An object of class adaptmle, sub-classed from the popular container class SummarizedExperiment, containing information about the experiment being analyzed as well as results from applying the TMLE for the data-adaptive target parameter as produced by adpatest.

Examples

```
library(SummarizedExperiment)
library(airway)
set.seed(5678)
data(airway)
```

```
cv_param_est
```

Compute data-adaptive parameter estimate for a single cross-validation fold

Description

Compute data-adaptive parameter estimate for a single cross-validation fold

Usage

```
cv_param_est(fold, data, parameter_wrapper, absolute, negative, n_top,
learning_library, Y_name, A_name, W_name)
```

Arguments

fold	fold output from origami
data	entire training data
parameter_wrap	per
	user-defined function
absolute	boolean: TRUE = test for absolute effect size. This FALSE = test for directional effect. This overrides argument negative.
negative	boolean: TRUE = test for negative effect size, FALSE = test for positive effect size
n_top	integer value for the number of candidate covariates to generate using the data- adaptive estimation algorithm
learning_libra	ry
	character of SuperLearner library
Y_name	(character) colnames of all biomarkers
A_name	(character) colnames of treatment
W_name	(character) colnames of all baseline covariates

Value

 ${\tt data_adaptive_index}$ (integer vector) rank for each gene

 $index_grid$ (integer matrix) gene index from rank 1 to rank K

psi_est estimand of DE for rank 1 to rank K genes

EIC_est estimand of EIC for rank 1 to rank K genes

6

data_adapt

Description

S3-Style Constructor for Data Adaptive Parameter Class

Usage

```
data_adapt(Y, A, W = NULL, n_top, n_fold, absolute, negative,
    parameter_wrapper, learning_library)
```

Arguments

Y	(numeric vector) - continuous or binary biomarkers outcome variables				
A	numeric vector) - binary treatment indicator: $1 = \text{treatment}, 0 = \text{control}$				
W	(numeric vector, numeric matrix, or numeric data.frame) - matrix of baseline covariates where each column correspond to one baseline covariate. Each row correspond to one observation				
n_top	(integer vector) - value for the number of candidate covariates to generate using the data-adaptive estimation algorithm.				
n_fold	(integer vector) - number of cross-validation folds.				
absolute	(logical) - whether or not to test for absolute effect size. If FALSE, test for direc- tional effect. This overrides argument negative.				
negative	(logical) - whether or not to test for negative effect size. If FALSE = test for positive effect size. This is effective only when absolute = FALSE.				
parameter_wrap					
	(function) - user-defined function that takes input (Y, A, W, absolute, negative) and outputs a (integer vector) containing ranks of biomarkers (outcome variables). For detail, please refer to the documentation for rank_DE.				
learning_libra	ry				
	(character vector) - library of learning algorithms to be used in fitting the "Q" and "g" step of the standard TMLE procedure.				

Value

S3 object of class "data_adapt" for data-adaptive multiple testing.

get_composition	Decomposition	tables	of	the	data- $adaptive$	parameter	after	data-
	mining							

Description

Customized informative tables for examining data-adaptive statistics.

Usage

get_composition(object, type = "small")

Arguments

object	(data_adapt) - object of class data_adapt as returned by adaptest
type	(character) - 'small' or 'big'. 'small' mode returns composition of data-adaptive
	parameters after multiple testing stage. 'big' mode returns composition of data-
	adaptive parameters before multiple testing stage.

Value

(numeric matrix) containing what fraction of the data-adaptive parameter comes from which biomarker in the original dataset.

Examples

get_significant_biomarker

Extract statistically significant biomarkers

Description

Extract statistically significant biomarkers

Usage

```
get_significant_biomarker(object, cutoff = 0.5)
```

Arguments

object	data_adapt object
cutoff	cut-off value for composition percentage

Value

(integer vector) of significant gene index

plot.data_adapt

Examples

plot.data_adapt Plot method for data_adapt objects

Description

Customized plotting method for easily examining data-adaptive statistics

Usage

```
## S3 method for class 'data_adapt'
plot(x, ..., plot_type = c("biomarker", "adapt_param"))
```

Arguments

х	(data_adapt) - object of class data_adapt as returned by adaptest
	additional arguments passed to plot as necessary
plot_type	character vector specifying which of the two types of plots to generate: "biomarker" for a plot sorted average CV-rank, or "adapt_param" for a plot sorted by q-values with labels corresponding to indices

Value

plot of model statistics

print.data_adapt Print method for data_adapt objects

Description

Customized informative print method for examining data-adaptive statistics

Usage

```
## S3 method for class 'data_adapt'
print(x, ...)
```

Arguments

Х	(data_adapt) - object of class data_adapt as returned by adaptest
	additional arguments passed to print as necessary

Value

strings into stdout; containing information of the fitted model

rank_DE	
---------	--

Compute ranking of biomarkers by sorting effect sizes

Description

Computes ranking of biomarkers based effect sizes, which are computed by Targeted Minimum Loss-Based Estimation. This function is designed to be called inside adaptest; it should not be run by itself outside of that context.

Usage

```
rank_DE(Y, A, W, absolute = FALSE, negative = FALSE,
learning_library = c("SL.glm", "SL.step", "SL.glm.interaction", "SL.gam"))
```

Arguments

Υ	(numeric vector) - continuous or binary biomarkers outcome variables	
А	(numeric vector) - binary treatment indicator: $1 = \text{treatment}, 0 = \text{control}$	
W	(numeric vector, numeric matrix, or numeric data.frame) - matrix of baseline covariates where each column corrspond to one baseline covariate. Each row correspond to one observation	
absolute	(logical) - whether or not to test for absolute effect size. If FALSE, test for direc- tional effect. This overrides argument negative.	
negative	(logical) - whether or not to test for negative effect size. If FALSE = test for positive effect size. This is effective only when absolute = FALSE.	
learning_library		
	(character vector) - library of learning algorithms to be used in fitting the "Q" and "g" step of the standard TMLE procedure.	

rank_ttest

Value

an integer vector containing ranks of biomarkers.

Examples

```
rank_ttest
```

Compute ranking of biomarkers by sorting t-test p-values

Description

Compute ranking of biomarkers by sorting t-test p-values

Usage

rank_ttest(Y, A, W)

Arguments

Y	(numeric vector) - continuous or binary biomarkers outcome variables
A	(numeric vector) - binary treatment indicator: $1 = \text{treatment}, 0 = \text{control}$
W	(numeric vector, numeric matrix, or numeric data.frame) - matrix of baseline covariates where each column corrspond to one baseline covariate and each row correspond to one observation.

Value

an integer vector containing ranks of biomarkers.

Examples

simulated_array

Description

A dataset containing 1e4 biomarkers and one exposure

Usage

simulated_array

Format

A numeric matrix containing 1e4 biomarkers of 1e2 subjects.

This is example data to be used in testing the adaptest procedure. Consult the vignettes for how to use this data.

Value

A matrix simulated_array

simulated_treatment Simulated differential expression data with one exposure

Description

A dataset containing 1e4 biomarkers and one exposure

Usage

simulated_treatment

Format

A numeric vector containing binary exposures

This is example data to be used in testing the adaptest procedure. Consult the vignettes for how to use this data.

Value

A numeric vector simulated_treatment.

summary.data_adapt Summary tables for data_adapt objects

Description

Summary tables for data_adapt objects

Usage

```
## S3 method for class 'data_adapt'
summary(object, type = "adapt_param", ...)
```

Arguments

object	(data_adapt) object as returned by adaptest
type	(character) - 'adapt_param' or 'biomarker'. 'adapt_param' mode summarizes the data-adaptive target parameter. 'biomarker' mode summarizes chracteristics of the biomarkers from the original data
	not implemented

Value

(data.frame) of the summary statistics

type = 'adapt_param' wtih columns: 'data-adaptive parameters', 'Differential expression', 'pvalues', 'q-values'

type = 'biomarker' wtih columns: 'biomakers', 'mean rank', ' appear in top'

Index

*Topic datasets
 simulated_array, 12
 simulated_treatment, 12
.adaptmle (adapTMLE-class), 4

adaptest, 2
adapTMLE-class, 4

bioadaptest, 4

cv_param_est, 6

 $data_adapt, 7$

get_composition,7
get_significant_biomarker,8

plot.data_adapt,9
print.data_adapt,10

rank_DE, 10
rank_ttest, 11

simulated_array, 12
simulated_treatment, 12
summary.data_adapt, 13