Package 'TCGAbiolinks'

October 16, 2019

Type Package

Title TCGAbiolinks: An R/Bioconductor package for integrative analysis with GDC data

Version 2.12.6

Date 2019-05-06

Author Antonio Colaprico, Tiago Chedraoui Silva, Catharina Olsen, Luciano Garofano, Davide Garolini, Claudia Cava, Thais Sabedot, Tathiane Malta, Stefano M. Pagnotta, Isabella Castiglioni, Michele Ceccarelli, Gianluca Bontempi, Houtan Noushmehr

Maintainer Antonio Colaprico <axc1833@med.miami.edu>, Tiago Chedraoui Silva <tiagochst@usp.br>

Depends R (>= 3.5)

- Imports downloader (>= 0.4), survminer, grDevices, dplyr, gridExtra, graphics, tibble, grid, GenomicRanges, XML (>= 3.98.0), data.table, EDASeq (>= 2.0.0), edgeR (>= 3.0.0), jsonlite (>= 1.0.0), plyr, knitr, methods, biomaRt, ggplot2, ggthemes, survival, stringr (>= 1.0.0), IRanges, scales, rvest (>= 0.3.0), stats, utils, selectr, S4Vectors, ComplexHeatmap (>= 1.10.2), R.utils, SummarizedExperiment (>= 1.4.0), genefilter, ConsensusClusterPlus, readr, RColorBrewer, doParallel, GenomeInfoDb, GenomicFeatures, parallel, tools, tidyr, sva, limma, purrr, xml2, httr (>= 1.2.1), matlab, circlize, ggrepel (>= 0.6.3)
- **Description** The aim of TCGAbiolinks is : i) facilitate the GDC open-access data retrieval, ii) prepare the data using the appropriate pre-processing strategies, iii) provide the means to carry out different standard analyses and iv) to easily reproduce earlier research results. In more detail, the package provides multiple methods for analysis (e.g., differential expression analysis, identifying differentially methylated regions) and methods for visualization

(e.g., survival plots, volcano plots, starburst plots) in order to easily develop complete analysis pipelines.

License GPL (≥ 3)

biocViews DNAMethylation, DifferentialMethylation, GeneRegulation, GeneExpression, MethylationArray, DifferentialExpression, Pathways, Network, Sequencing, Survival

Suggests jpeg, png, BiocStyle, rmarkdown, devtools, maftools, parmigene, c3net, minet, dnet, Biobase, affy, testthat, sesame, pathview, clusterProfiler, igraph, supraHex

VignetteBuilder knitr

LazyData true

URL https://github.com/BioinformaticsFMRP/TCGAbiolinks

BugReports https://github.com/BioinformaticsFMRP/TCGAbiolinks/issues

RoxygenNote 6.1.1

git_url https://git.bioconductor.org/packages/TCGAbiolinks

git_branch RELEASE_3_9

git_last_commit 7c927a69

git_last_commit_date 2019-09-05

Date/Publication 2019-10-15

R topics documented:

olDataPrepare	3
aiaCNVplot	4
DCdownload	5
DCprepare	6
DCprepare_clinic	7
DCquery	8
DCquery_ATAC_seq	10
DCquery_clinic	11
	11
et.GRCh.bioMart	12
etAdjacencyBiogrid	12
etDataCategorySummary	13
etGDCInfo	14
etGDCprojects	14
etGistic	15
etManifest	15
etResults	16
etSampleFilesSummary	16
etTSS	17
et_IDs	18
ServeOK	18
natchedMetExp	19
anCancerAtlas_subtypes	19
abSubtypesCol_merged	20
CGAanalyze_analyseGRN	20

TCGAanalyze_Clustering	21
TCGAanalyze_DEA	21
TCGAanalyze_DEA_Affy	23
TCGAanalyze_DMR	24
TCGAanalyze_EA	26
TCGAanalyze_EAcomplete	27
TCGAanalyze_Filtering	28
TCGAanalyze_LevelTab	29
TCGAanalyze_networkInference	30
TCGAanalyze_Normalization	30
TCGAanalyze_Pathview	31
TCGAanalyze_Preprocessing	32
TCGAanalyze_Stemness	32
TCGAanalyze_survival	33
TCGAanalyze_SurvivalKM	34
TCGAbatch_Correction	36
TCGAbiolinks	37
TCGAprepare_Affy	37
TCGAquery_MatchedCoupledSampleTypes	38
TCGAquery_recount2	38
TCGAquery_SampleTypes	39
TCGAquery_subtype	40
TCGAtumor_purity	40
TCGAvisualize_BarPlot	41
TCGAvisualize_EAbarplot	42
TCGAvisualize_Heatmap	43
TCGAvisualize_meanMethylation	45
TCGAvisualize_oncoprint	47
TCGAvisualize_PCA	49
TCGAvisualize_starburst	50
TCGAvisualize_SurvivalCoxNET	52
TCGAVisualize_volcano	54
TCGA_MolecularSubtype	55
Tumor.purity	56
UseRaw_afterFilter	56
	58

Index

colDataPrepare Create samples information matrix for GDC samples

Description

Create samples information matrix for GDC samples add subtype information

Usage

```
colDataPrepare(barcode)
```

Arguments

barcode

TCGA or TARGET barcode

Examples

End(Not run)

gaiaCNVplot

Creates a plot for GAIA ouptut (all significant aberrant regions.)

Description

This function is a auxiliary function to visualize GAIA ouptut (all significant aberrant regions.)

Usage

```
gaiaCNVplot(calls, threshold = 0.01)
```

Arguments

calls	A matrix with the following columns: Chromossome, Aberration Kind Region
	Start, Region End, Region Size and score
threshold	Score threshold (orange horizontal line in the plot)

Value

A plot with all significant aberrant regions.

Examples

4

GDCdownload

Description

Uses GDC API or GDC transfer tool to download gdc data The user can use query argument The data from query will be save in a folder: project/data.category

Usage

```
GDCdownload(query, token.file, method = "api", directory = "GDCdata",
files.per.chunk = NULL)
```

Arguments

query	A query for GDC query function	
token.file	Token file to download controled data (only for method = "client")	
method	Uses the API (POST method) or gdc client tool. Options "api", "client". API faster, but the data might get corrupted in the download, and it might need to l executed again	
directory	Directory/Folder where the data was downloaded. Default: GDCdata	
files.per.chun	K	
	This will make the API method only download n (files.per.chunk) files at a time.	
	This may reduce the download problems when the data size is too large. Ex-	
	pected a integer number (example files.per.chunk = 6)	

Value

Shows the output from the GDC transfer tools

```
query <- GDCquery(project = "TCGA-ACC",</pre>
                 data.category = "Copy number variation",
                 legacy = TRUE,
                 file.type = "hg19.seg",
             barcode = c("TCGA-OR-A5LR-01A-11D-A29H-01", "TCGA-OR-A5LJ-10A-01D-A29K-01"))
# data will be saved in GDCdata/TCGA-ACC/legacy/Copy_number_variation/Copy_number_segmentation
GDCdownload(query, method = "api")
## Not run:
    # Download clinical data from XML
    query <- GDCquery(project = "TCGA-COAD", data.category = "Clinical")</pre>
    GDCdownload(query, files.per.chunk = 200)
    query <- GDCquery(project = "TARGET-AML",</pre>
                  data.category = "Transcriptome Profiling",
                  data.type = "miRNA Expression Quantification",
                  workflow.type = "BCGSC miRNA Profiling",
                  barcode = c("TARGET-20-PARUDL-03A-01R", "TARGET-20-PASRRB-03A-01R"))
    # data will be saved in:
   # example_data_dir/TARGET-AML/harmonized/Transcriptome_Profiling/miRNA_Expression_Quantification
    GDCdownload(query, method = "client", directory = "example_data_dir")
    acc.gbm <- GDCquery(project = c("TCGA-ACC", "TCGA-GBM"),</pre>
```

End(Not run)

GDCprepare

Prepare GDC data

Description

Reads the data downloaded and prepare it into an R object

Usage

```
GDCprepare(query, save = FALSE, save.filename, directory = "GDCdata",
summarizedExperiment = TRUE, remove.files.prepared = FALSE,
add.gistic2.mut = NULL, mut.pipeline = "mutect2",
mutant_variant_classification = c("Frame_Shift_Del", "Frame_Shift_Ins",
"Missense_Mutation", "Nonsense_Mutation", "Splice_Site", "In_Frame_Del",
"In_Frame_Ins", "Translation_Start_Site", "Nonstop_Mutation"))
```

Arguments

query	A query for GDCquery function
save	Save result as RData object?
save.filename	Name of the file to be save if empty an automatic will be created
directory	Directory/Folder where the data was downloaded. Default: GDCdata
summarizedExper	iment
	Create a summarizedExperiment? Default TRUE (if possible)
remove.files.pr	repared
	Remove the files read? Default: FALSE This argument will be considered only if save argument is set to true
add.gistic2.mut	
	If a list of genes (gene symbol) is given, columns with gistic2 results from GDAC firehose (hg19) and a column indicating if there is or not mutation in that gene (hg38) (TRUE or FALSE - use the MAF file for more information) will be added to the sample matrix in the summarized Experiment object.
mut.pipeline	If add.gistic2.mut is not NULL this field will be taken in consideration. Four separate variant calling pipelines are implemented for GDC data harmoniza- tion. Options: muse, varscan2, somaticsniper, MuTect2. For more information: https://gdc-docs.nci.nih.gov/Data/Bioinformatics_Pipelines/DNA_Seq_Variant_Calling_Pipeline/
mutant_variant_	classification
	List of mutant_variant_classification that will be consider a sample mutant or not. Default: "Frame_Shift_Del", "Frame_Shift_Ins", "Missense_Mutation", "Nonsense_Mutation", "Splice_Site", "In_Frame_Del", "In_Frame_Ins", "Trans- lation_Start_Site", "Nonstop_Mutation"

6

GDCprepare_clinic

Value

A summarizedExperiment or a data.frame

Examples

GDCprepare_clinic Parsing clinical xml files

Description

This function receives the query argument and parses the clinical xml files based on the desired information

Usage

```
GDCprepare_clinic(query, clinical.info, directory = "GDCdata")
```

Arguments

query	Result from GDCquery, with data.category set to Clinical	
clinical.info	Which information should be retrieved. Options Clinical: drug, admin, fol- low_up,radiation, patient, stage_event or new_tumor_event Options Biospeci- men: protocol, admin, aliquot, analyte, bio_patient, sample, portion, slide	
directory	Directory/Folder where the data was downloaded. Default: GDCdata	

Value

A data frame with the parsed values from the XML

Examples

```
query <- GDCquery(project = "TCGA-COAD",</pre>
                   data.category = "Clinical",
                   file.type = "xml",
                   barcode = c("TCGA-RU-A8FL", "TCGA-AA-3972"))
GDCdownload(query)
clinical <- GDCprepare_clinic(query,"patient")</pre>
clinical.drug <- GDCprepare_clinic(query,"drug")</pre>
clinical.radiation <- GDCprepare_clinic(query,"radiation")</pre>
clinical.admin <- GDCprepare_clinic(query,"admin")</pre>
query <- GDCquery(project = "TCGA-COAD",</pre>
                   data.category = "Biospecimen",
                    file.type = "xml",
                   data.type = "Biospecimen Supplement",
                   barcode = c("TCGA-RU-A8FL", "TCGA-AA-3972"))
GDCdownload(query)
clinical <- GDCprepare_clinic(query,"admin")</pre>
clinical.drug <- GDCprepare_clinic(query,"sample")</pre>
clinical.radiation <- GDCprepare_clinic(query,"portion")</pre>
clinical.admin <- GDCprepare_clinic(query,"slide")</pre>
```

GDCquery

Query GDC data

Description

Uses GDC API to search for search, it searches for both controlled and open-acess data. For GDC data arguments project, data.category, data.type and workflow.type should be used For the legacy data arguments project, data.category, platform and/or file.extension should be used. Please, see the vignette for a table with the possibilities.

Usage

```
GDCquery(project, data.category, data.type, workflow.type,
legacy = FALSE, access, platform, file.type, barcode, data.format,
experimental.strategy, sample.type)
```

Arguments

project	A list of valid project (see list with TCGAbiolinks:::getGDCprojects()\$project_id)]
data.category	A valid project (see list with TCGAbiolinks:::getProjectSummary(project))
data.type	A data type to filter the files to download
workflow.type	GDC workflow type
legacy	Search in the legacy repository
access	Filter by access type. Possible values: controlled, open
platform	Example:

IlluminaGA_RNASeqV2
IlluminaGA_mRNA_DGE
HumanMethylation450

8

GDCquery

HG-CGH-415K_G4124A		IlluminaGA_miRNASeq
HumanHap550		IlluminaHiSeq_miRNASeq
ABI		H-miRNA_8x15K
HG-CGH-244A		SOLiD_DNASeq
	Methylation_OMA003_CPI	IlluminaGA_DNASeq_automated
	Methylation_OMA002_CPI	HG-U133_Plus_2
HuEx- 1_0-st-		Mixed_DNASeq
H-miRNA_8x		IlluminaGA_DNASeq_curated
MDA_RPPA_		IlluminaHiSeq_TotalRNASeqV2
HT_HG-U133		IlluminaHiSeq_DNASeq_automated
diagnostic_im		microsat_i
IlluminaHiSec		SOLiD_DNASeq_curated
IlluminaHiSec	I— I	Mixed_DNASeq_curated
IlluminaGA_F		IlluminaGA_DNASeq_Cont_automated
IlluminaGA_I	DNASeq	IlluminaHiSeq_WGBS
pathology_rep		IlluminaHiSeq_DNASeq_Cont_automated
Genome_Wide		bio
tissue_images		Mixed_DNASeq_automated
HumanMethy	lation27	Mixed_DNASeq_Cont_curated
IlluminaHiSec	1_RNASeqV2	Mixed_DNASeq_Cont
file.type	To be used in the legacy dat to be used.	abase for some platforms, to define which file types
barcode	A list of barcodes to filter th	ne files to download
data.format	Data format filter ("VCF", "TXT", "BAM","SVS","BCR XML","BCR SSF XML", "TSV", "BCR Auxiliary XML", "BCR OMF XML", "BCR Biotab", "MAF", "BCR PPS XML", "XLSX")	
experimental.s	trategy	
	Genotyping Array. Legacy ray, DNA-Seq, Methylatior VALIDATION, Gene expres	ey. Harmonized: WXS, RNA-Seq, miRNA-Seq, y: WXS, RNA-Seq, miRNA-Seq, Genotyping Ar- n array, Protein expression array, WXS,CGH array, ession array,WGS, MSI-Mono-Dinucleotide Assay, ixed strategies, AMPLICON, Exon array, Total RNA- Bisulfite-Seq
sample.type	A sample type to filter the files to download	

Value

A data frame with the results and the parameters used

```
data.type = "Gene Expression Quantification",
                   workflow.type = "HTSeq - Counts",
                  barcode = c("TARGET-20-PADZCG-04A-01R", "TARGET-20-PARJCR-09A-01R"))
query <- GDCquery(project = "TCGA-ACC",</pre>
                   data.category = "Copy Number Variation",
                   data.type = "Masked Copy Number Segment",
                   sample.type = c("Primary solid Tumor"))
query.met <- GDCquery(project = c("TCGA-GBM", "TCGA-LGG"),</pre>
                       legacy = TRUE,
                       data.category = "DNA methylation",
                       platform = "Illumina Human Methylation 450")
query <- GDCquery(project = "TCGA-ACC",</pre>
                  data.category = "Copy number variation",
                  legacy = TRUE,
                   file.type = "hg19.seg",
                  barcode = c("TCGA-OR-A5LR-01A-11D-A29H-01"))
## End(Not run)
```

GDCquery_ATAC_seq Retrieve open access ATAC-seq files from GDC server

Description

Retrieve open access ATAC-seq files from GDC server https://gdc.cancer.gov/about-data/publications/ATACseq-AWG Manifest available at: https://gdc.cancer.gov/files/public/file/ATACseq-AWG_Open_GDC-Manifest.txt

Usage

```
GDCquery_ATAC_seq(tumor = NULL, file.type = NULL)
```

Arguments

tumor	a valid tumor
file.type	Write maf file into a csv document

Value

A data frame with the maf file information

Examples

```
## Not run:
   query <- GDCquery_ATAC_seq(file.type = "txt")
   GDCdownload(query)
   query <- GDCquery_ATAC_seq(file.type = "bigWigs")
   GDCdownload(query)
```

End(Not run)

GDCquery_clinic Get GDC clinical data

Description

GDCquery_clinic will download all clinical information from the API as the one with using the button from each project

Usage

```
GDCquery_clinic(project, type = "clinical", save.csv = FALSE)
```

Arguments

project	A valid project (see list with getGDCprojects()\$project_id)]	
type	A valid type. Options "clinical", "Biospecimen" (see list with getGDCprojects()\$project_id)]	
save.csv	Write clinical information into a csv document	

Value

A data frame with the clinical information

Examples

```
clin <- GDCquery_clinic("TCGA-ACC", type = "clinical", save.csv = TRUE)
clin <- GDCquery_clinic("TCGA-ACC", type = "biospecimen", save.csv = TRUE)</pre>
```

GDCquery_Maf Retrieve open access maf files from GDC server

Description

GDCquery_Maf uses the following guide to download maf files https://gdc-docs.nci.nih.gov/Data/Release_Notes/Data_F

Usage

```
GDCquery_Maf(tumor, save.csv = FALSE, directory = "GDCdata",
    pipelines = NULL)
```

Arguments

tumor	a valid tumor
save.csv	Write maf file into a csv document
directory	Directory/Folder where the data will downloaded. Default: GDCdata
pipelines	Four separate variant calling pipelines are implemented for GDC data harmo- nization. Options: muse, varscan2, somaticsniper, mutect2. For more informa- tion: https://gdc-docs.nci.nih.gov/Data/Bioinformatics_Pipelines/DNA_Seq_Variant_Calling_Pipelin

Value

A data frame with the maf file information

Examples

```
## Not run:
    acc.muse.maf <- GDCquery_Maf("ACC", pipelines = "muse")
    acc.varscan2.maf <- GDCquery_Maf("ACC", pipelines = "varscan2")
    acc.somaticsniper.maf <- GDCquery_Maf("ACC", pipelines = "somaticsniper")
    acc.mutect.maf <- GDCquery_Maf("ACC", pipelines = "mutect2")</pre>
```

End(Not run)

get.GRCh.bioMart Get hg19 or hg38 information from biomaRt

Description

Get hg19 or hg38 information from biomaRt

Usage

get.GRCh.bioMart(genome = "hg19", as.granges = FALSE)

Arguments

genome	hg38 or hg19
as.granges	Output as GRanges or data.frame

getAdjacencyBiogrid Get a matrix of interactions of genes from biogrid

Description

Using biogrid database, it will create a matrix of gene interations. If columns A and row B has value 1, it means the gene A and gene B interatcs.

Usage

```
getAdjacencyBiogrid(tmp.biogrid, names.genes = NULL)
```

Arguments

tmp.biogrid	Biogrid table
names.genes	List of genes to filter from output. Default: consider all genes

Value

A matrix with 1 for genes that interacts, 0 for no interaction.

12

getDataCategorySummary

Examples

getDataCategorySummary

Create a Summary table for each sample in a project saying if it contains or not files for a certain data category

Description

Create a Summary table for each sample in a project saying if it contains or not files for a certain data category

Usage

```
getDataCategorySummary(project, legacy = FALSE)
```

Arguments

project	A GDC project
legacy	Access legacy (hg19) or harmonized database (hg38).

Value

A data frame

```
summary <- getDataCategorySummary("TCGA-ACC", legacy = TRUE)</pre>
```

getGDCInfo

Description

Check GDC server status using the api https://api.gdc.cancer.gov/status

Usage

getGDCInfo()

Value

Return true all status

Examples

info <- getGDCInfo()</pre>

getGDCprojects Retrieve all GDC projects

Description

getGDCprojects uses the following api to get projects https://api.gdc.cancer.gov/projects

Usage

```
getGDCprojects()
```

Value

A data frame with last GDC projects

Examples

projects <- getGDCprojects()</pre>

getGistic

Description

Download GISTIC data from firehose from http://gdac.broadinstitute.org/runs/analyses_latest/data/

Usage

```
getGistic(disease, type = "thresholded")
```

Arguments

disease	TCGA disease. Option available in http://gdac.broadinstitute.org/runs/analyses_latest/data/
type	Results type: thresholded or data

getManifest	Get a Manifest from GDC query output that can be used with GDC-
	client

Description

Get a Manifest from GDC query output that can be used with GDC-client

Usage

```
getManifest(query, save = F)
```

Arguments

query	A query for GDCquery function
save	Write Manifest to a txt file (tab separated)

getResults

Description

Get the results table from query, it can select columns with cols argument and return a number of rows using rows argument.

Usage

```
getResults(query, rows, cols)
```

Arguments

query	A object from GDCquery
rows	Rows identifiers (row numbers)
cols	Columns identifiers (col names)

Value

Table with query results

Examples

getSampleFilesSummary Retrieve summary of files per sample in a project

Description

Retrieve the numner of files under each data_category + data_type + experimental_strategy + platform Almost like https://portal.gdc.cancer.gov/exploration

Usage

```
getSampleFilesSummary(project, legacy = FALSE, files.access = NA)
```

Arguments

project	A GDC project
legacy	Access legacy database ? Deafult: FALSE
files.access	Filter by file access ("open" or "controlled"). Default: no filter

getTSS

Value

A data frame with the maf file information

Examples

```
summary <- getSampleFilesSummary("TCGA-LUAD")
## Not run:
    summary <- getSampleFilesSummary(c("TCGA-OV", "TCGA_ACC"))
## End(Not run)</pre>
```

getTSS getTSS to fetch GENCODE gene annotation (transcrip Bioconductor package biomaRt If upstream and downstr ified in TSS list, promoter regions of GENCODE gene ated.	tream are spec-
---	-----------------

Description

getTSS to fetch GENCODE gene annotation (transcripts level) from Bioconductor package biomaRt If upstream and downstream are specified in TSS list, promoter regions of GENCODE gene will be generated.

Usage

```
getTSS(genome = "hg38", TSS = list(upstream = NULL, downstream = NULL))
```

Arguments

genome	Which genome build will be used: hg38 (default) or hg19.
TSS	A list. Contains upstream and downstream like TSS=list(upstream, downstream). When upstream and downstream is specified, coordinates of promoter regions with gene annotation will be generated.

Value

GENCODE gene annotation if TSS is not specified. Coordinates of GENCODE gene promoter regions if TSS is specified.

```
# get GENCODE gene annotation (transcripts level)
## Not run:
    getTSS <- getTSS()
    getTSS <- getTSS(genome.build = "hg38", TSS=list(upstream=1000, downstream=1000))
## End(Not run)</pre>
```

get_IDs

Description

get_IDs allows user to extract metadata from barcodes. The dataframe returned has columnns for 'project', 'tss','participant', 'sample', "portion", "plate", and "center"

Usage

get_IDs(data)

Arguments

data

numeric matrix, each row represents a gene, each column represents a sample

Value

data frame with columns 'project', 'tss', 'participant', 'sample', "portion", "plate", "center", "condition"

isServeOK

Check GDC server status is OK

Description

Check GDC server status using the api https://api.gdc.cancer.gov/status

Usage

isServeOK()

Value

Return true if status is ok

Examples

status <- isServeOK()</pre>

matchedMetExp	Get GDC samples with both DNA methylation (HM450K) and Gene
	expression data from GDC databse

Description

For a given TCGA project it gets the samples (barcode) with both DNA methylation and Gene expression data from GDC database

Usage

matchedMetExp(project, legacy = FALSE, n = NULL)

Arguments

project	A GDC project
legacy	Access legacy (hg19) or harmonized database (hg38).
n	Number of samples to return. If NULL return all (default)

Value

A vector of barcodes

Examples

```
# Get ACC samples with both DNA methylation (HM450K) and gene expression aligned to hg19
samples <- matchedMetExp("TCGA-ACC", legacy = TRUE)</pre>
```

PanCancerAtlas_subtypes

Retrieve table with TCGA molecular subtypes

Description

PanCancerAtlas_subtypes is a curated table with molecular subtypes for 24 TCGA cancer types

Usage

```
PanCancerAtlas_subtypes()
```

Value

a data.frame with barcode and molecular subtypes for 24 cancer types

Examples

molecular.subtypes <- PanCancerAtlas_subtypes()</pre>

TabSubtypesCol_merged TCGA samples with their Pam50 subtypes

Description

A dataset containing the Sample Ids from TCGA and PAM50 subtyping attributes of 4768 tumor patients

Usage

TabSubtypesCol_merged

Format

A data frame with 4768 rows and 3 variables:

samples Sample ID from TCGA barcodes, character string

subtype Pam50 classification, character string

color color, character string ...

TCGAanalyze_analyseGRN

Generate network

Description

TCGAanalyze_analyseGRN perform gene regulatory network.

Usage

TCGAanalyze_analyseGRN(TFs, normCounts, kNum)

Arguments

TFs	a vector of genes.
normCounts	is a matrix of gene expression with genes in rows and samples in columns.
kNum	the number of nearest neighbors to consider to estimate the mutual information. Must be less than the number of columns of normCounts.

Value

an adjacent matrix

TCGAanalyze_Clustering

Hierarchical cluster analysis

Description

Hierarchical cluster analysis using several methods such as ward.D", "ward.D2", "single", "complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC).

Usage

```
TCGAanalyze_Clustering(tabDF, method, methodHC = "ward.D2")
```

Arguments

tabDF	is a dataframe or numeric matrix, each row represents a gene, each column represents a sample come from TCGAPrepare.
method	is method to be used for generic cluster such as 'hclust' or 'consensus'
methodHC	is method to be used for Hierarchical cluster.

Value

object of class hclust if method selected is 'hclust'. If method selected is 'Consensus' returns a list of length maxK (maximum cluster number to evaluate.). Each element is a list containing consensus-Matrix (numerical matrix), consensusTree (hclust), consensusClass (consensus class asssignments). ConsensusClusterPlus also produces images.

TCGAanalyze_DEA Differential expression analysis (DEA) using edgeR or limma package.

Description

TCGAanalyze_DEA allows user to perform Differentially expression analysis (DEA), using edgeR package or limma to identify differentially expressed genes (DEGs). It is possible to do a two-class analysis.

TCGAanalyze_DEA performs DEA using following functions from edgeR:

- 1. edgeR::DGEList converts the count matrix into an edgeR object.
- 2. edgeR::estimateCommonDisp each gene gets assigned the same dispersion estimate.
- 3. edgeR::exactTest performs pair-wise tests for differential expression between two groups.
- 4. edgeR::topTags takes the output from exactTest(), adjusts the raw p-values using the False Discovery Rate (FDR) correction, and returns the top differentially expressed genes.

TCGAanalyze_DEA performs DEA using following functions from limma:

- 1. limma::makeContrasts construct matrix of custom contrasts.
- 2. limma::ImFit Fit linear model for each gene given a series of arrays.

- 3. limma::contrasts.fit Given a linear model fit to microarray data, compute estimated coefficients and standard errors for a given set of contrasts.
- 4. limma::eBayes Given a microarray linear model fit, compute moderated t-statistics, moderated F-statistic, and log-odds of differential expression by empirical Bayes moderation of the standard errors towards a common value.
- 5. limma::toptable Extract a table of the top-ranked genes from a linear model fit.

Usage

```
TCGAanalyze_DEA(mat1, mat2, metadata = TRUE, Cond1type, Cond2type,
    pipeline = "edgeR", method = "exactTest", fdr.cut = 1,
    logFC.cut = 0, elementsRatio = 30000, batch.factors = NULL,
    ClinicalDF = data.frame(), paired = FALSE, log.trans = FALSE,
    voom = FALSE, trend = FALSE, MAT = data.frame(),
    contrast.formula = "", Condtypes = c())
```

Arguments

mat1	numeric matrix, each row represents a gene, each column represents a sample with Cond1type
mat2	numeric matrix, each row represents a gene, each column represents a sample with Cond2type
metadata	Add metadata
Cond1type	a string containing the class label of the samples in mat1 (e.g., control group)
Cond2type	a string containing the class label of the samples in mat2 (e.g., case group)
pipeline	a string to specify which package to use ("limma" or "edgeR")
method	is 'glmLRT' (1) or 'exactTest' (2) used for edgeR (1) Fit a negative binomial generalized log-linear model to the read counts for each gene (2) Compute genewise exact tests for differences in the means between two groups of negative-binomially distributed counts.
fdr.cut	is a threshold to filter DEGs according their p-value corrected
logFC.cut	is a threshold to filter DEGs according their logFC
elementsRatio	is number of elements processed for second for time consumation estimation
batch.factors	a vector containing strings to specify options for batch correction. Options are "Plate", "TSS", "Year", "Portion", "Center", and "Patients"
ClinicalDF	a dataframe returned by GDCquery_clinic() to be used to extract year data
paired	boolean to account for paired or non-paired samples. Set to TRUE for paired case
log.trans	boolean to perform log cpm transformation. Set to TRUE for log transformation
voom	boolean to perform voom transformation for limma-voom pipeline. Set to TRUE for voom transformation
trend	boolean to perform limma-trend pipeline. Set to TRUE to go through limma-trend
MAT	matrix containing expression set as all samples in columns and genes as rows. Do not provide if mat1 and mat2 are used
contrast.formu	
	string input to determine coefficients and to design contrasts in a customized way
Condtypes	vector of grouping for samples in MAT

Value

table with DEGs containing for each gene logFC, logCPM, pValue, and FDR, also for each contrast

Examples

TCGAanalyze_DEA_Affy Differentially expression analysis (DEA) using limma package.

Description

Differentially expression analysis (DEA) using limma package.

Usage

```
TCGAanalyze_DEA_Affy(AffySet, FC.cut = 0.01)
```

Arguments

AffySet	A matrix-like data object containing log-ratios or log-expression values for a series of arrays, with rows corresponding to genes and columns to samples
FC.cut	write
10.000	white

Value

List of list with tables in 2 by 2 comparison of the top-ranked genes from a linear model fitted by DEA's limma

Examples

Not run:
to add example

End(Not run)

```
TCGAanalyze_DMR
```

Description

This function will search for differentially methylated CpG sites, which are regarded as possible functional regions involved in gene transcriptional regulation.

In order to find these regions we use the beta-values (methylation values ranging from 0.0 to 1.0) to compare two groups.

Firstly, it calculates the difference between the mean methylation of each group for each probes. Secondly, it calculates the p-value using the wilcoxon test using the Benjamini-Hochberg adjustment method. The default parameters will require a minimum absolute beta values delta of 0.2 and a false discovery rate (FDR)-adjusted Wilcoxon rank-sum P-value of < 0.01 for the difference.

After these analysis, we save a volcano plot (x-axis:diff mean methylation, y-axis: significance) that will help the user identify the differentially methylated CpG sites and return the object with the calculus in the rowRanges.

If the calculus already exists in the object it will not recalculated. You should set overwrite parameter to TRUE to force it, or remove the collumns with the results from the object.

Usage

```
TCGAanalyze_DMR(data, groupCol = NULL, group1 = NULL, group2 = NULL,
calculate.pvalues.probes = "all",
plot.filename = "methylation_volcano.pdf",
ylab = expression(paste(-Log[10], " (FDR corrected -P values)")),
xlab = expression(paste("DNA Methylation difference (", beta,
"-values)")), title = NULL, legend = "Legend", color = c("black",
"red", "darkgreen"), label = NULL, xlim = NULL, ylim = NULL,
p.cut = 0.01, probe.names = FALSE, diffmean.cut = 0.2,
paired = FALSE, adj.method = "BH", overwrite = FALSE, cores = 1,
save = TRUE, save.directory = ".", filename = NULL)
```

Arguments

data	SummarizedExperiment obtained from the TCGAPrepare	
groupCol	Columns with the groups inside the SummarizedExperiment object. (This will be obtained by the function colData(data))	
group1	In case our object has more than 2 groups, you should set the name of the group	
group2	In case our object has more than 2 groups, you should set the name of the group	
calculate.pvalues.probes		
	In order to get the probes faster the user can select to calculate the pvalues only for the probes with a difference in DNA methylation. The default is to calculate to all probes. Possible values: "all", "differential". Default "all"	
plot.filename	Filename. Default: volcano.pdf, volcano.svg, volcano.png. If set to FALSE, there will be no plot.	
ylab	y axis text	
xlab	x axis text	

title	main title. If not specified it will be "Volcano plot (group1 vs group2)
legend	Legend title
color	vector of colors to be used in graph
label	vector of labels to be used in the figure. Example: c("Not Significant","Hypermethylated in group1", "Hypomethylated in group1"))
xlim	x limits to cut image
ylim	y limits to cut image
p.cut	p values threshold. Default: 0.01
probe.names	is probe.names
diffmean.cut	diffmean threshold. Default: 0.2
paired	Wilcoxon paired parameter. Default: FALSE
adj.method	Adjusted method for the p-value calculation
overwrite	Overwrite the pvalues and diffmean values if already in the object for both groups? Default: FALSE
cores	Number of cores to be used in the non-parametric test Default = groupCol.group1.group2.rda
save	Save object with results? Default: TRUE
save.directory	Directory to save the files. Default: working directory
filename	Name of the file to save the object.

Value

Volcano plot saved and the given data with the results (diffmean.group1.group2,p.value.group1.group2, p.value.adj.group1.group2,status.group1.group2) in the rowRanges where group1 and group2 are the names of the groups

```
nrows <- 200; ncols <- 20</pre>
counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows)</pre>
rowRanges <- GenomicRanges::GRanges(rep(c("chr1", "chr2"), c(50, 150)),</pre>
                    IRanges::IRanges(floor(runif(200, 1e5, 1e6)), width=100),
                     strand=sample(c("+", "-"), 200, TRUE),
                     feature_id=sprintf("ID%03d", 1:200))
colData <- S4Vectors::DataFrame(Treatment=rep(c("ChIP", "Input"), 5),</pre>
                     row.names=LETTERS[1:20],
                     group=rep(c("group1","group2"),c(10,10)))
data <- SummarizedExperiment::SummarizedExperiment(</pre>
         assays=S4Vectors::SimpleList(counts=counts),
         rowRanges=rowRanges,
         colData=colData)
SummarizedExperiment::colData(data)$group <- c(rep("group 1",ncol(data)/2),</pre>
                          rep("group 2",ncol(data)/2))
hypo.hyper <- TCGAanalyze_DMR(data, p.cut = 0.85, "group", "group 1", "group 2")</pre>
SummarizedExperiment::colData(data)$group2 <- c(rep("group_1",ncol(data)/2),</pre>
                          rep("group_2",ncol(data)/2))
hypo.hyper <- TCGAanalyze_DMR(data, p.cut = 0.85,"group2","group_1","group_2")</pre>
```

TCGAanalyze_EA

Enrichment analysis of a gene-set with GO [BP,MF,CC] and pathways.

Description

The rational behind a enrichment analysis (gene-set, pathway etc) is to compute statistics of whether the overlap between the focus list (signature) and the gene-set is significant. ie the confidence that overlap between the list is not due to chance. The Gene Ontology project describes genes (gene products) using terms from three structured vocabularies: biological process, cellular component and molecular function. The Gene Ontology Enrichment component, also referred to as the GO Terms" component, allows the genes in any such "changed-gene" list to be characterized using the Gene Ontology terms annotated to them. It asks, whether for any particular GO term, the fraction of genes assigned to it in the "changed-gene" list is higher than expected by chance (is overrepresented), relative to the fraction of genes assigned to that term in the reference set. In statistical terms it peform the analysis tests the null hypothesis that, for any particular ontology term, there is no difference in the proportion of genes annotated to it in the reference list and the proportion annotated to it in the test list. We adopted a Fisher Exact Test to perform the EA.

Usage

```
TCGAanalyze_EA(GeneName, RegulonList, TableEnrichment, EAGenes, GOtype,
FDRThresh = 0.01, GeneSymbolsTable = FALSE)
```

Arguments

GeneName	is the name of gene signatures list	
RegulonList	is a gene signature (lisf of genes) in which perform EA.	
TableEnrichmen	t	
	is a table related to annotations of gene symbols such as GO[BP,MF,CC] and Pathways. It was created from DAVID gene ontology on-line.	
EAGenes	is a table with informations about genes such as ID, Gene, Description, Location and Family.	
GOtype	is type of gene ontology Biological process (BP), Molecular Function (MF), Cellular componet (CC)	
FDRThresh	pvalue corrected (FDR) as threshold to selected significant BP, MF,CC, or pathways. (default FDR < 0.01)	
GeneSymbolsTable		
	if it is TRUE will return a table with GeneSymbols in common GO or pathways	

if it is TRUE will return a table with GeneSymbols in common GO or pathways.

Value

Table with enriched GO or pathways by selected gene signature.

```
## Not run:
EAGenes <- get("EAGenes")
RegulonList <- rownames(dataDEGsFiltLevel)
ResBP <- TCGAanalyze_EA(GeneName="DEA genes Normal Vs Tumor",</pre>
```

```
RegulonList,DAVID_BP_matrix,
EAGenes,GOtype = "DavidBP")
```

End(Not run)

TCGAanalyze_EAcomplete

Enrichment analysis for Gene Ontology (GO) [BP,MF,CC] and Pathways

Description

Researchers, in order to better understand the underlying biological processes, often want to retrieve a functional profile of a set of genes that might have an important role. This can be done by performing an enrichment analysis.

We will perform an enrichment analysis on gene sets using the TCGAanalyze_EAcomplete function. Given a set of genes that are up-regulated under certain conditions, an enrichment analysis will find identify classes of genes or proteins that are #'over-represented using annotations for that gene set.

Usage

TCGAanalyze_EAcomplete(TFname, RegulonList)

Arguments

TFname	is the name of the list of genes or TF's regulon.
RegulonList	List of genes such as TF's regulon or DEGs where to find enrichment.

Value

Enrichment analysis GO[BP,MF,CC] and Pathways complete table enriched by genelist.

```
Genelist <- c("FN1","COL1A1")
ansEA <- TCGAanalyze_EAcomplete(TFname="DEA genes Normal Vs Tumor",Genelist)
## Not run:
Genelist <- rownames(dataDEGsFiltLevel)
system.time(ansEA <- TCGAanalyze_EAcomplete(TFname="DEA genes Normal Vs Tumor",Genelist))
## End(Not run)</pre>
```

TCGAanalyze_Filtering Filtering mRNA transcripts and miRNA selecting a threshold.

Description

TCGAanalyze_Filtering allows user to filter mRNA transcripts and miRNA, selecting a threshold. For istance returns all mRNA or miRNA with mean across all samples, higher than the threshold defined quantile mean across all samples.

Usage

```
TCGAanalyze_Filtering(tabDF, method, qnt.cut = 0.25, var.func = IQR,
var.cutoff = 0.75, eta = 0.05, foldChange = 1)
```

Arguments

tabDF	is a dataframe or numeric matrix, each row represents a gene, each column rep- resents a sample come from TCGAPrepare
method	is method of filtering such as 'quantile', 'varFilter', 'filter1', 'filter2'
qnt.cut	is threshold selected as mean for filtering
var.func	is function used as the per-feature filtering statistic. See genefilter documenta- tion
var.cutoff	is a numeric value. See genefilter documentation
eta	is a paramter for filter 1. default eta = 0.05 .
foldChange	is a paramter for filter2. default foldChange = 1.

Value

A filtered dataframe or numeric matrix where each row represents a gene, each column represents a sample

```
dataNorm <- TCGAbiolinks::TCGAanalyze_Normalization(dataBRCA, geneInfo)
dataNorm <- TCGAanalyze_Normalization(tabDF = dataBRCA,
geneInfo = geneInfo,
method = "geneLength")
dataFilt <- TCGAanalyze_Filtering(tabDF = dataNorm, method = "quantile", qnt.cut = 0.25)</pre>
```

TCGAanalyze_LevelTab Adding information related to DEGs genes from DEA as mean values in two conditions.

Description

TCGAanalyze_LevelTab allows user to add information related to DEGs genes from Differentially expression analysis (DEA) such as mean values and in two conditions.

Usage

```
TCGAanalyze_LevelTab(FC_FDR_table_mRNA, typeCond1, typeCond2, TableCond1,
TableCond2, typeOrder = TRUE)
```

Arguments

FC_FDR_table_mRNA Output of dataDEGs filter by abs(LogFC) >=1 typeCond1 a string containing the class label of the samples in TableCond1 (e.g., control group) typeCond2 a string containing the class label of the samples in TableCond2 (e.g., case group) TableCond1 numeric matrix, each row represents a gene, each column represents a sample with Cond1type TableCond2 numeric matrix, each row represents a gene, each column represents a sample with Cond2type type0rder typeOrder

Value

table with DEGs, log Fold Change (FC), false discovery rate (FDR), the gene expression level for samples in Cond1type, and Cond2type, and Delta value (the difference of gene expression between the two conditions multiplied logFC)

```
TCGAanalyze_networkInference
```

infer gene regulatory networks

Description

TCGAanalyze_networkInference taking expression data as input, this will return an adjacency matrix of interactions

Usage

```
TCGAanalyze_networkInference(data, optionMethod = "clr")
```

Arguments

data	expression data, genes in columns, samples in rows
optionMethod	inference method, chose from aracne, c3net, clr and mrnet

Value

an adjacent matrix

TCGAanalyze_Normalization

normalization mRNA transcripts and miRNA using EDASeq package.

Description

TCGAanalyze_Normalization allows user to normalize mRNA transcripts and miRNA, using EDASeq package.

Normalization for RNA-Seq Numerical and graphical summaries of RNA-Seq read data. Withinlane normalization procedures to adjust for GC-content effect (or other gene-level effects) on read counts: loess robust local regression, global-scaling, and full-quantile normalization (Risso et al., 2011). Between-lane normalization procedures to adjust for distributional differences between lanes (e.g., sequencing depth): global-scaling and full-quantile normalization (Bullard et al., 2010).

For istance returns all mRNA or miRNA with mean across all samples, higher than the threshold defined quantile mean across all samples.

TCGAanalyze_Normalization performs normalization using following functions from EDASeq

- 1. EDASeq::newSeqExpressionSet
- 2. EDASeq::withinLaneNormalization
- 3. EDASeq::betweenLaneNormalization
- 4. EDASeq::counts

Usage

```
TCGAanalyze_Normalization(tabDF, geneInfo, method = "geneLength")
```

Arguments

tabDF	Rnaseq numeric matrix, each row represents a gene, each column represents a sample
geneInfo	Information matrix of 20531 genes about geneLength and gcContent. Two objects are provided: TCGAbiolinks::geneInfoHT,TCGAbiolinks::geneInfo
method	is method of normalization such as 'gcContent' or 'geneLength'

Value

Rnaseq matrix normalized with counts slot holds the count data as a matrix of non-negative integer count values, one row for each observational unit (gene or the like), and one column for each sample.

Examples

dataNorm <- TCGAbiolinks::TCGAanalyze_Normalization(dataBRCA, geneInfo)</pre>

TCGAanalyze_Pathview Generate pathview graph

Description

TCGAanalyze_Pathview pathway based data integration and visualization.

Usage

```
TCGAanalyze_Pathview(dataDEGs, pathwayKEGG = "hsa05200")
```

Arguments

dataDEGs	dataDEGs
pathwayKEGG	pathwayKEGG

Value

an adjacent matrix

Examples

```
## Not run:
    dataDEGs <- data.frame(mRNA = c("TP53","TP63","TP73"), logFC = c(1,2,3))
    TCGAanalyze_Pathview(dataDEGs)
```

End(Not run)

TCGAanalyze_Preprocessing

Array Array Intensity correlation (AAIC) and correlation boxplot to define outlier

Description

TCGAanalyze_Preprocessing perform Array Array Intensity correlation (AAIC). It defines a square symmetric matrix of spearman correlation among samples. According this matrix and boxplot of correlation samples by samples it is possible to find samples with low correlation that can be identified as possible outliers.

Usage

TCGAanalyze_Preprocessing(object, cor.cut = 0, filename = NULL, width = 1000, height = 1000, datatype = names(assays(object))[1])

Arguments

object	of gene expression of class RangedSummarizedExperiment from TCGAprepare
cor.cut	is a threshold to filter samples according their spearman correlation in samples by samples. default cor.cut is 0
filename	Filename of the image file
width	Image width
height	Image height
datatype	is a string from RangedSummarizedExperiment assay

Value

Plot with array array intensity correlation and boxplot of correlation samples by samples

TCGAanalyze_Stemness	Generate Stemness Score based on RNASeq (mRNAsi stemness index)
	Malta et al., Cell, 2018

Description

TCGAanalyze_Stemness generate the mRNAsi score

Usage

```
TCGAanalyze_Stemness(stemSig, dataGE, annotation = FALSE)
```

Arguments

stemSig	is a vector of the stemness Signature generated using gelnet package
dataGE	is a matrix of Gene expression (genes in rows, samples in cols) from TCGAprepare
annotation	as default is FALSE. If annotation == subtype it returns the molecular subtype of a sample. If annotation == sampleType it returns the type of a sample (normal or tumor)

Value

table with samples and stemness score

Examples

TCGAanalyze_survival Creates survival analysis

Description

Creates a survival plot from TCGA patient clinical data using survival library. It uses the fields days_to_death and vital, plus a columns for groups.

Usage

```
TCGAanalyze_survival(data, clusterCol = NULL, legend = "Legend",
labels = NULL, risk.table = TRUE, xlim = NULL,
main = "Kaplan-Meier Overall Survival Curves",
ylab = "Probability of survival",
xlab = "Time since diagnosis (days)", filename = "survival.pdf",
color = NULL, height = 8, width = 12, dpi = 300, pvalue = TRUE,
conf.int = TRUE, ...)
```

Arguments

data	TCGA Clinical patient with the information days_to_death
clusterCol	Column with groups to plot. This is a mandatory field, the caption will be based in this column
legend	Legend title of the figure
labels	labels of the plot
risk.table	show or not the risk table

xlim	x axis limits e.g. $xlim = c(0, 1000)$. Present narrower X axis, but not affect survival estimates.
main	main title of the plot
ylab	y axis text of the plot
xlab	x axis text of the plot
filename	The name of the pdf file.
color	Define the colors/Pallete for lines.
height	Image height
width	Image width
dpi	Figure quality
pvalue	show p-value of log-rank test
conf.int	show confidence intervals for point estimaes of survival curves.
	Further arguments passed to ggsurvplot.

Value

Survival plot

Examples

```
# clin <- GDCquery_clinic("TCGA-BRCA","clinical")</pre>
 clin <- data.frame(</pre>
      vital_status = c("alive","alive","alive","dead","alive",
                        "alive", "dead", "alive", "dead", "alive"),
      days_to_death = c(NA,NA,NA,172,NA,NA,3472,NA,786,NA),
      days_to_last_follow_up = c(3011,965,718,NA,1914,423,NA,5,656,1417),
      gender = c(rep("male",5),rep("female",5))
)
TCGAanalyze_survival(clin, clusterCol="gender")
TCGAanalyze_survival(clin, clusterCol="gender", xlim = 1000)
TCGAanalyze_survival(clin,
                     clusterCol="gender",
                     risk.table = FALSE,
                     conf.int = FALSE,
                     color = c("pink","blue"))
TCGAanalyze_survival(clin,
                     clusterCol="gender",
                     risk.table = FALSE,
                     xlim = c(100, 1000),
                     conf.int = FALSE,
                     color = c("Dark2"))
```

TCGAanalyze_SurvivalKM

survival analysis (SA) univariate with Kaplan-Meier (KM) method.

Description

TCGAanalyze_SurvivalKM perform an univariate Kaplan-Meier (KM) survival analysis (SA). It performed Kaplan-Meier survival univariate using complete follow up with all days taking one gene a time from Genelist of gene symbols. For each gene according its level of mean expression in cancer samples, defining two thresholds for quantile expression of that gene in all samples (default ThreshTop=0.67,ThreshDown=0.33) it is possible to define a threshold of intensity of gene expression to divide the samples in 3 groups (High, intermediate, low). TCGAanalyze_SurvivalKM performs SA between High and low groups using following functions from survival package

- 1. survival::Surv
- 2. survival::survdiff
- 3. survival::survfit

Usage

```
TCGAanalyze_SurvivalKM(clinical_patient, dataGE, Genelist,
  Survresult = FALSE, ThreshTop = 0.67, ThreshDown = 0.33,
  p.cut = 0.05, group1, group2)
```

Arguments

clinical_patient

	is a data.frame using function 'clinic' with information related to barcode / samples such as bcr_patient_barcode, days_to_death , days_to_last_follow_up , vi-tal_status, etc
dataGE	is a matrix of Gene expression (genes in rows, samples in cols) from TCGAprepare
Genelist	is a list of gene symbols where perform survival KM.
Survresult	is a parameter (default = FALSE) if is TRUE will show KM plot and results.
ThreshTop	is a quantile threshold to identify samples with high expression of a gene
ThreshDown	is a quantile threshold to identify samples with low expression of a gene
p.cut	p.values threshold. Default: 0.05
group1	a string containing the barcode list of the samples in in control group
group2	a string containing the barcode list of the samples in in disease group

Value

table with survival genes pvalues from KM.

```
# Selecting only 20 genes for example
dataBRCAcomplete <- log2(dataBRCA[1:20,] + 1)
# clinical_patient_Cancer <- GDCquery_clinic("TCGA-BRCA","clinical")
clinical_patient_Cancer <- data.frame(
    bcr_patient_barcode = substr(colnames(dataBRCAcomplete),1,12),
    vital_status = c(rep("alive",3),"dead",rep("alive",2),rep(c("dead","alive"),2)),
    days_to_death = c(NA,NA,NA,172,NA,NA,3472,NA,786,NA),
    days_to_last_follow_up = c(3011,965,718,NA,1914,423,NA,5,656,1417)
)
```

```
group1 <- TCGAquery_SampleTypes(colnames(dataBRCAcomplete), typesample = c("NT"))</pre>
 group2 <- TCGAquery_SampleTypes(colnames(dataBRCAcomplete), typesample = c("TP"))</pre>
 tabSurvKM <- TCGAanalyze_SurvivalKM(clinical_patient_Cancer,</pre>
                                      dataBRCAcomplete,
                                      Genelist = rownames(dataBRCAcomplete),
                                      Survresult = FALSE,
                                      p.cut = 0.4,
                                      ThreshTop = 0.67.
                                      ThreshDown = 0.33,
                                      group1 = group1, # Control group
                                      group2 = group2) # Disease group
 # If the groups are not specified group1 == group2 and all samples are used
 ## Not run:
 tabSurvKM <- TCGAanalyze_SurvivalKM(clinical_patient_Cancer,</pre>
                                      dataBRCAcomplete,
                                      Genelist = rownames(dataBRCAcomplete),
                                      Survresult = TRUE,
                                      p.cut = 0.2,
                                      ThreshTop = 0.67,
                                      ThreshDown = 0.33)
## End(Not run)
```

TCGAbatch_Correction Batch correction using ComBat and Voom transformation using limma package.

Description

TCGAbatch_correction allows user to perform a Voom correction on gene expression data and have it ready for DEA. One can also use ComBat for batch correction for exploratory analysis. If batch.factor or adjustment argument is "Year" please provide clinical data. If no batch factor is provided, the data will be voom corrected only

TCGAanalyze_DEA performs DEA using following functions from sva and limma:

- 1. limma::voom Transform RNA-Seq Data Ready for Linear Modelling.
- 2. sva::ComBat Adjust for batch effects using an empirical Bayes framework.

Usage

```
TCGAbatch_Correction(tabDF, batch.factor = NULL, adjustment = NULL,
ClinicalDF = data.frame(), UnpublishedData = FALSE,
AnnotationDF = data.frame())
```

Arguments

tabDF	numeric matrix, each row represents a gene, each column represents a sample
batch.factor	a string containing the batch factor to use for correction. Options are "Plate", "TSS", "Year", "Portion", "Center"
TCGAbiolinks

adjustment	vector containing strings for factors to adjust for using ComBat. Options are "Plate", "TSS", "Year", "Portion", "Center"
ClinicalDF	a dataframe returned by GDCquery_clinic() to be used to extract year data
UnpublishedData	3
	if TRUE perform a batch correction after adding new data
AnnotationDF	a dataframe with column Batch indicating different batches of the samples in the tabDF

Value

data frame with ComBat batch correction applied

TCGAbiolinks	The aim of TCGAbiolinks is : i) facilitate the TCGA open-access data retrieval, ii) prepare the data using the appropriate pre-processing strategies, iii) provide the means to carry out different standard anal- yses and iv) allow the user to download a specific version of the data and thus to easily reproduce earlier research results. In more detail, the package provides multiple methods for analysis (e.g., differential expression analysis, identifying differentially methylated regions) and methods for visualization (e.g., survival plots, volcano plots, starburst
	plots) in order to easily develop complete analysis pipelines.

Description

The functions you're likely to need from **TCGAbiolinks** is GDCdownload, GDCquery. Otherwise refer to the vignettes to see how to format the documentation.

TCGAprepare_Affy Prepare CEL files into an AffyBatch.

Description

Prepare CEL files into an AffyBatch.

Usage

```
TCGAprepare_Affy(ClinData, PathFolder, TabCel)
```

Arguments

ClinData	write
PathFolder	write
TabCel	write

Value

Normalizd Expression data from Affy eSets

Examples

```
## Not run:
to add example
## End(Not run)
```

TCGAquery_MatchedCoupledSampleTypes Retrieve multiple tissue types from the same patients.

Description

TCGAquery_MatchedCoupledSampleTypes

Usage

TCGAquery_MatchedCoupledSampleTypes(barcode, typesample)

Arguments

barcode	barcode
typesample	typesample

Value

a list of samples / barcode filtered by type sample selected

Examples

TCGAquery_recount2 Query gene counts of TCGA and GTEx data from the Recount2 project

Description

TCGArecount2_query queries and downloads data produced by the Recount2 project. User can specify which project and which tissue to query

Usage

```
TCGAquery_recount2(project, tissue = c())
```

38

Arguments

project	is a string denoting which project the user wants. Options are "tcga" and "gtex"
tissue	a vector of tissue(s) to download. Options are "adipose tissue", "adrenal", "gland", "bladder", "blood", "blood vessel", "bone marrow", "brain", "breast", "cervix uteri", "colon", "esophagus", "fallopian tube", "heart", "kidney", "liver", "lung", "mus- cle", "nerve", "ovary", "pancreas", "pituitary", "prostate", "salivary", "gland", "skin", "small intestine", "spleen", "stomach", "testis", "thyroid", "uterus", "vagina"

Value

List with \$subtypes attribute as a dataframe with barcodes, samples, subtypes, and colors. The \$filtered attribute is returned as filtered samples with no subtype info

Examples

```
## Not run:
brain.rec<-TCGAquery_recount2(project = "gtex", tissue = "brain")
## End(Not run)
```

TCGAquery_SampleTypes Retrieve multiple tissue types not from the same patients.

Description

TCGAquery_SampleTypes for a given list of samples and types, return the union of samples that are from theses type.

Usage

TCGAquery_SampleTypes(barcode, typesample)

barcode	is a list of samples as TCGA barcodes
typesample	a character vector indicating tissue type to query. Example:

TP	PRIMARY SOLID TUMOR
TR	RECURRENT SOLID TUMOR
TB	Primary Blood Derived Cancer-Peripheral Blood
TRBM	Recurrent Blood Derived Cancer-Bone Marrow
TAP	Additional-New Primary
TM	Metastatic
TAM	Additional Metastatic
THOC	Human Tumor Original Cells
TBM	Primary Blood Derived Cancer-Bone Marrow
NB	Blood Derived Normal
NT	Solid Tissue Normal
NBC	Buccal Cell Normal
NEBV	EBV Immortalized Normal
NBM	Bone Marrow Normal

a list of samples / barcode filtered by type sample selected

Examples

TCGAquery_subtype Retrieve molecular subtypes for a given tumor

Description

TCGAquery_subtype Retrieve molecular subtypes for a given tumor

Usage

TCGAquery_subtype(tumor)

Arguments

tumor

is a cancer Examples:

lgg gbm luad stad brca coad read

Value

a data.frame with barcode and molecular subtypes

Examples

```
dataSubt <- TCGAquery_subtype(tumor = "lgg")</pre>
```

TCGAtumor_purity Filters TCGA barcodes according to purity parameters

Description

TCGAtumor_purity Filters TCGA samples using 5 estimates from 5 methods as thresholds.

Usage

```
TCGAtumor_purity(barcodes, estimate, absolute, lump, ihc, cpe)
```

40

Arguments

barcodes	is a vector of TCGA barcodes
estimate	uses gene expression profiles of 141 immune genes and 141 stromal genes
absolute	which uses somatic copy-number data (estimations were available for only 11 cancer types)
lump	(leukocytes unmethylation for purity), which averages 44 non-methylated immune-specific CpG sites
ihc	as estimated by image analysis of haematoxylin and eosin stain slides produced by the Nationwide Childrens Hospital Biospecimen Core Resource
сре	CPE is a derived consensus measurement as the median purity level after nor- malizing levels from all methods to give them equal means and s.ds

Value

List with \$pure_barcodes attribute as a vector of pure samples and \$filtered attribute as filtered samples with no purity info

Examples

TCGAvisualize_BarPlot Barplot of subtypes and clinical info in groups of gene expression clustered.

Description

Barplot of subtypes and clinical info in groups of gene expression clustered.

Usage

```
TCGAvisualize_BarPlot(DFfilt, DFclin, DFsubt, data_Hc2, Subtype, cbPalette,
filename, width, height, dpi)
```

DFfilt	write
DFclin	write
DFsubt	write
data_Hc2	write
Subtype	write
cbPalette	Define the colors of the bar.
filename	The name of the pdf file
width	Image width
height	Image height
dpi	Image dpi

barplot image in pdf or png file

TCGAvisualize_EAbarplot

barPlot for a complete Enrichment Analysis

Description

The figure shows canonical pathways significantly overrepresented (enriched) by the DEGs (differentially expressed genes). The most statistically significant canonical pathways identified in DEGs list are listed according to their p value corrected FDR (-Log) (colored bars) and the ratio of list genes found in each pathway over the total number of genes in that pathway (Ratio, red line).

Usage

```
TCGAvisualize_EAbarplot(tf, GOMFTab, GOBPTab, GOCCTab, PathTab, nBar,
nRGTab, filename = "TCGAvisualize_EAbarplot_Output.pdf",
text.size = 1, mfrow = c(2, 2), xlim = NULL, color = c("orange",
"cyan", "green", "yellow"))
```

Arguments

tf	is a list of gene symbols
GOMFTab	is results from TCGAanalyze_EAcomplete related to Molecular Function (MF)
GOBPTab	is results from TCGAanalyze_EAcomplete related to Biological Process (BP)
GOCCTab	is results from TCGAanalyze_EAcomplete related to Cellular Component (CC)
PathTab	is results from TCGAanalyze_EAcomplete related to Pathways EA
nBar	is the number of bar histogram selected to show (default = 10)
nRGTab	is the gene signature list with gene symbols.
filename	Name for the pdf. If null it will return the plot.
text.size	Text size
mfrow	Vector with number of rows/columns of the plot. Default 2 rows/2 columns " $c(2,2)$ "
xlim	Upper limit of the x-axis.
color	A vector of colors for each barplot. Deafult: c("orange", "cyan", "green", "yellow")

Value

Complete barPlot from Enrichment Analysis showing significant (default FDR < 0.01) BP,CC,MF and pathways enriched by list of genes.

Examples

```
Genelist <- c("FN1","COL1A1")</pre>
ansEA <- TCGAanalyze_EAcomplete(TFname="DEA genes Normal Vs Tumor",Genelist)</pre>
TCGAvisualize_EAbarplot(tf = rownames(ansEA$ResBP),
         GOBPTab = ansEA$ResBP,
         GOCCTab = ansEA$ResCC,
         GOMFTab = ansEA$ResMF,
        PathTab = ansEA$ResPat,
         nRGTab = Genelist,
         nBar = 10,
         filename="a.pdf")
while (!(is.null(dev.list()["RStudioGD"]))){dev.off()}
## Not run:
Genelist <- rownames(dataDEGsFiltLevel)</pre>
system.time(ansEA <- TCGAanalyze_EAcomplete(TFname="DEA genes Normal Vs Tumor",Genelist))</pre>
# Enrichment Analysis EA (TCGAVisualize)
# Gene Ontology (GO) and Pathway enrichment barPlot
TCGAvisualize_EAbarplot(tf = rownames(ansEA$ResBP),
         GOBPTab = ansEA$ResBP,
         GOCCTab = ansEA$ResCC,
         GOMFTab = ansEA$ResMF,
        PathTab = ansEA$ResPat,
         nRGTab = Genelist,
         nBar = 10)
## End(Not run)
```

TCGAvisualize_Heatmap *Heatmap with more sensible behavior using heatmap.plus*

Description

Heatmap with more sensible behavior using heatmap.plus

Usage

```
TCGAvisualize_Heatmap(data, col.metadata, row.metadata,
  col.colors = NULL, row.colors = NULL, show_column_names = FALSE,
  show_row_names = FALSE, cluster_rows = FALSE,
  cluster_columns = FALSE, sortCol, extrems = NULL,
  rownames.size = 12, title = NULL, color.levels = NULL,
  values.label = NULL, filename = "heatmap.pdf", width = 10,
  height = 10, type = "expression", scale = "none",
  heatmap.legend.color.bar = "continuous")
```

data	The object to with the heatmap data (expression, methylation)
col.metadata	Metadata for the columns (samples). It should have on of the following columns: barcode (28 characters) column to match with the samples. It will also work with "bcr_patient_barcode"(12 chars), "patient"(12 chars), "sample"(16 chars) columns but as one patient might have more than one sample, this coul lead to errors in

	the annotation. The code will throw a warning in case two samples are from the same patient.
row.metadata	Metadata for the rows genes (expression) or probes (methylation)
col.colors	A list of names colors
row.colors show_column_nam	A list of named colors
	Show column names names? Dafault: FALSE
show_row_names	Show row names? Dafault: FALSE
cluster_rows cluster_columns	Cluster rows ? Dafault: FALSE
	Cluster columns ? Dafault: FALSE
sortCol	Name of the column to be used to sort the columns
extrems	Extrems of colors (vector of 3 values)
rownames.size	Rownames size
title	Title of the plot
color.levels	A vector with the colors (low level, middle level, high level)
values.label	Text of the levels in the heatmap
filename	Filename to save the heatmap. Default: heatmap.png
width	figure width
height	figure height
type	Select the colors of the heatmap values. Possible values are "expression" (default), "methylation"
scale	Use z-score to make the heatmap? If we want to show differences between genes, it is good to make Z-score by samples (force each sample to have zero mean and standard deviation=1). If we want to show differences between samples, it is good to make Z-score by genes (force each gene to have zero mean and standard deviation=1). Possibilities: "row", "col". Default "none"
heatmap.legend.	
	Heatmap legends values type. Options: "continuous", "disctrete

Heatmap plotted in the device

Examples

```
c("probe1", "probe2","probe3","probe4","probe5"),
               c("TCGA-DU-6410",
                 "TCGA-DU-A5TS"
                 "TCGA-HT-7688")))
mdat <- data.frame(patient=c("TCGA-DU-6410","TCGA-DU-A5TS","TCGA-HT-7688"),</pre>
                   Sex=c("Male", "Female", "Male"),
                   COCCluster=c("coc1","coc1","coc1"),
                   IDHtype=c("IDHwt","IDHMut-cod","IDHMut-noncod"))
TCGAvisualize_Heatmap(dat,
                    col.metadata = mdat,
                    row.metadata = row.mdat,
                    row.colors = list(duplicated = c("FALSE" = "pink",
                                                      "TRUE"="green"),
                                      "Enhancer region" = c("FALSE" = "purple",
                                                              "TRUE"="grey")),
                    col.colors = list(Sex = c("Male" = "blue", "Female"="red"),
                                       COCCluster=c("coc1"="grey"),
                                       IDHtype=c("IDHwt"="cyan",
                                       "IDHMut-cod"="tomato"
                                       ,"IDHMut-noncod"="gold")),
                    type = "methylation",
                    show_row_names=TRUE)
if (!(is.null(dev.list()["RStudioGD"]))){dev.off()}
```

TCGAvisualize_meanMethylation Mean methylation boxplot

Description

Creates a mean methylation boxplot for groups (groupCol), subgroups will be highlited as shapes if the subgroupCol was set.

Observation: Data is a summarizedExperiment.

Usage

```
TCGAvisualize_meanMethylation(data, groupCol = NULL,
  subgroupCol = NULL, shapes = NULL, print.pvalue = FALSE,
  plot.jitter = TRUE, jitter.size = 3, filename = "groupMeanMet.pdf",
  ylab = expression(paste("Mean DNA methylation (", beta, "-values)")),
  xlab = NULL, title = "Mean DNA methylation", labels = NULL,
  group.legend = NULL, subgroup.legend = NULL, color = NULL,
  y.limits = NULL, sort, order, legend.position = "top",
  legend.title.position = "top", legend.ncols = 3,
  add.axis.x.text = TRUE, width = 10, height = 10, dpi = 600,
  axis.text.x.angle = 90)
```

Arguments

data

SummarizedExperiment object obtained from TCGAPrepare

groupCol	Columns in colData(data) that defines the groups. If no columns defined a columns called "Patients" will be used
subgroupCol	Columns in colData(data) that defines the subgroups.
shapes	Shape vector of the subgroups. It must have the size of the levels of the sub- groups. Example: shapes = $c(21,23)$ if for two levels
print.pvalue	Print p-value for two groups
plot.jitter	Plot jitter? Default TRUE
jitter.size	Plot jitter size? Default 3
filename	The name of the pdf that will be saved
ylab	y axis text in the plot
xlab	x axis text in the plot
title	main title in the plot
labels	Labels of the groups
group.legend Name of the group legend. DEFAULT: groupCol subgroup.legend	
	Name of the subgroup legend. DEFAULT: subgroupCol
color	vector of colors to be used in graph
y.limits	Change lower/upper y-axis limit
sort	Sort boxplot by mean or median. Possible values: mean.asc, mean.desc, median.asc, meadian.desc
order	Order of the boxplots
legend.position	
	Legend position ("top", "right", "left", "bottom")
legend.title.position	
	Legend title position ("top", "right", "left", "bottom")
legend.ncols	Number of columns of the legend
add.axis.x.text	
	Add text to x-axis? Default: FALSE
width	Plot width default:10
height	Plot height default:10
dpi	Pdf dpi default:600
axis.text.x.angle	
	Angle of text in the x axis

Save the pdf survival plot

Examples

46

```
row.names=LETTERS[1:21],
                    group=rep(c("group1","group2","group3"),c(7,7,7)),
                    subgroup=rep(c("subgroup1", "subgroup2", "subgroup3"), 7))
data <- SummarizedExperiment::SummarizedExperiment(</pre>
         assays=S4Vectors::SimpleList(counts=counts),
         rowRanges=rowRanges,
         colData=colData)
TCGAvisualize_meanMethylation(data,groupCol = "group")
# change lower/upper y-axis limit
TCGAvisualize_meanMethylation(data,groupCol = "group", y.limits = c(0,1))
# change lower y-axis limit
TCGAvisualize_meanMethylation(data,groupCol = "group", y.limits = 0)
TCGAvisualize_meanMethylation(data,groupCol = "group", subgroupCol="subgroup")
TCGAvisualize_meanMethylation(data,groupCol = "group")
TCGAvisualize_meanMethylation(data,groupCol = "group",sort="mean.desc",filename="meandesc.pdf")
TCGAvisualize_meanMethylation(data,groupCol = "group",sort="mean.asc",filename="meanasc.pdf")
TCGAvisualize_meanMethylation(data,groupCol = "group",sort="median.asc",filename="medianasc.pdf")
TCGAvisualize_meanMethylation(data,groupCol = "group",sort="median.desc",filename="mediandesc.pdf")
if (!(is.null(dev.list()["RStudioGD"]))){dev.off()}
```

TCGAvisualize_oncoprint

Creating a oncoprint

Description

Creating a oncoprint

Usage

```
TCGAvisualize_oncoprint(mut, genes, filename, color,
annotation.position = "bottom", annotation, height, width = 10,
rm.empty.columns = FALSE, show.column.names = FALSE,
show.row.barplot = TRUE, label.title = "Mutation",
column.names.size = 8, label.font.size = 16, rows.font.size = 16,
dist.col = 0.5, dist.row = 0.5, information = "Variant_Type",
row.order = TRUE, col.order = TRUE, heatmap.legend.side = "bottom",
annotation.legend.side = "bottom")
```

mut	A dataframe from the mutation annotation file (see TCGAquery_maf from TC-GAbiolinks)
genes	Gene list
filename	name of the pdf
color	named vector for the plot
annotation.position	
	Position of the annotation "bottom" or "top"
annotation	Matrix or data frame with the annotation. Should have a column bcr_patient_barcode with the same ID of the mutation object
height	pdf height

width	pdf width
rm.empty.columr	IS
	If there is no alteration in that sample, whether remove it on the oncoprint
<pre>show.column.nam</pre>	nes
	Show column names? Default: FALSE
show.row.barplo	
	Show barplot annotation on rows?
label.title	Title of the label
column.names.si	ze
	Size of the fonts of the columns names
label.font.size	
	Size of the fonts
<pre>rows.font.size</pre>	Size of the fonts
dist.col	distance between columns in the plot
dist.row	distance between rows in the plot
information	Which column to use as informastion from MAF. Options: 1) "Variant_Classification" (The information will be "Frame_Shift_Del", "Frame_Shift_Ins", "In_Frame_Del", "In_Frame_Ins", "Missense_Mutation", "Nonsense_Mutation", "Nonstop_Mutation", "RNA", "Silent", "Splice_Site", "Targeted_Region", "Translation_Start_Site") 2) "Variant_Type" (The information will be INS,DEL,SNP)
row.order	Order the genes (rows) Default:TRUE. Genes with more mutations will be in the first rows
col.order heatmap.legend.	Order columns. Default:TRUE. side
	Position of the heatmap legend
annotation.lege	end.side
	Position of the annotation legend

A oncoprint plot

Examples

```
## Not run:
mut <- GDCquery_Maf(tumor = "ACC", pipelines = "mutect")</pre>
TCGAvisualize_oncoprint(mut = mut, genes = mut$Hugo_Symbol[1:10], rm.empty.columns = TRUE)
TCGAvisualize_oncoprint(mut = mut, genes = mut$Hugo_Symbol[1:10],
                 filename = "onco.pdf",
            color=c("background"="#CCCCCC","DEL"="purple","INS"="yellow","SNP"="brown"))
clin <- GDCquery_clinic("TCGA-ACC","clinical")</pre>
clin <- clin[,c("bcr_patient_barcode","disease","gender","tumor_stage","race","vital_status")]</pre>
TCGAvisualize_oncoprint(mut = mut, genes = mut$Hugo_Symbol[1:20],
                filename = "onco.pdf",
                annotation = clin,
            color=c("background"="#CCCCCC", "DEL"="purple", "INS"="yellow", "SNP"="brown"),
                rows.font.size=10,
                heatmap.legend.side = "right",
                dist.col = 0,
                label.font.size = 10)
```

End(Not run)

TCGAvisualize_PCA Principal components analysis (PCA) plot

Description

TCGAvisualize_PCA performs a principal components analysis (PCA) on the given data matrix and returns the results as an object of class prcomp, and shows results in PCA level.

Usage

```
TCGAvisualize_PCA(dataFilt, dataDEGsFiltLevel, ntopgenes, group1, group2)
```

Arguments

dataFilt	A filtered dataframe or numeric matrix where each row represents a gene, each column represents a sample from function TCGAanalyze_Filtering
dataDEGsFiltLevel	
	table with DEGs, log Fold Change (FC), false discovery rate (FDR), the gene expression level, etc, from function TCGAanalyze_LevelTab.
ntopgenes	number of DEGs genes to plot in PCA
group1	a string containing the barcode list of the samples in in control group
group2	a string containing the barcode list of the samples in in disease group the name of the group

Value

principal components analysis (PCA) plot of PC1 and PC2

Examples

```
# normalization of genes
dataNorm <- TCGAbiolinks::TCGAanalyze_Normalization(tabDF = dataBRCA, geneInfo = geneInfo,
method = "geneLength")
# quantile filter of genes
dataFilt <- TCGAanalyze_Filtering(tabDF = dataBRCA, method = "quantile", qnt.cut = 0.25)
# Principal Component Analysis plot for ntop selected DEGs
    # selection of normal samples "NT"
    group1 <- TCGAquery_SampleTypes(colnames(dataFilt), typesample = c("NT"))
    # selection of normal samples "TP"
    group2 <- TCGAquery_SampleTypes(colnames(dataFilt), typesample = c("TP"))
pca <- TCGAvisualize_PCA(dataFilt,dataDEGsFiltLevel, ntopgenes = 200, group1, group2)
if (!(is.null(dev.list()["RStudioGD"]))){dev.off()}
```

TCGAvisualize_starburst

Create starburst plot

Description

Create Starburst plot for comparison of DNA methylation and gene expression. The log10 (FDRcorrected P value) is plotted for beta value for DNA methylation (x axis) and gene expression (y axis) for each gene.

The black dashed line shows the FDR-adjusted P value of 0.01.

You can set names to TRUE to get the names of the significant genes.

Candidate biologically significant genes will be circled in the plot.

Candidate biologically significant are the genes that respect the expression (logFC.cut), DNA methylation (diffmean.cut) and significance thresholds (exp.p.cut, met.p.cut)

Usage

```
TCGAvisualize_starburst(met, exp, group1 = NULL, group2 = NULL,
exp.p.cut = 0.01, met.p.cut = 0.01, diffmean.cut = 0,
logFC.cut = 0, met.platform, genome, names = FALSE,
names.fill = TRUE, filename = "starburst.pdf", return.plot = FALSE,
ylab = expression(atop("Gene Expression", paste(Log[10],
" (FDR corrected P values)"))),
xlab = expression(atop("DNA Methylation", paste(Log[10],
" (FDR corrected P values)"))), title = "Starburst Plot",
legend = "DNA Methylation/Expression Relation", color = NULL,
label = c("Not Significant", "Up regulated & Hypo methylated",
"Down regulated & Hypo methylated", "hypo methylated",
"hyper methylated", "Up regulated", "Down regulated & Hyper methylated",
"Up regulated & Hyper methylated", "Down regulated & Hyper methylated"),
xlim = NULL, ylim = NULL, height = 10, width = 20, dpi = 600)
```

met	A SummarizedExperiment with methylation data obtained from the TCGAPre- pare or Data frame from DMR_results file. Expected colData columns: diffmean, p.value.adj and p.value Execute volcanoPlot function in order to obtain these values for the object.
exp	Object obtained by DEArnaSEQ function
group1	The name of the group 1 Obs: Column p.value.adj.group1.group2 should exist
group2	The name of the group 2. Obs: Column p.value.adj.group1.group2 should exist
exp.p.cut	expression p value cut-off
met.p.cut	methylation p value cut-off
diffmean.cut	If set, the probes with diffmean higher than methylation cut-off will be high- lighted in the plot. And the data frame return will be subseted.
logFC.cut	If set, the probes with expression fold change higher than methylation cut-off will be highlighted in the plot. And the data frame return will be subseted.

met.platform	DNA methylation platform ("27K", "450K" or "EPIC")
genome	Genome of reference ("hg38" or "hg19") used to identify nearest probes TSS
names	Add the names of the significant genes? Default: FALSE
names.fill	Names should be filled in a color box? Default: TRUE
filename	The filename of the file (it can be pdf, svg, png, etc)
return.plot	If true only plot object will be returned (pdf will not be created)
ylab	y axis text
xlab	x axis text
title	main title
legend	legend title
color	vector of colors to be used in graph
label	vector of labels to be used in graph
xlim	x limits to cut image
ylim	y limits to cut image
height	Figure height
width	Figure width
dpi	Figure dpi

Details

Input: data with gene expression/methylation expression Output: starburst plot

Value

Save a starburst plot

Examples

```
## Not run:
library(SummarizedExperiment)
met <- TCGAbiolinks:::getMetPlatInfo(genome = "hg38",platform = "27K")</pre>
values(met) <- NULL</pre>
met$probeID <- names(met)</pre>
nrows <- length(met); ncols <- 20</pre>
counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows)</pre>
colData <- S4Vectors::DataFrame(Treatment=rep(c("ChIP", "Input"), 5),</pre>
                     row.names=LETTERS[1:20],
                      group=rep(c("group1","group2"),c(10,10)))
met <- SummarizedExperiment::SummarizedExperiment(</pre>
          assays=S4Vectors::SimpleList(counts=counts),
          rowRanges=met,
          colData=colData)
rowRanges(met)$diffmean.g1.g2 <- c(runif(nrows, -0.1, 0.1))</pre>
rowRanges(met)$diffmean.g2.g1 <- -1*(rowRanges(met)$diffmean.g1.g2)</pre>
rowRanges(met)$p.value.g1.g2 <- c(runif(nrows, 0, 1))</pre>
rowRanges(met)$p.value.adj.g1.g2 <- c(runif(nrows, 0, 1))</pre>
exp <- TCGAbiolinks:::get.GRCh.bioMart("hg38")</pre>
exp$logFC <- runif(nrow(exp), -5, 5)</pre>
exp$FDR <- runif(nrow(exp), 0.01, 1)</pre>
```

```
result <- TCGAvisualize_starburst(met,</pre>
                                   exp.
                                   exp.p.cut = 0.05,
                                   met.p.cut = 0.05,
                                   logFC.cut = 2,
                                   group1 = "g1"
                                   group2 = "g2",
                                   genome = "hg38",
                                   met.platform = "27K",
                                   diffmean.cut = 0.0,
                                   names = TRUE)
# It can also receive a data frame as input
result <- TCGAvisualize_starburst(SummarizedExperiment::values(met),</pre>
                                   exp,
                                   exp.p.cut = 0.05,
                                   met.p.cut = 0.05,
                                   logFC.cut = 2,
                                   group1 = "g1",
                                   group2 = "g2",
                                   genome = "hg38",
                                   met.platform = "27K",
                                   diffmean.cut = 0.0,
                                   names = TRUE)
## End(Not run)
```

TCGAvisualize_SurvivalCoxNET

Survival analysis with univariate Cox regression package (dnet)

Description

TCGAvisualize_SurvivalCoxNET can help an user to identify a group of survival genes that are significant from univariate Kaplan Meier Analysis and also for Cox Regression. It shows in the end a network build with community of genes with similar range of pvalues from Cox regression (same color) and that interaction among those genes is already validated in literatures using the STRING database (version 9.1). TCGAvisualize_SurvivalCoxNET perform survival analysis with univariate Cox regression and package (dnet) using following functions wrapping from these packages:

- 1. survival::coxph
- 2. igraph::subgraph.edges
- 3. igraph::layout.fruchterman.reingold
- 4. igraph::spinglass.community
- 5. igraph::communities
- 6. dnet::dRDataLoader
- 7. dnet::dNetInduce
- 8. dnet::dNetPipeline
- 9. dnet::visNet
- 10. dnet::dCommSignif

Usage

```
TCGAvisualize_SurvivalCoxNET(clinical_patient, dataGE, Genelist,
  org.Hs.string, scoreConfidence = 700,
  titlePlot = "TCGAvisualize_SurvivalCoxNET Example")
```

Arguments

clinical_patient

	is a data.frame using function 'clinic' with information related to barcode / samples such as bcr_patient_barcode, days_to_death , days_to_last_followup , vital_status, etc
dataGE	is a matrix of Gene expression (genes in rows, samples in cols) from TCGAprepare
Genelist	is a list of gene symbols where perform survival KM.
org.Hs.string	an igraph object that contains a functional protein association network in human. The network is extracted from the STRING database (version 10).
scoreConfidence	
	restrict to those edges with high confidence (eg. score>=700)
titlePlot	is the title to show in the final plot.

Details

TCGAvisualize_SurvivalCoxNET allow user to perform the complete workflow using coxph and dnet package related to survival analysis with an identification of gene-active networks from high-throughput omics data using gene expression and clinical data.

- 1. Cox regression survival analysis to obtain hazard ratio (HR) and pvaules
- 2. fit a Cox proportional hazards model and ANOVA (Chisq test)
- 3. Network comunites
- 4. An igraph object that contains a functional protein association network in human. The network is extracted from the STRING database (version 9.1). Only those associations with medium confidence (score>=400) are retained.
- 5. restrict to those edges with high confidence (score>=700)
- 6. extract network that only contains genes in pvals
- 7. Identification of gene-active network
- 8. visualisation of the gene-active network itself
- 9. the layout of the network visualisation (fixed in different visuals)
- 10. color nodes according to communities (identified via a spin-glass model and simulated annealing)
- 11. node sizes according to degrees
- 12. highlight different communities
- 13. visualise the subnetwork

Value

net IGRAPH with related Cox survival genes in community (same pval and color) and with interactions from STRING database. TCGAVisualize_volcano Creates a volcano plot for DNA methylation or expression

Description

Creates a volcano plot from the expression and methylation analysis.

Usage

```
TCGAVisualize_volcano(x, y, filename = "volcano.pdf",
    ylab = expression(paste(-Log[10], " (FDR corrected -P values)")),
    xlab = NULL, title = "Volcano plot", legend = NULL, label = NULL,
    xlim = NULL, ylim = NULL, color = c("black", "red", "green"),
    names = NULL, names.fill = TRUE, show.names = "significant",
    x.cut = 0, y.cut = 0.01, height = 5, width = 10,
    highlight = NULL, highlight.color = "orange", names.size = 4,
    dpi = 300)
```

х	x-axis data
У	y-axis data
filename	Filename. Default: volcano.pdf, volcano.svg, volcano.png
ylab	y axis text
xlab	x axis text
title	main title. If not specified it will be "Volcano plot (group1 vs group2)
legend	Legend title
label	vector of labels to be used in the figure. Example: c("Not Significant","Hypermethylated in group1", "Hypomethylated in group1"))#'
xlim	x limits to cut image
ylim	y limits to cut image
color	vector of colors to be used in graph
names	Names to be ploted if significant. Should be the same size of x and y
names.fill	Names should be filled in a color box? Default: TRUE
show.names	What names will be showd? Possibilities: "both", "significant", "highlighted"
x.cut	x-axis threshold. Default: 0.0 If you give only one number (e.g. 0.2) the cut- offs will be -0.2 and 0.2. Or you can give different cutt-ofs as a vector (e.g. $c(-0.3,0.4)$)
y.cut	p-values threshold.
height	Figure height
width	Figure width
highlight	List of genes/probes to be highlighted. It should be in the names argument.
highlight.color	
	Color of the points highlighted
names.size	Size of the names text
dpi	Figure dpi

Details

Creates a volcano plot from the expression and methylation analysis. Please see the vignette for more information Observation: This function automatically is called by TCGAanalyse_DMR

Value

Saves the volcano plot in the current folder

Examples

TCGA_MolecularSubtype Retrieve molecular subtypes for given TCGA barcodes

Description

TCGA_MolecularSubtype Retrieve molecular subtypes from TCGA consortium for a given set of barcodes

Usage

```
TCGA_MolecularSubtype(barcodes)
```

Arguments

```
barcodes is a vector of TCGA barcodes
```

Value

List with \$subtypes attribute as a dataframe with barcodes, samples, subtypes, and colors. The \$filtered attribute is returned as filtered samples with no subtype info

Examples

```
TCGA_MolecularSubtype("TCGA-60-2721-01A-01R-0851-07")
```

Tumor.purity

Description

A dataset containing the Sample Ids from TCGA tumor purity measured according to 4 estimates attributes of 9364 tumor patients

Usage

Tumor.purity

Format

A data frame with 9364 rows and 7 variables:

Sample.ID Sample ID from TCGA barcodes, character string

Cancer.type Cancer type, character string

- ESTIMATE uses gene expression profiles of 141 immune genes and 141 stromal genes, 0-1 value
- **ABSOLUTE** uses somatic copy-number data (estimations were available for only 11 cancer types), 0-1 value
- **LUMP** (leukocytes unmethylation for purity), which averages 44 non-methylated immune-specific CpG sites, 0-1value
- **IHC** as estimated by image analysis of haematoxylin and eosin stain slides produced by the Nationwide Childrens Hospital Biospecimen Core Resource, 0-1 value
- **CPE** derived consensus measurement as the median purity level after normalizing levels from all methods to give them equal means and s.ds, 0-1 value ...

Source

https://images.nature.com/original/nature-assets/ncomms/2015/151204/ncomms9971/ extref/ncomms9971-s2.xlsx

UseRaw_afterFilter	Use raw count from the DataPrep object which genes are removed by
	normalization and filtering steps.

Description

function to keep raw counts after filtering and/or normalizing.

Usage

```
UseRaw_afterFilter(DataPrep, DataFilt)
```

Arguments

DataPrep	DataPrep object returned by TCGAanalyze_Preprocessing()
DataFilt	Filtered data frame containing samples in columns and genes in rows after nor- malization and/or filtering steps

Value

Filtered return object similar to DataPrep with genes removed after normalization and filtering process.

Examples

```
## Not run:
    dataPrep_raw <- UseRaw_afterFilter(dataPrep, dataFilt)</pre>
```

End(Not run)

Index

*Topic datasets
 TabSubtypesCol_merged, 20
 Tumor.purity, 56
colDataPrepare, 3

gaiaCNVplot, 4 GDCdownload, 5, 37 GDCprepare, 6 GDCprepare_clinic, 7 GDCquery, 8, 37 GDCquery_ATAC_seq, 10 GDCquery_clinic, 11 GDCquery_Maf, 11 get.GRCh.bioMart,12 get_IDs, 18 getAdjacencyBiogrid, 12 getDataCategorySummary, 13 getGDCInfo, 14 getGDCprojects, 14 getGistic, 15 getManifest, 15 getResults, 16 getSampleFilesSummary, 16 getTSS, 17 ggsurvplot, 34

isServeOK, 18

matchedMetExp, 19

PanCancerAtlas_subtypes, 19

TabSubtypesCol_merged, 20 TCGA_MolecularSubtype, 55 TCGAanalyze_analyseGRN, 20 TCGAanalyze_Clustering, 21 TCGAanalyze_DEA, 21 TCGAanalyze_DEA_Affy, 23 TCGAanalyze_DMR, 24 TCGAanalyze_EA, 26 TCGAanalyze_EAcomplete, 27 TCGAanalyze_Filtering, 28 TCGAanalyze_LevelTab, 29 TCGAanalyze_networkInference, 30 TCGAanalyze_Normalization, 30 TCGAanalyze_Pathview, 31 TCGAanalyze_Preprocessing, 32 TCGAanalyze_Stemness, 32 TCGAanalyze_survival, 33 TCGAanalyze_SurvivalKM, 34 TCGAbatch_Correction, 36 TCGAbiolinks, 37 TCGAbiolinks-package (TCGAbiolinks), 37 TCGAprepare_Affy, 37 TCGAquery_MatchedCoupledSampleTypes, 38 TCGAquery_recount2, 38 TCGAquery_SampleTypes, 39 TCGAquery_subtype, 40 TCGAtumor_purity, 40 TCGAvisualize_BarPlot, 41 TCGAvisualize_EAbarplot, 42 TCGAvisualize_Heatmap, 43 TCGAvisualize_meanMethylation, 45 TCGAvisualize_oncoprint, 47 TCGAvisualize_PCA, 49 TCGAvisualize_starburst, 50 TCGAvisualize_SurvivalCoxNET, 52 TCGAVisualize_volcano, 54 Tumor.purity, 56

UseRaw_afterFilter, 56