Package ‘HiCBricks’

October 16, 2019
Title Framework for Storing and Accessing Hi-C Data Through HDF Files
Version 1.2.0

Description A flexible framework for storing and accessing high-resolution Hi-
C data through HDF files. HiCBricks allows import of Hi-C data through various for-
mats such as the 2D matrix format or a generalized n-column table formats. In terms of ac-
cess, HiCBricks offers functions to retrieve values from genomic loci separated by a certain dis-
tance, or the ability to fetch matrix subsets us-
ing word alike terms. HiCBricks will at a later point offer the ability to fetch multiple matrix sub-
sets using fewer calls. It offers the capacity to store GenomicRanges that may be associ-
ated to a particular Hi-C experiment, to do basic ranges overlap (any, within) with the Hi-C ex-
periment associated Ranges object and also to store any metadata that users may think to be rele-
vant for their Hi-C experiment. Finally, you can do TAD calls with LSD and cre-
ate pretty heatmaps.

Date 2019-02-03

Type Package

Maintainer Koustav Pal <koustav.pal@ifom.eu>
License MIT + file LICENSE

Depends R (>=3.5), utils, curl, rhdf5, R6, grid

Imports ggplot2, viridis, RColorBrewer, scales, reshape2, stringr,
data.table, GenomelnfoDb, GenomicRanges, stats, IRanges,
grDevices, S4Vectors, digest

Suggests BiocStyle, knitr, rmarkdown
VignetteBuilder knitr

Encoding UTF-8

Roxygen list(markdown = TRUE)
RoxygenNote 6.1.1

biocViews Datalmport, Infrastructure, Software, Technology,
Sequencing, HiC

git_url https://git.bioconductor.org/packages/HiCBricks
git_branch RELEASE_3_9

git_last commit e2a588c

git_last_commit_date 2019-05-02

Date/Publication 2019-10-15

Author Koustav Pal [aut, cre],
Carmen Livi [ctb],
Ilario Tagliaferri [ctb]

2 Brick_add_ranges

R topics documented:
Brick_add_ranges e 2
Brick_fetch_range_index L 4
Brick_fetch_row_vector e e 5
Brick_get_bintable L 6
Brick_get_chrominfo 7
Brick_get matrix e 7
Brick_get_matrix_mcols e e 8
Brick_get_matrix_within_coords L L o 9
Brick_get_ranges e 10
Brick_get_values_by_distance L o 11
Brick_get_vector_values 12
Brick_list_matrices e e e e e e 13
Brick_list_matrix_mcols e e 14
Brick_list_mcool_normalisations e 14
Brick_list_mcool_resolutions 15
Brick_list_rangekeys 15
Brick_list_ranges_mcols 16
Brick_load_cis_matrix_till_distance 16
Brick_load_data_from_mcool 18
Brick_load_matrix e 19
Brick_local_score_differentiator 20
Brick_make_ranges 22
Brick_matrix_dimensions e e 23
Brick_matrix_exists e e 24
Brick_matrix_filename e 25
Brick_matrix_isdone e e e 25
Brick_matrix_issparse e e 26
Brick_matrix_maxdiSt e e e 27
Brick_matrix_minmax e e e e e e e e e 27
Brick_mcool_normalisation_exists e e 28
Brick_rangekey_exists 29
Brick_return_region_position Lo oL 30
Brick_vizart_plot_heatmap L 31
CreateBrick e 34
CreateBrick_from_mcool e 36
HiCBricks e e e e 38

Index 40

Brick_add_ranges Store a ranges object in the Brick store.
Description
Brick_add_ranges loads a GRanges object into the Brick store.
Usage
Brick_add_ranges(Brick, ranges, rangekey, remove.existing = TRUE)

Brick_add_ranges
Arguments
Brick Required. A string specifying the path to the Brick store created with Create-
Brick.
ranges Required. An object of class ranges specifying the ranges to store in the Brick.
rangekey Required. The name to use for the ranges within the Brick store.

remove.existing

Details

Optional. TRUE Will remove an existing Ranges by the same name and intro-
duce the new one.

With this function it is possible to associate other ranges objects with the Brick store. If metadata
columns are present, the are also loaded into the Brick store. Although not explicitly asked for, the
metadata columns should not be of type list as this may create complications down the line. We
ask for ranges objects, so if the same ranges object is later retrieved two additional columns will be
present. These are the strand and width columns that are obtained when a ranges is converted into
a data.frame. Users can ignore these columns.

Value

Returns TRUE if completed successfully.

Examples

Bintable.path <- system.file("extdata"”,
"Bintable_40kb.txt", package = "HiCBricks")

Chromosomes <-

"chr19”

Path_to_cached_file <- CreateBrick(ChromNames = Chromosomes,
BinTable = Bintable.path, bin.delim = " ",

OQutput.Filename

= file.path(tempdir(),"test.hdf"), exec = "cat",

remove.existing = TRUE)

Chrom <- c("chrsS"”,"chrS","chrS”,"chrS"”,"chrs")

Start <- c(10000,20000,40000,50000,60000)

End <- c(10001,20001,40001,50001,60001)

Test_ranges <- Brick_make_ranges(Chrom = Chrom, Start = Start, End = End)
Brick_add_ranges(Brick = Path_to_cached_file, ranges = Test_ranges,
rangekey = "test_ranges")

Not run:

Brick.file <- system.file("extdata”, "test.hdf"”, package = "HiCBricks")
Chrom <- c("chrsS"”,"chrS","chrS”,"chrS"”,"chrs")

Start <- c(10000,20000,40000,50000,60000)

End <- c(10001,20001,40001,50001,60001)

Test_ranges <- Brick_make_ranges(Chrom = Chrom, Start = Start, End = End)

Brick_add_ranges(Brick = Brick.file, ranges = Test_ranges,
rangekey = "test_ranges”, remove.existing = TRUE)

End(Not run)

4 Brick_fetch_range_index

Brick_fetch_range_index
Returns the position of the supplied ranges in the binning table asso-
ciated to the Hi-C experiment.

Description

Brick_fetch_range_index constructs a ranges object using Brick_make_ranges, creates an over-
lap operation using GenomicRanges: : findOverlaps, where the constructed ranges is the subject
and the Hi-C experiment associated binning table is the query. The return of this object is a list of
ranges with their corresponding indices in the binning table.

Usage

Brick_fetch_range_index(Brick, chr, start, end, names = NULL,
type = "any")

Arguments
Brick Required. A string specifying the path to the Brick store created with Create-
Brick.
chr Required. A character vector of length N specifying the chromosomes to select
from the ranges.
start Required. A numeric vector of length N specifying the start positions in the
chromosome
end Required. A numeric vector of length N specifying the end positions in the
chromosome
names Optional. A character vector of length N specifying the names of the chromo-
somes. If absent, names will take the form chr:start:end.
type Optional. Default any Type of overlap operation to do. It should be one of two,
any or within. any considers any overlap (atleast 1 bp) between the provided
ranges and the binning table.
Value

Returns a GenomicRanges object of same length as the chr, start, end vectors provided. The object is
returned with an additional column, Indexes. Indexes is a column of class IRanges: : IntegerList,
which is part of the larger IRanges: : AtomicList superset. This "Indexes" column can be accessed
like a normal GRanges column with the additional list accessor [[]] in place of the normal vector
accessor [].

Examples

Chrom <- c("chr19”,"chr19")

Start <- c(1,40000)

End <- c(1000000,2000000)

Brick.file <- system.file("extdata”, "test.hdf"”, package = "HiCBricks")
Test_Run <- Brick_fetch_range_index(Brick = Brick.file, chr = Chrom,
start = Start, end = End)

Test_Run$Indexes[[1]]

Brick_fetch_row_vector 5

Brick_fetch_row_vector
Return row or col vectors.

Description

Brick_fetch_row_vector will fetch any given rows from a matrix. If required, the rows can be
subsetted on the columns and transformations applied. Vice versa is also true, wherein columns can
be retrieved and rows subsetted.

Usage
Brick_fetch_row_vector(Brick, chri1, chr2, by = c("position”, "ranges"),
vector, regions = NULL, force = FALSE, flip = FALSE, FUN = NULL)
Arguments
Brick Required. A string specifying the path to the Brick store created with Create-
Brick.
chr1 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix
chr2 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix
by Required. One of two possible values, "position" or "ranges". A one-dimensional
numeric vector of length 1 specifying one of either position or ranges.
vector Required. If by is position, a 1 dimensional numeric vector containing the rows
to be extracted is expected. If by is ranges, a 1 dimensional character vector
containing the names of the bintable is expected. This function does not do
overlaps. Rather it returns any given row or column based on their position or
names in the bintable.
regions Optional. Default NULL A character vector of length vector is expected. Each
element must be of the form chr:start:end. These regions will be converted back
to their original positions and the corresponding rows will be subsetted by the
corresponding region element. If the length of regions does not match, the subset
operation will not be done and all elements from the rows will be returned.
force Optional. Default FALSE If true, will force the retrieval operation when matrix
contains loaded data until a certain distance.
flip Optional. Default FALSE If present, will flip everything. This is equivalent to
selecting columns, and subsetting on the rows.
FUN Optional. Default NULL If provided a data transformation with FUN will be
applied before the matrix is returned.
Value

Returns a list of length vector. Each list element will be of length chr2 binned length or if regions
is present the corresponding region length. This may differ based on the operations with FUN.

6 Brick_get_bintable

See Also

Brick_get_matrix_within_coords to get matrix by using matrix genomic coordinates, Brick_get_values_by_dista
to get values separated at a certain distance, Brick_fetch_row_vector to get values in a certain
row/col and subset them, Brick_get_matrix to get matrix by using matrix coordinates.

Examples

Coordinate <- c("chr19:1:40000","chr19:40001:80000")

Brick.file <- system.file("extdata”, "test.hdf"”, package = "HiCBricks")
Test_Run <- Brick_fetch_row_vector(Brick = Brick.file,

chrl = "chr19”, chr2 = "chr19”, by = "ranges”, vector = Coordinate,
regions = c("chr19:1:1000000", "chr19:40001:2000000"))

Brick_get_bintable Returns the binning table associated to the Hi-C experiment.

Description

Brick_get_bintable makes a call to Brick_get_ranges to retrieve the binning table of the asso-
ciated Brick store. This is equivalent to passing the argument rangekey = "bintable" in Brick_get_ranges

Usage

Brick_get_bintable(Brick, chr = NULL)

Arguments
Brick Required. A string specifying the path to the Brick store created with Create-
Brick.
chr Optional. A chr string specifying the chromosome to select from the ranges.
Value

Returns a GRanges object containing the binning table associated to the Brick store.

See Also

Brick_get_ranges

Examples

Brick.file <- system.file("extdata”, "test.hdf"”, package = "HiCBricks")
Brick_get_bintable(Brick = Brick.file)

Brick_get_chrominfo 7

Brick_get_chrominfo Get the chrominfo for the Hi-C experiment.

Description

Brick_get_chrominfo fetches the associated chrominfo table for the Brick it is associated to.

Usage

Brick_get_chrominfo(Brick)

Arguments
Brick Required. A string specifying the path to the Brick store created with Create-
Brick.
Value

A three column data.frame containing chromosomes, nrows and length.
chromosomes corresponds to all chromosomes in the provided bintable.

nrows corresponds to the number of entries in the bintable or dimension for that chromosome in a
Hi-C matrix.

Length is the total bp length of the same chromosome (max value for that chromosome in the
bintable).

Examples

Brick.file = system.file("extdata"”, "test.hdf"”, package = "HiCBricks")
Brick_get_chrominfo(Brick = Brick.file)

Brick_get_matrix Return a matrix subset.

Description

Brick_get_matrix will fetch a matrix subset between row values ranging from min(x.vector) to
max(x.vector) and column values ranging from min(x.vector) to max(x.vector)

Usage

Brick_get_matrix(Brick, chrl, chr2, x.vector, y.vector, force = FALSE,
FUN = NULL)

8 Brick_get_matrix_mcols

Arguments
Brick Required. A string specifying the path to the Brick store created with Create-
Brick.
chri1 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix
chr2 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix
X.vector Required. A one-dimensional numeric vector specifying the rows to subset.
y.vector Required. A one-dimensional numeric vector specifying the columns to subset.
force Optional. Default FALSE If true, will force the retrieval operation when matrix
contains loaded data until a certain distance.
FUN Optional. If provided a data transformation with FUN will be applied before
the matrix is returned.
Value

Returns a matrix of dimension x.vector length by y.vector length. This may differ based on the
operations with FUN.

See Also

Brick_get_matrix_within_coords to get matrix by using matrix genomic coordinates, Brick_get_values_by_dista
to get values separated at a certain distance, Brick_fetch_row_vector to getvalues in a certain
row/col and subset them, Brick_get_vector_values to get values using matrix coordinates.

Examples

Brick.file <- system.file("extdata”, "test.hdf"”, package = "HiCBricks")
Brick_get_matrix(Brick = Brick.file, chr1l = "chr19”, chr2 = "chr19”,
x.vector = c(1:10), y.vector = c(1:10))

Brick_get_matrix_mcols
Get the matrix metadata columns in the Brick store.

Description

Brick_get_matrix_mcols will get the specified matrix metadata column.

Usage

Brick_get_matrix_mcols(Brick, chri1, chr2, what)

Brick_get_matrix_within_coords 9

Arguments

Brick

chri

chr2

what

Value

Required. A string specifying the path to the Brick store created with Create-
Brick.

Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix

Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix

Required A character vector of length 1 specifying the matrix metric to retrieve

Returns a 1xN dimensional vector containing the specified matrix metric

Examples

Brick.file <- system.file("extdata”, "test.hdf"”, package = "HiCBricks")

Brick_get_matrix_|

mcols(Brick = Brick.file, chrl = "chr19”, chr2 = "chr19”,

what = "bin.coverage")

Brick_get_matrix_

within_coords
Return a matrix subset between two regions.

Description

Brick_get_matrix_within_coords will fetch a matrix subset after creating an overlap opera-
tion between both regions and the bintable associated to the Brick store. This function calls
Brick_get_matrix.

Usage

Brick_get_matrix_within_coords(Brick, x.coords, y.coords, force = FALSE,

FUN = NULL)

Arguments

Brick

X.coords

y.coords

force

FUN

Required. A string specifying the path to the Brick store created with Create-
Brick.

Required. A string specifying the region to subset on the rows. It takes the form
chr:start:end. An overlap operation with the associated bintable will be done to
identify the bins to subset on the row

Required. A string specifying the region to subset on the rows. It takes the form
chr:start:end. An overlap operation with the associated bintable will be done to
identify the bins to subset on the column

Optional. Default FALSE If true, will force the retrieval operation when matrix
contains loaded data until a certain distance.

Optional. If provided a data transformation with FUN will be applied before
the matrix is returned.

10 Brick_get_ranges

Value

Returns a matrix of dimension x.coords binned length by y.coords binned length. This may differ
based on FUN.

See Also

Brick_get_matrix to get matrix by using matrix coordinates, Brick_get_values_by_distance
to get values separated at a certain distance, Brick_fetch_row_vector to get values in a certain
row/col and subset them, Brick_get_vector_values to get values using matrix coordinates.

Examples

Brick.file <- system.file("extdata”, "test.hdf"”, package = "HiCBricks")
Brick_get_matrix_within_coords(Brick = Brick.file,

x.coords = "chr19:40000:2000000",

y.coords = "chr19:40000:2000000")

Brick_get_matrix_within_coords(Brick = Brick.file,
x.coords = "chr19:40000:2000000",

y.coords = "chr19:40000:2000000",

FUN = mean)

Brick_get_matrix_within_coords(Brick = Brick.file,
x.coords = "chr19:40000:2000000",

y.coords = "chr19:40000:2000000",

FUN = median)

Brick_get_ranges Fetch the ranges associated to a rangekey or chromosome.

Description
Brick_get_ranges will get a ranges object if present in the Brick store and return a GRanges
object.

Usage
Brick_get_ranges(Brick, chr = NULL, rangekey)

Arguments
Brick Required. A string specifying the path to the Brick store created with Create-
Brick.
chr Optional. A chr string specifying the chromosome to select from the ranges.
rangekey Required. A string specifying the name of the ranges.
Details

If a rangekey is present, the ranges will be retrieve and a GRanges constructed. Metadata columns

will also be added. If these are rangekeys other than "Bintable", and had been added using Brick_add_ranges
the width and Strand columns may appear as metadata columns. These will most likely be artifacts

from converting the original ranges object to a data.frame.

Brick_get_values_by_distance 11

Value

Returns a GRanges object with the associated metadata columns that may have been present in the
Ranges object.

Examples

Brick.file <- system.file("extdata”, "test.hdf"”, package = "HiCBricks")
Brick_get_ranges(Brick = Brick.file, chr = "chr19"”, rangekey = "Bintable")

Brick_get_values_by_distance
Return values separated by a certain distance.

Description
Brick_get_values_by_distance can fetch values with or without transformation or subsetted by
a certain distance. Please note, this module is not an iterable module.

Usage

Brick_get_values_by_distance(Brick, chr, distance,
constrain.region = NULL, batch.size = 500, FUN = NULL)

Arguments
Brick Required. A string specifying the path to the Brick store created with Create-
Brick.
chr Required. A string specifying the chromosome for the cis Hi-C matrix from
which values will be retrieved at a certain distance.
distance Required. 0 based. Fetch values separated by distance.

constrain.region
Optional. A character vector of length 1 with the form chr:start:end specifying
the region for which the distance values must be retrieved.

batch.size Optional. Default 500 A numeric vector of length 1 specifying the size of the
chunk to retrieve for diagonal selection.

FUN Optional. If provided a data transformation with FUN will be applied before
values are returned.
Value
Returns a numeric vector of length N depending on the presence of constrain.region, FUN and
distance from the main diagonal.
See Also

Brick_get_matrix_within_coords to get matrix by using matrix coordinates, Brick_fetch_row_vector
to get values in a certain row/col and subset them, Brick_get_vector_values to get values using
matrix coordinates, Brick_get_matrix to get matrix by using matrix coordinates.

12 Brick_get_vector_values

Examples

Brick.file <- system.file("extdata”, "test.hdf"”, package = "HiCBricks")
Brick_get_values_by_distance(Brick = Brick.file, chr = "chr19”,
distance = 0)

Failsafe_median <- function(x){
x[is.nan(x) | is.infinite(x) | is.na(x)] <- @
return(median(x))

}

Brick.file <- system.file("extdata”, "test.hdf"”, package = "HiCBricks")
Brick_get_values_by_distance(Brick = Brick.file, chr = "chr19”,
distance = 4, FUN = Failsafe_median)

Brick_get_vector_values
Return a N dimensional vector selection.

Description

Brick_get_vector_values is the base function being used by all other matrix retrieval functions.

Usage

Brick_get_vector_values(Brick, chrl, chr2, xaxis, yaxis, FUN = NULL,
force = FALSE)

Arguments

Brick Required. A string specifying the path to the Brick store created with Create-
Brick.

chr1 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix

chr2 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix

xaxis Required. A 1 dimensional vector containing the rows to retrieve. Gaps in this
vector may result in unexpected behaviour as the values which are considered
are min(xaxis) and max(xaxis) for retrieval.

yaxis Required. A 1 dimensional vector containing the columns to retrieve. Gaps in

this vector may result in unexpected behaviour as the values which are consid-
ered are min(yaxis) and max(yaxis) for retrieval.

FUN Optional. Default NULL If provided a data transformation with FUN will be
applied before the vector is returned.

force Optional. Default FALSE If true, will force the retrieval operation when matrix
contains loaded data until a certain distance.
Value

Returns a vector of length yaxis if length of xaxis is 1. Else returns a matrix of dimension xaxis
length by yaxis length.

Brick list matrices 13

Note

Whatever the length of xaxis or yaxis may be, the coordinates under consideration will range from
min(xaxis) to max(xaxis) on the rows or min(yaxis) to max(yaxis) on the columns.

Examples

Brick.file <- system.file("extdata”, "test.hdf"”, package = "HiCBricks")
Brick_get_vector_values(Brick = Brick.file, chr1 = "chri19”,
chr2 = "chr19”, xaxis = c(1:10), yaxis = c(1:10))

Brick_list_matrices List the matrix pairs present in the Brick store.

Description

Brick_list_matrices will list all chromosomal pair matrices from the Brick store, with their
associated filename, value range, done status and sparse

Usage

Brick_list_matrices(Brick)

Arguments
Brick Required. A string specifying the path to the Brick store created with Create-
Brick.
Value

Returns a data.frame object with columns chrl, chr2 corresponding to chromosome pairs, and the
associated attributes. filename corresponds to the name of the file that was loaded for the pair. min
and max specify the minimum and maximum values in the matrix, done is a logical value specifying
if a matrix has been loaded and sparsity specifies if a matrix is defined as a sparse matrix.

Examples

Brick.file <- system.file("extdata”, "test.hdf”, package = "HiCBricks")
Brick_list_matrices(Brick = Brick.file)

14 Brick list mcool normalisations

Brick_list_matrix_mcols
List the matrix metadata columns in the Brick store.

Description

Brick_get_matrix_mcols will list the names of all matrix metadata columns.

Usage

Brick_list_matrix_mcols(Brick, chr1l, chr2)

Arguments
Brick Required. A string specifying the path to the Brick store created with Create-
Brick.
chri Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix
chr2 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix
Value

Returns a vector containing the names of all matrix metadata columns

Examples

Brick.file <- system.file("extdata”, "test.hdf"”, package = "HiCBricks")
Brick_list_matrix_mcols(Brick = Brick.file, chr1l = "chr19"”, chr2 = "chr19")

Brick_list_mcool_normalisations
Get all available normalisations in an mcool file.

Description

Brick_list_mcool_normalisations lists the names available for accessing the various normal-
isation factors in an mcool file. Please note, this only lists the mapping of the columns to their
respective names. It does not check for the availability of that particular column in the mcool file

Usage

Brick_list_mcool_normalisations(names.only = FALSE)

Arguments

names.only Optional. Default FALSE A parameter specifying whether to list only the hu-
man readable names without their respective column names in the mcool file.

Brick list mcool_resolutions 15

Value

A named vector listing all possible normalisation factors.

Examples

Brick_list_mcool_normalisations()

Brick_list_mcool_resolutions
Get all available normalisations in an mcool file.

Description

Brick_list_mcool_resolutions lists all available resolutions in the mcool file.

Usage

Brick_list_mcool_resolutions(mcool)

Arguments

mcool Required. A parameter specifying the name of an mcool file

Value

A named vector listing all possible resolutions in the file.

Brick_list_rangekeys List the ranges tables stored within the Brick.

Description

Brick_list_rangekeys lists the names of all ranges associated to a Brick.

Usage

Brick_list_rangekeys(Brick)

Arguments
Brick Required. A string specifying the path to the Brick store created with Create-
Brick.
Value

A one dimensional character vector of length x specifying the names of all ranges currently present
in the file.

16 Brick_load_cis_matrix_till_distance

Examples

Brick.file <- system.file("extdata”, "test.hdf"”, package = "HiCBricks")
Brick_list_rangekeys(Brick = Brick.file)

Brick_list_ranges_mcols
Find out what metadata columns are associated to a ranges with a
certain name

Description
Brick_list_ranges_mcols will list the metadata columns of the specified ranges if it is present in
the Brick store.

Usage

Brick_list_ranges_mcols(Brick, rangekey = NULL)

Arguments
Brick Required. A string specifying the path to the Brick store created with Create-
Brick.
rangekey Optional. A string specifying the name of the ranges. If not present, the meta-
data columns of all ranges will be listed.
Value

if no metadata columns are present, NA. If metadata columns are present, a data.frame object con-
taining the name of the ranges and the associated metadata column name.

Examples

Brick.file <- system.file("extdata”, "test.hdf"”, package = "HiCBricks")
Brick_list_ranges_mcols(Brick = Brick.file, rangekey = "test_ranges”)

Brick_load_cis_matrix_till_distance
Load a NxN dimensional sub-distance cis matrix into the Brick store.

Description

Load a NxN dimensional sub-distance cis matrix into the Brick store.

Usage

n o n

Brick_load_cis_matrix_till_distance(Brick, chr, matrix.file, delim = ,
distance, remove.prior = FALSE, num.rows = 2000, is.sparse = FALSE,
sparsity.bins = 100)

Brick load cis_matrix_till distance 17

Arguments

Brick Required. A string specifying the path to the Brick store created with Create-
Brick.

chr Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows and cols of the matrix

matrix.file Required. A character vector of length 1 specifying the name of the file to load
as a matrix into the Brick store.

delim Optional. Default " " The delimiter of the matrix file.

distance Required. Default NULL. For very high-resolution matrices, read times can

become extremely slow and it does not make sense to load the entire matrix into
the data structure, as after a certain distance, the matrix will become extremely
sparse. This ensures that only interactions upto a certain distance from the main
diagonal will be loaded into the data structure.

remove.prior Optional. Default FALSE If a matrix was loaded before, it will not be replaced.
Use remove.prior to override and replace the existing matrix.

num. rows Optional. Default 2000 Number of rows to insert per write operation in the
HDF file.
is.sparse Optional. Default FALSE If true, designates the matrix as being a sparse matrix,

and computes the sparsity.index. The sparsity index measures the proportion of
non-zero rows or columns at a certain distance from the diagonal (100) in cis
interaction matrices.

sparsity.bins Optional. Default 100 With regards to computing the sparsity.index, this pa-
rameter decides the number of bins to scan from the diagonal.

Value

Returns TRUE if all went well.

Examples

Bintable.path <- system.file("extdata”,

"Bintable_40kb.txt", package = "HiCBricks")

Chromosomes <- "chr19”

Path_to_cached_file <- CreateBrick(ChromNames = Chromosomes,
BinTable = Bintable.path, bin.delim = " ",

Output.Filename = file.path(tempdir(),"test.hdf"), exec = "cat"”,
remove.existing = TRUE)

Test.mat <- matrix(runif(800%x800),nrow = 800, ncol = 800)

Matrix.file <- file.path(tempdir(),"Test_matrix.txt")

write.table(x = Test.mat, file = Matrix.file, sep = " ", quote = FALSE,
row.names = FALSE, col.names = FALSE)
Brick_load_cis_matrix_till_distance(Brick = Path_to_cached_file,

chr = "chr19”, matrix.file = Matrix.file, delim =" "

distance = 200, remove.prior = TRUE)

18 Brick_load_data_from_mcool

Brick_load_data_from_mcool
Load a NxN dimensional matrix into the Brick store from an mcool

file.

Description

Read an mcool contact matrix coming out of 4D nucleome projects into a Brick store.

Usage

Brick_load_data_from_mcool(Brick, mcool, chrl, chr2, binsize = NULL,
cooler.batch.size = 1e+06, matrix.chunk = 2000,
dont.look.for.chr2 = FALSE, remove.prior = FALSE,

norm.factor = "Iterative-Correction”)
Arguments
Brick Required. A string specifying the path to the Brick store created with Create-
Brick.
mcool Required. Path to an mcool file.
chri Required. A character vector of length 1 specifying the chromosome corre-

sponding to the rows of the matrix

chr2 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix

binsize Optional. The binsize to select from an mcool file.

cooler.batch.size
Optional. Default 1000000. The number of values to read per iteration through
amcool file.

matrix.chunk Optional. Default 2000. The nxn matrix square to fill per iteration in a mcool
file.

dont.look.for.chr2
Required. At startup, the function will attempt to search for the first occurence
of a chr2 contact value. This is done to avoid the reading of all chrl values for
every chunk processed. If chrl and chr2 are equivalent, consider setting it to
FALSE.

remove.prior Optional. Default FALSE If a matrix was loaded before, it will not be replaced.
Use remove.prior to override and replace the existing matrix.

norm.factor Optional. Default "Iterative-Correction". The normalization factor to use for
normalization from an mcool file. norm.factor currently accepts one of "Iterative-
Correction", "Knight-Ruitz", "Vanilla-coverage", "Vanilla-coverage-square-root"
and NULL. If NULL, the function will load only counts from the mcool file.

Value

Returns TRUE if all went well.

Brick load _matrix 19

See Also

CreateBrick_from_mcool to create matrix from an mcool file, Brick_list_mcool_resolutions
to list available resolutions in an mcool file, Brick_list_mcool_normalisations to list available
normalisation factors in the mcool file.

Examples

Not run:

require(curl)

curl_download(url = paste("https://data.4dnucleome.org/"”
"files-processed/4DNFI7JINCNFB/"
"@download/4DNFI7INCNFB.mcool"”,sep = ""),

destfile = file.path(tempdir(),"H1-hESC-HiC-4DNFI7JNCNFB.mcool"))

Output.brick <- file.path(tempdir(),
"H1-hESC-HiC-4DNFI7JNCNFB-10000-ICE-normalised-chril.brick")
mcool <- file.path(tempdir(),"H1-hESC-HiC-4DNFI7JNCNFB.mcool")

CreateBrick_from_mcool (Brick = OQutput.brick,
mcool = mcool,

binsize = 10000,

chrs = "chr1")

Brick_load_data_from_mcool(Brick = Output.brick, mcool = mcool,
chr1l = "chr1"”, chr2 = "chr1”, binsize = 10000,
cooler.batch.size = 1000000, matrix.chunk = 2000,
dont.look.for.chr2 = TRUE, remove.prior = TRUE,

norm.factor = "Iterative-Correction”)

End(Not run)

Brick_load_matrix Load a NxM dimensional matrix into the Brick store.

Description

Load a NxM dimensional matrix into the Brick store.

Usage
Brick_load_matrix(Brick, chri1, chr2, matrix.file, delim = " ", exec,
remove.prior = FALSE, num.rows = 2000, is.sparse = FALSE,
sparsity.bins = 100)
Arguments
Brick Required. A string specifying the path to the Brick store created with Create-

Brick.

20

chri

chr2

matrix.file

delim

exec

remove.prior

num. rows

is.sparse

sparsity.bins

Value

Brick local score_differentiator

Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix

Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix

Required. A character vector of length 1 specifying the name of the file to load
as a matrix into the Brick store.

Optional. Default " " The delimiter of the matrix file.

Required. A string specifying the program to use for reading the file. Use cat
for txt files, for bz2 files use bzcat and for gz files zcat.

Optional. Default FALSE If a matrix was loaded before, it will not be replaced.
Use remove.prior to override and replace the existing matrix.

Optional. Default 2000 Number of rows to read, in each chunk.

Optional. Default FALSE If true, designates the matrix as being a sparse matrix,
and computes the sparsity.index. The sparsity index measures the proportion of
non-zero rows or columns at a certain distance from the diagonal (100) in cis
interaction matrices.

Optional. Default 100 With regards to computing the sparsity.index, this pa-
rameter decides the number of bins to scan from the diagonal.

Returns TRUE if all went well.

Examples

Bintable.path <- system.file("extdata"”,
"Bintable_40kb.txt", package = "HiCBricks")

Chromosomes <-

"chr19”

Path_to_cached_file <- CreateBrick(ChromNames = Chromosomes,
BinTable = Bintable.path, bin.delim = " ",

Output.Filename

file.path(tempdir(),"test.hdf"), exec = "cat"”,

remove.existing = TRUE)

Test.mat <- matrix(runif(800%x800),nrow = 800, ncol = 800)

Matrix.file <- file.path(tempdir(),"Test_matrix.txt")

write.table(x = Test.mat, file = Matrix.file, sep = " ", quote = FALSE,
row.names = FALSE, col.names = FALSE)

Brick_load_matrix(Brick = Path_to_cached_file, chr1l = "chr19”,

chr2 = "chr19”, matrix.file = Matrix.file, delim = " ", exec = "cat",

remove.prior =

TRUE)

Brick_local_score_differentiator

Do TAD Calls with Local Score Differentiator on a Hi-C matrix

Brick local score_ditferentiator 21

Description

Local_score_differentiator calls topologically associated domains on Hi-C matrices. Local
score differentiator at the most fundamental level is a change point detector, which detects change
points in the directionality index using various thresholds defined on a local directionality index dis-
tributions. The directionality index (DI) is calculated as defined by Dixon et al., 2012 Nature. Next,
the difference of DI is calculated between neighbouring bins to get the change in DI distribution in
each bin. When a DI value goes from a highly negative value to a highly positive one as expected to
occur at domain boundaries, the ensuing DI difference distribution becomes a very flat distribution
interjected by very large peaks signifying regions where such a change may take place. We use two
difference vectors, one is the difference vector between a bin and its adjacent downstream bin and
another is the difference between a bin and its adjacent upstream bin. Using these vectors, and the
original directionality index, we define domain borders as outliers.

Usage
Brick_local_score_differentiator(Brick, chrs = NULL, min.sum = -1,
di.window = 200L, lookup.window = 200L, tukeys.constant = 1.5,
strict = TRUE, fill.gaps = TRUE, ignore.sparse = TRUE,
sparsity.threshold = 0.8, remove.empty = NULL, chunk.size = 500,
force.retrieve = TRUE)
Arguments
Brick Required. A string specifying the path to the Brick store created with Create-
Brick.
chrs Optional. Default NULL If present, only TAD calls for elements in chrs will be
done.
min.sum Optional. Default -1 Process bins in the matrix with row.sums greater than
min.sum.
di.window Optional. Default 200 Use di.window to define the directionality index.

lookup.window Optional. Default 200 Use lookup.window local window to call borders. At
smaller di.window values we recommend setting this to 2*di.window
tukeys.constant
Optional. Default 1.5 fukeys.constant*IQR (inter-quartile range) defines the
lower and upper fence values.

strict Optional. Default TRUE If TRUE, strict creates an additional filter on the di-
rectionality index requiring it to be either greater than or less than 0 on the right
tail or left tail respectively.

fill.gaps Optional. Default TRUE If TRUE, this will affect the TAD stiching process.
All Border starts are stiched to the next downstream border ends. Therefore, at
times border ends remain unassociated to a border start. These border ends are
stiched to the adjacent downstream bin from their upstream border end when
fill.gaps is true.
TADs inferred in this way will be annotated with two metadata columns in the
GRanges object. gap.fill will hold a value of 1 and level will hold a value 1.
TADs which were not filled in will hold a gap.fill value of 0 and a level value of
2.

ignore.sparse Optional. Default TRUE If TRUE, a matrix which has been defined as sparse
during the matrix loading process will be treated as a dense matrix. The spar-
sity.threshold filter will not be applied. Please note, that if a matrix is defined as
sparse and fill.gaps is TRUE, fill.gaps will be turned off.

22

Brick_make_ranges

sparsity.threshold
Optional. Default 0.8 Sparsity threshold relates to the sparsity index, which is
computed as the number of non-zero bins at a certain distance from the diagonal.
If a matrix is sparse and ignore.sparse is FALSE, bins which have a sparsity
index value below this threshold will be discarded from DI computation.

remove.empty Not implemented. After implementation, this will ensure that the presence of
centromeric regions is accounted for.

chunk.size Optional. Default 500 The size of the matrix chunk to process. This value
should be larger than 2x di.window.

force.retrieve Optional. Default TRUE If TRUE, this will force the retrieval of a matrix chunk
even when the retrieval includes interaction points which were not loaded into
a Brick store (larger chunks). Please note, that this does not mean that DI can
be computed at distances larger than max distance. Rather, this is meant to aid
faster computation.

Details

To define an outlier, fences are first defined. The fences are defined using tukeys.constant x inter-
quartile range of the directionality index. The upper fence used for detecting domain starts is
the 75th quartile + (IQR x tukeys.constant), while the lower fence is the 25th quartile - (IQR x
tukeys.constant). For domain starts the DI difference must be greater than or equal to the upper
fence, it must be greater than the DI and the DI must be a finite real value. If strict is TRUE, DI will
also be required to be greater than 0. Similarly, for domain ends the DI difference must be lower
than or equal to the lower fence, it must be lower than the DI and the DI must be a finite real value.
If strict is TRUE, DI will also be required to be lower than 0.

After defining outliers, each domain start will be associated to its nearest downstream domain end.
If fill. gaps is defined as TRUE and there are domain ends which remain unassociated to a domain
start, These domain ends will be associated to the bin adjacent to their nearest upstream domain
end. This associations will be marked by metadata columns, gap.fill= 1 and level = 1.

This function provides the capability to call very accurante TAD definitions in a very fast way.

Value

A ranges object containing domain definitions. The starts and ends of the ranges coincide with the
starts and ends of their contained bins from the bintable.

Examples

Brick.file <- system.file("extdata”, "test.hdf”, package = "HiCBricks")
TAD_ranges <- Brick_local_score_differentiator(Brick = Brick.file,

chrs = "chr19”, di.window = 10, lookup.window = 30, strict = TRUE,
fill.gaps = TRUE, chunk.size = 500)

Brick_make_ranges Creates a ranges object from provided vectors.

Description

Brick_make_ranges creates a GRanges object from the provided arguments

Brick matrix_dimensions

Usage

Brick_make_ranges(Chrom, Start, End, Strand = NULL, Names =

Arguments
Chrom Required. A 1 dimensional character vector of size N specifying the chromo-
somes in the ranges.
Start Required. A 1 dimensional numeric vector of size N specifying the start posi-
tions in the ranges.
End Required. A 1 dimensional numeric vector of size N specifying the end posi-
tions in the ranges. Must be less than Start.
Strand Optional. A 1 dimensional character vector of size N specifying the strand of
the ranges. If not provided, this will be set to the default *.
Names Optional. A 1 dimensional character vector of size N specifying the names of
the ranges. If not provided, this will be set to the default chr:start:end.
Value

A GenomicRanges object with the previous sort order being preserved

Examples

Chrom <- c("chrS"”,"chrS"”,"chrS","chrS","chrS")
Start <- c(10000,20000,40000,50000,60000)
End <- c(10001,20001,40001,50001,60001)

Test_ranges <- Brick_make_ranges(Chrom = Chrom, Start = Start, End = End)

Brick_matrix_dimensions
Return the dimensions of a matrix

Description

Return the dimensions of a matrix

Usage

Brick_matrix_dimensions(Brick, chrl, chr2)

Arguments
Brick Required. A string specifying the path to the Brick store created with Create-
Brick.
chri Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix
chr2 Required. A character vector of length 1 specifying the chromosome corre-

sponding to the columns of the matrix

24 Brick matrix_exists

Value

Returns the dimensions of a Hi-C matrix for any given chromosome pair.

Examples

Brick.file <- system.file("extdata”, "test.hdf"”, package = "HiCBricks")

Brick_matrix_dimensions(Brick = Brick.file, chr1l = "chr19”, chr2 = "chr19")
Brick_matrix_exists Check if a chromosome pair exists.
Description

Matrices are created when the bintable is loaded and the chromosome names are provided. If a user
is in doubt regarding whether a matrix is present or not it is useful to check this function. If the
Bintable did not contain a particular chromosome, any matrices for that chromosome would not be
present in the file

Usage

Brick_matrix_exists(Brick, chrl, chr2)

Arguments
Brick Required. A string specifying the path to the Brick store created with Create-
Brick.
chri Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix
chr2 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix
Value

Returns a logical vector of length 1, specifying if the matrix exists or not.

Examples

Brick.file <- system.file("extdata”, "test.hdf"”, package = "HiCBricks")
Brick_matrix_exists(Brick = Brick.file, chr1 = "chr19”, chr2 = "chr19")

Brick.file <- system.file("extdata”, "test.hdf"”, package = "HiCBricks")
Brick_matrix_exists(Brick = Brick.file, chr1 = "chr19”, chr2 = "chr20")

Brick matrix_filename 25

Brick_matrix_filename Return the filename of the loaded matrix

Description

Return the filename of the loaded matrix

Usage

Brick_matrix_filename(Brick, chri1, chr2)

Arguments
Brick Required. A string specifying the path to the Brick store created with Create-
Brick.
chri Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix
chr2 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix
Value

Returns a character vector of length 1 specifying the filename of the currently loaded matrix.

Examples

Brick.file <- system.file("extdata”, "test.hdf"”, package = "HiCBricks")
Brick_matrix_filename(Brick = Brick.file, chrl = "chr19”, chr2 = "chr19")

Brick_matrix_isdone Check if a matrix has been loaded for a chromosome pair.

Description

Check if a matrix has been loaded for a chromosome pair.

Usage

Brick_matrix_isdone(Brick, chrl, chr2)

Arguments
Brick Required. A string specifying the path to the Brick store created with Create-
Brick.
chri Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix
chr2 Required. A character vector of length 1 specifying the chromosome corre-

sponding to the columns of the matrix

26 Brick_matrix_issparse

Value

Returns a logical vector of length 1, specifying if a matrix has been loaded or not.

Examples

Brick.file <- system.file("extdata”, "test.hdf"”, package = "HiCBricks")
Brick_matrix_isdone(Brick = Brick.file, chr1 = "chr19”, chr2 = "chr19”)

Brick_matrix_issparse Check if a matrix for a chromosome pair is sparse.

Description

Check if a matrix for a chromosome pair is sparse.

Usage

Brick_matrix_issparse(Brick, chr1, chr2)

Arguments
Brick Required. A string specifying the path to the Brick store created with Create-
Brick.
chri Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix
chr2 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix
Value

Returns a logical vector of length 1, specifying if a matrix was loaded as a sparse matrix.

Examples

Brick.file <- system.file("extdata”, "test.hdf"”, package = "HiCBricks")
Brick_matrix_issparse(Brick = Brick.file, chrl = "chr19”, chr2 = "chr19")

Brick matrix_maxdist 27

Brick_matrix_maxdist Get the maximum loaded distance from the diagonal of any matrix.

Description
If values beyond a certain distance were not loaded in the matrix, this distance parameter is useful.
This package by default will check this param to make sure that it is not returning non-existent data.
Usage

Brick_matrix_maxdist(Brick, chr1, chr2)

Arguments
Brick Required. A string specifying the path to the Brick store created with Create-
Brick.
chri Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix
chr2 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix
Details

Brick_matrix_maxdist will return this parameter.

Value

Returns an integer vector of length 1, specifying the maximum distance loaded for that matrix

Examples

Brick.file <- system.file("extdata”, "test.hdf"”, package = "HiCBricks")
Brick_matrix_maxdist(Brick = Brick.file, chr1 = "chri19", chr2 = "chri19")

Brick_matrix_minmax Return the value range of the matrix

Description

Return the value range of the matrix

Usage

Brick_matrix_minmax(Brick, chri1, chr2)

28 Brick_mcool_normalisation_exists

Arguments
Brick Required. A string specifying the path to the Brick store created with Create-
Brick.
chri Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix
chr2 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix
Value

Returns a numeric vector of length 2, specifying the minimum and maximum finite real values in
the matrix.

Examples

Brick.file <- system.file("extdata”, "test.hdf"”, package = "HiCBricks")
Brick_matrix_minmax(Brick = Brick.file, chr1 = "chr19”, chr2 = "chr19”)

Brick_mcool_normalisation_exists
Check if a normalisation exists in an mcool file.

Description

Brick_mcool_normalisation_exists checks if a particular normalisation exists in an mcool file.

Usage

Brick_mcool_normalisation_exists(mcool, norm.factor = NULL,
binsize = NULL)

Arguments
mcool Required. Path to an mcool file.
norm. factor Required. The normalization factor to use for normalization from an mcool
file. norm.factor currently accepts one of "Iterative-Correction”, "Knight-Ruitz",
"Vanilla-coverage", "Vanilla-coverage-square-root".
binsize Optional. The binsize to select from an mcool file.
Value

A boolean vector of length 1

Brick_rangekey_exists 29

Examples

Not run:

require(curl)

curl_download(url = paste("https://data.4dnucleome.org/"
"files-processed/4DNFI7JINCNFB/"
"@download/4DNFI7INCNFB.mcool"”,sep = ""),

destfile = "./H1-hESC-HiC-4DNFI7JINCNFB.mcool")

mcool <- "./H1-hESC-HiC-4DNFI7JNCNFB.mcool”
Brick_mcool_normalisation_exists(mcool = mcool,
norm.factor = "Iterative-Correction”,

binsize = 10000)

End(Not run)

Brick_rangekey_exists Check to see if the Brick contains a ranges with a certain name.

Description

Brick_rangekey_exists checks for the presence of a particular ranges with a certain name.

Usage

Brick_rangekey_exists(Brick, rangekey)

Arguments
Brick Required. A string specifying the path to the Brick store created with Create-
Brick.
rangekey Required. A string specifying the name of the ranges to check for.
Value

A logical vector of length 1 with either TRUE or FALSE values.

Examples

Brick.file <- system.file("extdata”, "test.hdf"”, package = "HiCBricks")
Brick_rangekey_exists(Brick = Brick.file, rangekey = "Bintable")

30 Brick_return_region_position

Brick_return_region_position
Provides the overlapping position (within) from the bintable.

Description

Brick_return_region_position takes as input a human-readable coordinate format of the form
chr:start:end and outputs the overlapping bintable positions. This module does a "within" operation.
So only bins which overlap completely with the region will be returned. This is not an iterable
module, so the user has to make iterative calls to the module itself.

Usage

Brick_return_region_position(Brick, region)

Arguments
Brick Required. A string specifying the path to the Brick store created with Create-
Brick.
region Required. A character vector of length 1 specifying the region to overlap. It
must take the form chr:start:end.
Value

Returns a 1 dimensional vector containing the position of the overlapping regions in the bintable
associated the Brick store.

Design choice

This may seem to be a poor design choice at first glance, but I do not think this to be the case. By
not being iterable, this function circumvents the problem of how to structure the data for the user.
If one more element was accepted, the return object would have become a list, which increases
the data structure complexity significantly for users who are just starting out with R. Therefore this
problem is left for the users themselves to deal with.

Examples

Coordinate <- "chr19:1:1000000"

Brick.file <- system.file("extdata”, "test.hdf"”, package = "HiCBricks")
Test_Run <- Brick_return_region_position(Brick = Brick.file,

region = Coordinate)

Not run:

Coordinate <- c("chr19:1:1000000","chr19:40000:2000000")

Brick.file <- system.file("extdata”, "test.hdf"”, package = "HiCBricks")
Test_Run <- Brick_return_region_position(Brick = Brick.file,

region = Coordinate)

This will generate an error because the module itself expects as input a
vector of length 1.

Brick_vizart_plot_heatmap 31

End(Not run)

Brick_vizart_plot_heatmap

Create the entire HDF'5 structure and load the bintable

Description

Brick_vizart_plot_heatmap creates various heatmaps and plots TADs.

Usage

Brick_vizart_plot_heatmap(File, Bricks, x.coords, y.coords, FUN = NULL,

value.cap = NULL, distance = NULL, rotate = FALSE, x.axis = TRUE,
x.axis.title = NULL, y.axis = TRUE, y.axis.title = NULL,

title = NULL, legend.title = NULL, return.object = FALSE,
x.axis.num.breaks = 5, y.axis.num.breaks = 5, palette,
col.direction = 1, extrapolate.on = NULL, x.axis.text.size = 10,
y.axis.text.size = 10, text.size = 10, legend.title.text.size = 8,
legend.text.size = 8, title.size = 10, tad.ranges = NULL,
group.col = NULL, tad.colour.col = NULL, colours = NULL,
colours.names = NULL, cut.corners = FALSE, highlight.points = NULL,
width = 10, height = 6, line.width = 0.5, units = "cm",
legend.key.width = unit(3, "cm"”), legend.key.height = unit(0.5,
"em"))

Arguments
File
Bricks
X.coords
y.coords

FUN

value.cap

distance

rotate

Required A character vector containing the output filename to write.

Required A character vector of length 1 (in case of one sample heatmaps) or 2
(in case of two sample heatmaps) specifying the names of the Brick stores from
where to fetch the data.

Required A character vector of length 1 specifying the coordinates from where
to fetch the data.

Required A character vector of length 1 specifying the coordinates from where
to fetch the data.

Optional. Default NULL If any sort of transformations should be applied to the
data before plotting. Such as, log10 or log2 transformations.

Optional. Default NULL If present, values beyond a certain quantile will be
capped to that quantile. In Hi-C this helps to emphasize structural information.
Please note, if this parameter is present the greatest value will have a greater
than sign append- -ed to them.

Optional. Default NULL If present, values beyond this distance will be filtered
out. Please note, that if a Brick store matrix was loaded until a certain distance,
this parameter will result in an error if it is greater than the loaded distance.

Optional. Default FALSE If TRUE, will rotate the heatmap by 90 degrees.

32

X.axis

X.axis.

y.axis

y.axis.

title

legend.

return.
X.axis.

y.axis.

palette

col.dir

extrapolate.on

Brick_vizart_plot_heatmap

Optional. Default TRUE If FALSE, the x-axis will be removed (ticks, x-axis
labels and title).
title Optional. Default NULL If present, will be the x-axis title. Else defaults to the
provided x.coords
Optional. Default TRUE If FALSE, the y-axis will be removed (ticks, y-axis
labels and title).
title Optional. Default NULL If present, will be the y-axis title. Else defaults to the
provided y.coords
Optional. Default NULL If present, will be the plot title. Else defaults to the
provided x.coords vs y.coords
title Optional. Default NULL If present will be the title of the legend. Else defaults
to "Signal".
object Optional. Default FALSE If present the ggplot object will be returned
num.breaks
Optional. Default 5 Number of ticks on the x axis
num.breaks
Optional. Default 5 Number of ticks on the y axis
Required. Default NULL One of the RColorbrewer or viridis colour palettes
ection Optional. Default 1 If -1, the colour scale will be reversed.

Optional. Default NULL If present, colours from the palette will be extrapo-
lated between lightest and darkest to create the gradient. This value cannot be
more than 100.

X.axis.text.size

Optional. Default 10 x-axis text size

y.axis.text.size

text.si

ze

Optional. Default 10 y-axis text size

Optional. Default 10 text size of text elements in the plot.

legend.title.text.size

Optional. Default 8 text size of the legend title

legend. text.size

title.s

tad.ran

group.c

tad.colour.col

colours

colours

ize

ges

ol

.hames

Optional. Default 8 text size of the legend text
Optional. Default 10 text size of the title

Optional. Default NULL A GenomicRanges object specifying the start and end
coordinates of TADs to be plotted on the heatmap.

Optional. Default NULL Name of the column which will be used to categorize
TADs as belonging to either the first or the second Brick stores. This must be
a numeric value ranging from 1 to 2. If NULL, TADs will be plotted on both
Hi-C maps.

Optional. Default NULL tad.colour.col takes as value the column name in the
tad.ranges object corresponding to the column which should be used to define
different TAD categories.

Optional. Default NULL If tad.ranges is present, colours expects a hexcode
value of length 1. But, if tad.colour.col is specified, it expects colours of the
same length as unique tad.ranges$tad.colour.col.

Optional. Default NULL If present, will be assigned to colours. Else, will
inherit unique tad.colour.col. If tad.colour.col is also absent, will revert to a
placehold column name.

Brick_vizart_plot_heatmap

cut.corners Optional.
truncated,

highlight.points
Optional.
width Optional.
height Optional.
line.width Optional.

units Optional.

legend.key.width
Optional.

legend.key.height
Optional.

Details

33

Default FALSE if cut.corners is TRUE, TAD borders will not be
and they will span until the end of visible heatmap.

Not yet implemented.

Default 10cm Width of the output file units.

Default 6cm Height of the output file in units.

Default 0.5 When plotting TADs set the width of the plotted lines

Default cm Defines the units of the output file width and height.

Default unit(3,"cm") Defines the legend key width.

Default unit(0.5,"cm") Defines the legend key height.

This function provides the capability to plot various types of heatmaps from Hi-C data.

* One sample heatmap.

* Two sample heatmap (One sample on upper and other on lower).

Value

All of the above with 90 degree rotation.

All of the above but with signal capped at a certain value.
All of the above but filtered by distance.

All of the above with TADs/TAD borders plotted on top.

If return.object is set to TRUE, the constructed ggplot2 object will be returned. Else TRUE.

Examples

FailSafe_log1@ <- function(x){
x[is.na(x) | is.nan(x) | is.infinite(x)] <- @

return(loglo(x+1))
3

Brick.file <- system.file(’

'extdata”, "test.hdf"”, package = "HiCBricks")

Brick_vizart_plot_heatmap(File = "./chr19-5000000-10000000.pdf",

Bricks = Brick.file, x.coords = "chr19:5000000:10000000", palette = "Reds”,
y.coords = "chr19:5000000:10000000", FUN = FailSafe_loglo,

value.cap = 0.99, width = 10, height = 11, legend.key.width = unit(3,"mm"),

legend.key.height = unit(@

.3,"em"))

34 CreateBrick
CreateBrick Create the entire HDF5 structure and load the bintable
Description
CreateBrick creates the complete HDF5 on-disk data structure
Usage
CreateBrick(ChromNames, BinTable, bin.delim = "\t", col.index = c(1,
2, 3), impose.discontinuity = TRUE, ChunkSize = NULL,
Output.Filename, exec = "cat”, remove.existing = FALSE)
Arguments
ChromNames Required A character vector containing the chromosomes to be considered for
the dataset. This string is used to verify the presence of all chromosomes in the
provided bitable.
BinTable Required A string containing the path to the file to load as the binning table

for the Hi-C experiment. The number of entries per chromosome defines the di-
mension of the associated Hi-C data matrices. For example, if chrl contains 250
entries in the binning table, the cis Hi-C data matrix for chrl will be expected
to contain 250 rows and 250 cols. Similary, if the same binning table contained
150 entries for chr2, the frans Hi-C matrices for chrl,chr2 will be a matrix with
dimension 250 rows and 150 cols.

There are no constraints on the bintable format. As long as the table is in a
delimited format, the corresponding table columns can be outlined with the as-
sociated parameters. The columns of importance are chr, start and end.

It is recommended to always use binning tables where the end and start of con-
secutive ranges are not the same. If they are the same, this may lead to unex-
pected behaviour when using the GenomicRanges "any" overlap function.

bin.delim Optional. Defaults to tabs. A character vector of length 1 specifying the delim-
iter used in the file containing the binning table.

col.index Optional. Default "c(1,2,3)". A character vector of length 3 containing the
indexes of the required columns in the binning table. the first index, corresponds
to the chr column, the second to the start column and the third to the end column.
impose.discontinuity
Optional. Default TRUE. If TRUE, this parameter ensures a check to make
sure that required the end and start coordinates of consecutive entries are not the
same per chromosome.

ChunkSize Optional. A numeric vector of length 1. If provided, the HDF dataset will use
this value as the chunk size, for all matrices. By default, the ChunkSize is set to
matrix dimensions/100.

Output.Filename
Required A string specifying the location and name of the HDF file to create.
If path is not provided, it will be created in the Bioc File cache. Otherwise, it
will be created in the specified directory and tracked via Bioc File Cache.

exec Optional. Default cat. A string specifying the program or expression to use for
reading the file. For bz2 files, use bzcat and for gunzipped files use zcat.

CreateBrick 35

remove.existing
Optional. Default FALSE. If TRUE, will remove the HDF file with the same
name and create a new one. By default, it will not replace existing files.

Details

This function creates the complete HDF data structure, loads the binning table associated to the Hi-
C experiment and creates (for now) a 2D matrix layout for all chromosome pairs. Please note, the
binning table must be a discontinuous one (first range end != secode range start), as ranges overlaps
using the "any" form will routinely identify adjacent ranges with the same end and start to be in the
overlap. Therefore, this criteria is enforced as default behaviour.

The structure of the HDF file is as follows: The structure contains three major groups which are
then hierarchically nested with other groups to finally lead to the corresponding datasets.

» Base.matrices - group For storing Hi-C matrices

— chromosome - group
— chromosome - group
attributes - attribute
- Filename - Name of the file
- Min - min value of Hi-C matrix
- Max - max value of Hi-C matrix
- sparsity - specifies if this is a sparse matrix
- distance - max distance of data from main diagonal
- Done - specifies if a matrix has been loaded
* matrix - dataset - contains the matrix
bin.coverage - dataset - proportion of cells with values greater than O
row.sums - dataset - total sum of all values in a row
% sparsity - dataset - proportion of non-zero cells near the diagonal
» Base.ranges - group, Ranges tables for quick and easy access. Additional ranges tables are
added here under separate group names.
— Bintable - group - The main binning table associated to a Brick.
ranges - dataset - Contains the three main columns chr, start and end.
+ offsets - dataset - first occurence of any given chromosome in the ranges dataset.
* lengths - dataset - Number of occurences of that chromosome

chr.names - dataset - What chromosomes are present in the given ranges table.
* Base.metadata - group, A place to store metadata info

— chromosomes - dataset - Metadata information specifying the chromosomes present in
this particular Brick file.

— other metadata tables.

Value

This function will generate the target Brick file. Upon completion, the function will provide the
path to the created/tracked HDF file.

36 CreateBrick_from_mcool

Examples

Bintable.path <- system.file("extdata"”,

"Bintable_40kb.txt", package = "HiCBricks")

Chromosomes <- "chr19”

Path_to_cached_file <- CreateBrick(ChromNames = Chromosomes,
BinTable = Bintable.path, bin.delim = " ",
Output.Filename = file.path(tempdir(),"test.hdf"), exec = "cat”,
remove.existing = TRUE)

Not run:

Bintable.path <- system.file("extdata"”,

"Bintable_40kb.txt", package = "HiCBricks")

Chromosomes <- c("chr19”, "chr20", "chr22", "chr21")

Path_to_cached_file <- CreateBrick(ChromNames = Chromosomes,

BinTable = Bintable.path, impose.discontinuity=TRUE,

col.index = c(1,2,3), Output.Filename = file.path(tempdir(),"test.hdf"),
exec = "cat”, remove.existing = TRUE)

This will cause an error as the file located at Bintable.path,

contains coordinates for only chromosome 19. For this code to work, either
all other chromosomes need to be removed from the Chromosomes variable or
coordinate information for the other chromosomes need to be provided.

Similarly vice-versa is also true. If the Bintable contains data for other
chromosomes, but they were not listed in ChromNames, this will cause an
error.

Keep in mind that if the end coordinates and start coordinates of adjacent
ranges are not separated by at least a value of 1, then
impose.discontinuity = TRUE will likely cause an error to occur.

This may seem obnoxious, but GenomicRanges by default will consider an
overlap of 1 bp as an overlap. Therefore, to be certain that ranges which
should not be, are not being targeted during retrieval operations, a check
is initiated to make sure that adjacent ends and starts are not
overlapping.

To load continuous ranges, use impose.discontinuity = FALSE.

Also note, that col.index determines which columns to use for chr, start
and end. Therefore, the original binning table may have 10 or 20 columns,

but it only requires the first three in order of chr, start and end.

End(Not run)

CreateBrick_from_mcool
Create the entire HDF5 structure and load the bintable from a mcool

file

Description

CreateBrick_from_mcool is a wrapper on CreateBrick which creates the Brick data structure from
an mcool file.

CreateBrick_from_mcool 37

Usage

CreateBrick_from_mcool(Brick, mcool, binsize = NULL, chrs = NULL,
remove.existing = FALSE)

Arguments
Brick Required. A string specifying the path to the Brick store created with Create-
Brick.
mcool Required. Path to an mcool file.
binsize Optional. The binsize to select from an mcool file.
chrs Optional. If provided will only create a Brick for these chromosomes (both cis
& trans).

remove.existing
Optional. Default FALSE. If TRUE, will remove the HDF file with the same
name and create a new one. By default, it will not replace existing files.

Details

mcool are a standard 4D nucleome data structure for Hi-C data. Read more about the 4D nucleome
project here.

Value

This function will generate the target Brick file. Upon completion, the function will provide the
path to the created/tracked HDF file.

See Also

Brick_load_data_from_mcool to load data from the mcool to a Brick store.
Examples

Not run:

require(curl)

curl_download(url = paste("https://data.4dnucleome.org/"
"files-processed/4DNFI7JINCNFB/"

"@download/4DNFI7INCNFB.mcool” ,sep = ""),

destfile = file.path(temp.dir(),"H1-hESC-HiC-4DNFI7JNCNFB.mcool"))

Output.brick <- file.path(tempdir(),
"H1-hESC-HiC-4DNFI7JINCNFB-10000-ICE-normalised-chr1.brick")
mcool <- file.path(temp.dir(), "H1-hESC-HiC-4DNFI7JNCNFB.mcool")

CreateBrick_from_mcool (Brick = Output.brick,
mcool = mcool,

binsize = 10000,

chrs = "chr1")

End(Not run)

https://data.4dnucleome.org/

38 HiCBricks

HiCBricks A package for storing, accessing and plotting Hi-C data

Description

HiCBricks is a package allowing users to flexibly import and work with Hi-C data

Details

Using HiCBricks users are able to import Hi-C matrices stored in various formats into an HDF
structure. This is the Brick file. You can then access the Hi-C data using accessor functions. Since
the data is stored in an HDF file, if you have the Brick (HDF) file, you can keep on accessing the
same file an infinite number of times.

Users can also associate different ranges objects with the HDF file.
The HDF file must have the same structure as followed by HiCBricks

Users can then move forward and create analysis pipelines and statistical methods based on HiCBricks
HDF files without worrying about the underlying data structure. To showcase this, Local score dif-
ferentiator (LSD) our novel TAD calling procedure comes packaged with HiCBricks.

You are also able to plot Hi-C data using HiCBricks functions. There are a few types. You can
create,

* asquare heatmap

* arotated heatmap

* two group square/rotated heatmaps

* both heatmaps until a certain distance

* plot TADs on both heatmaps

Brick creation

* CreateBrick - Create the complete HDF data structure. We refer to the HDF files as Brick
* CreateBrick_from_mcool - Create the complete Brick data structure from an mcool file.

Matrix loaders

* Brick_load_matrix - Load a complete nxm dimensional matrix.

e Brick_load_cis_matrix_till_distance - Load a sam chromosome nxn dimensional ma-
trix until a certain distance.

* Brick_load_data_from_mcool - Load parts of the data from the 4DN consortium generated
mcool files.

Matrix Accessors
* Brick_get_matrix_within_coords - Fetches a matrix within the provided genomic coordi-
nates.
e Brick_get_matrix - Fetches a matrix within the provided x and y coordinates.

* Brick_get_values_by_distance - Fetch all values corresponding to interactions between
genomic loci separated by the corresponding value.

* Brick_fetch_row_vector - Fetch all values at a given row or column.

All of the functions above can be subsetted and contain further value transformations.

HiCBricks 39

Ranges operators

Brick_get_bintable - All HiCBricks Brick files contain a binning table containing the co-
ordinate information of the matrix. This fetches the associated binning table.

Brick_add_ranges - Add a ranges object to the Brick file.
Brick_get_ranges - Get a ranges object associated to a Brick file.

Brick_fetch_range_index - Provided a set of coordinate vectors, get the corresponding
rows/cols overlapping with those coordinates.

Brick_make_ranges - Create a granges object from provided vectors.

Brick_return_region_position - Get the row/col number corresponding to coordinates
spelled out in human readable format.

Other functions

Brick_local_score_differentiator - Use the LSD TAD calling procedure to do some
TAD calls.

Brick_vizart_plot_heatmap - Plot pretty heatmaps.

Utility functions

Brick_get_chrominfo - Get the basic information regarding the Brick file. Which chromo-
somes are present, dimension of the matrix and the total length of the chromosome.

Brick_get_matrix_mcols - Get the matrix metadata information. Such as, row sums, cover-
age information and how sparse regions near the diagonal are.

Brick_list_matrices - List all the matrices present in the Brick file. Alongside, also provide
information such as if the matrix has been loaded or not, min max values, e.t.c

Brick_list_rangekeys - List the names of the ranges present in the Brick file.
Brick_rangekey_exists - Answers the question, is this rangekey present in the Brick file?

Brick_list_ranges_mcols - List the names of metadata columns associated to a ranges
object in the Brick file.

Brick_matrix_dimensions - Get the dimensions of a given matrix.
Brick_matrix_exists - Answers the question, has a matrix been created for this Brick store?

Brick_matrix_filename - Answers the question, what is the name of the file used to load
this particular matrix?

Brick_matrix_isdone - Answers the question, has this matrix been loaded already?

Brick_matrix_issparse - Answers the question, was this matrix defined as a sparse matrix
while loading?

Brick_matrix_maxdist - If Brick_load_cis_matrix_till_distance was used for load-
ing data, then this function will tell you until what distance data was loaded.

Brick_matrix_minmax - Outputs the value range of the matrix.

mcool utility functions

Brick_list_mcool_normalisations - List the names of normalisation vectors that can be
present in a mcool file.

Brick_mcool_normalisation_exists - Check if a specific normalisation vector exists in an
mcool file.

Brick_list_mcool_resolutions - List the resolutions present in an mcool file.

Index

Brick_add_ranges, 2, 39
Brick_fetch_range_index, 4, 39
Brick_fetch_row_vector, 5,6, 8, 10, 11, 38
Brick_get_bintable, 6, 39
Brick_get_chrominfo, 7, 39
Brick_get_matrix, 6,7,9-11, 38
Brick_get_matrix_mcols, 8, 39
Brick_get_matrix_within_coords, 6, 8,9,
11,38
Brick_get_ranges, 6, 10, 39
Brick_get_values_by_distance, 6, 8, 10,
11, 38
Brick_get_vector_values, 8, 10, 11, 12
Brick_list_matrices, 13, 39
Brick_list_matrix_mcols, 14
Brick_list_mcool_normalisations, 14, 19,
39
Brick_list_mcool_resolutions, 15, 19, 39
Brick_list_rangekeys, 15, 39
Brick_list_ranges_mcols, 16, 39
Brick_load_cis_matrix_till_distance,
16, 38, 39
Brick_load_data_from_mcool, 18, 37, 38
Brick_load_matrix, 19, 38
Brick_local_score_differentiator, 20,
39
Brick_make_ranges, 4, 22, 39
Brick_matrix_dimensions, 23, 39
Brick_matrix_exists, 24, 39
Brick_matrix_filename, 25, 39
Brick_matrix_isdone, 25, 39
Brick_matrix_issparse, 26, 39
Brick_matrix_maxdist, 27, 39
Brick_matrix_minmax, 27, 39
Brick_mcool_normalisation_exists, 28,
39
Brick_rangekey_exists, 29, 39
Brick_return_region_position, 30, 39
Brick_vizart_plot_heatmap, 31, 39

CreateBrick, 34, 38
CreateBrick_from_mcool, /9, 36, 38

HiCBricks, 38

40

	Brick_add_ranges
	Brick_fetch_range_index
	Brick_fetch_row_vector
	Brick_get_bintable
	Brick_get_chrominfo
	Brick_get_matrix
	Brick_get_matrix_mcols
	Brick_get_matrix_within_coords
	Brick_get_ranges
	Brick_get_values_by_distance
	Brick_get_vector_values
	Brick_list_matrices
	Brick_list_matrix_mcols
	Brick_list_mcool_normalisations
	Brick_list_mcool_resolutions
	Brick_list_rangekeys
	Brick_list_ranges_mcols
	Brick_load_cis_matrix_till_distance
	Brick_load_data_from_mcool
	Brick_load_matrix
	Brick_local_score_differentiator
	Brick_make_ranges
	Brick_matrix_dimensions
	Brick_matrix_exists
	Brick_matrix_filename
	Brick_matrix_isdone
	Brick_matrix_issparse
	Brick_matrix_maxdist
	Brick_matrix_minmax
	Brick_mcool_normalisation_exists
	Brick_rangekey_exists
	Brick_return_region_position
	Brick_vizart_plot_heatmap
	CreateBrick
	CreateBrick_from_mcool
	HiCBricks
	Index

