
Package ‘DropletUtils’
October 16, 2019

Version 1.4.3

Date 2019-08-06

Title Utilities for Handling Single-Cell Droplet Data

Depends SingleCellExperiment

Imports S4Vectors, BiocParallel, Rcpp, Matrix, methods, utils, stats,
edgeR, rhdf5, HDF5Array, R.utils, dqrng

Suggests testthat, beachmat, knitr, BiocStyle, rmarkdown

biocViews ImmunoOncology, SingleCell, Sequencing, RNASeq,
GeneExpression, Transcriptomics, DataImport, Coverage

Description Provides a number of utility functions for handling single-cell
(RNA-seq) data from droplet technologies such as 10X Genomics. This
includes data loading from count matrices or molecule information files,
identification of cells from empty droplets, removal of barcode-swapped
pseudo-cells, and downsampling of the count matrix.

License GPL-3

NeedsCompilation yes

VignetteBuilder knitr

LinkingTo Rcpp, beachmat, Rhdf5lib, BH, dqrng

SystemRequirements C++11

RoxygenNote 6.1.1

git_url https://git.bioconductor.org/packages/DropletUtils

git_branch RELEASE_3_9

git_last_commit c74dbae

git_last_commit_date 2019-08-06

Date/Publication 2019-10-15

Author Aaron Lun [aut, cre],
Jonathan Griffiths [ctb],
Davis McCarthy [ctb]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

1

2 barcodeRanks

R topics documented:
barcodeRanks . 2
defaultDrops . 4
downsampleMatrix . 5
downsampleReads . 6
emptyDrops . 7
encodeSequences . 10
get10xMolInfoStats . 11
makeCountMatrix . 12
read10xCounts . 13
read10xMolInfo . 15
swappedDrops . 17
write10xCounts . 19

Index 22

barcodeRanks Calculate barcode ranks

Description

Compute barcode rank statistics and identifry the knee and inflection points on the total count curve.

Usage

barcodeRanks(m, lower=100, fit.bounds=NULL, df=20, ...)

Arguments

m A real sparse matrix object, either a dgTMatrix or dgCMatrix. Columns repre-
sent barcoded droplets, rows represent genes.

lower A numeric scalar specifying the lower bound on the total UMI count, at or below
which all barcodes are assumed to correspond to empty droplets.

fit.bounds A numeric vector of length 2, specifying the lower and upper bouunds on the
total UMI count for spline fitting.

df, ... Further arguments to pass to smooth.spline.

Details

Analyses of droplet-based scRNA-seq data often show a plot of the log-total count against the
log-rank of each barcode, where the highest ranks have the largest totals. This is equivalent to
a transposed empirical cumulative density plot with log-transformed axes, which focuses on the
barcodes with the largest counts. The barcodeRanks function will compute these ranks for all
barcodes. Barcodes with the same total count receive the same average rank to avoid problems with
discrete runs of the same total.

The function will also identify a number of interesting points on the curve for downstream use,
namely the inflection and knee points. Both of these points correspond to a sharp transition between
two components of the total count distribution, presumably reflecting the difference between empty
droplets with little RNA and cell-containing droplets with much more RNA.

barcodeRanks 3

• The inflection point is computed as the point on the rank/total curve where the first derivative is
minimized. The derivative is computed directly from all points on the curve with total counts
greater than lower. This avoids issues with erratic behaviour of the curve at lower totals.

• The knee point is defined as the point on the curve where the signed curvature is minimized.
This requires calculation of the second derivative, which is much more sensitive to noise in
the curve. To overcome this, a smooth spline is fitted to the log-total counts against the log-
rank using the smooth.spline function. Derivatives are then calculated from the fitted spline
using predict.

We supply a default setting of df to avoid overfitting the spline, as this results in unstability in the
higher derivatives (and thus the curvature). df and other arguments to smooth.spline can be tuned
if the estimated knee point is not at an appropriate location. We also restrict the fit to lie within the
bounds defined by fit.bounds to focus on the region containing the knee point. This allows us to
obtain an accurate fit with low df, rather than attempting to model the entire curve.

If fit.bounds is not specified, the lower bound is automatically set to the inflection point, which
should lie after the knee point. The upper bound is set to the point at which the first derivative is
closest to zero, i.e., the “plateau” region before the knee point. Note that only points with total
counts above lower will be considered, regardless of how fit.bounds is defined.

Value

A DataFrame where each row corresponds to a column of m, and containing the following fields:

rank: Numeric, the rank of each barcode (averaged across ties).

total: Numeric, the total counts for each barcode.

fitted: Numeric, the fitted value from the spline for each barcode. This is NA for points with x
outside of fit.bounds.

The metadata contains knee, a numeric scalar containing the total count at the knee point; and
inflection, a numeric scalar containing the total count at the inflection point.

Author(s)

Aaron Lun

See Also

emptyDrops

Examples

Mocking up some data:
set.seed(2000)
my.counts <- DropletUtils:::simCounts()

Computing barcode rank statistics:
br.out <- barcodeRanks(my.counts)
names(br.out)

Making a plot.
plot(br.out$rank, br.out$total, log="xy", xlab="Rank", ylab="Total")
o <- order(br.out$rank)
lines(br.out$rank[o], br.out$fitted[o], col="red")
abline(h=metadata(br.out)$knee, col="dodgerblue", lty=2)

4 defaultDrops

abline(h=metadata(br.out)$inflection, col="forestgreen", lty=2)
legend("bottomleft", lty=2, col=c("dodgerblue", "forestgreen"),

legend=c("knee", "inflection"))

defaultDrops Call cells from number of UMIs

Description

Call cells according to the number of UMIs associated with each barcode, as implemented in Cell-
Ranger.

Usage

defaultDrops(m, expected=3000, upper.quant=0.99, lower.prop=0.1)

Arguments

m A real sparse matrix object, either a dgTMatrix or dgCMatrix. Columns repre-
sent barcoded droplets, rows represent cells. The matrix should correspond to
an individual sample.

expected A numeric scalar specifying the expected number of cells in this sample, as
specified in the call to CellRanger.

upper.quant A numeric scalar between 0 and 1 specifying the quantile of the top expected
barcodes to consider for the first step of the algorithm

lower.prop A numeric scalar between 0 and 1 specifying the fraction of molecules of the
upper.quant quantile result that a barcode must exceed to be called as a cell

Details

The defaultDrops function will call cells based on library size similarly to the CellRanger software
suite from 10X Genomics. Default arguments correspond to an exact reproduction of CellRanger’s
algorithm, where the number of expected cells was also left at CellRanger default value.

The method computes the upper.quant quantile of the top expected barcodes, ordered by de-
creasing number of UMIs. Any barcodes containing more molecules than lower.prop times this
quantile is considered to be a cell, and is retained for further analysis.

This method may be vulnerable to calling very well-captured background RNA as cells, or missing
real cells with low RNA content. See ?emptyDrops for an alternative approach for cell calling.

Value

defaultDrops will return a logical vector of length ncol(m). Each element of the vector reports
whether each column of m was called as a cell.

Author(s)

Jonathan Griffiths

References

10X Genomics (2017). Cell Ranger Algorithms Overview. https://support.10xgenomics.com/
single-cell-gene-expression/software/pipelines/latest/algorithms/overview

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/algorithms/overview
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/algorithms/overview

downsampleMatrix 5

See Also

emptyDrops

Examples

Mocking up some data:
set.seed(0)
my.counts <- DropletUtils:::simCounts()

Identify likely cell-containing droplets.
called <- defaultDrops(my.counts)
table(called)

Get matrix of called cells.
cell.counts <- my.counts[, called]

downsampleMatrix Downsample a count matrix

Description

Downsample a count matrix to a desired proportion for each cell.

Usage

downsampleMatrix(x, prop, bycol=TRUE)

Arguments

x A numeric matrix of counts.

prop A numeric scalar or, if bycol=TRUE, a vector of length ncol(x). All values
should lie in [0, 1] specifying the downsampling proportion for the matrix or for
each cell.

bycol A logical scalar indicating whether downsampling should be performed on a
column-by-column basis.

Details

Given multiple batches of very different sequencing depths, it can be beneficial to downsample
the deepest batches to match the coverage of the shallowest batches. This avoids differences in
technical noise that can drive clustering by batch.

If bycol=TRUE, sampling without replacement is performed on the count vector for each cell. This
yields a new count vector where the total is equal to prop times the original total count. Each count
in the returned matrix is guaranteed to be smaller than the original value in x. Different proportions
can be specified for different cells by setting prop to a vector.

If bycol=FALSE, downsampling without replacement is performed on the entire matrix. This yields
a new matrix where the total count across all cells is equal to prop times the original total. The new
total count for each cell may not be exactly equal to prop times the original value, which may or
may not be more appropriate than bycol=TRUE for particular applications.

Technically, downsampling on the reads with downsampleReads is more appropriate as it recapitu-
lates the effect of differences in sequencing depth per cell. However, in practice, the aim is to obtain

6 downsampleReads

cells that have similar total counts across batches, for which downsampling on the UMI counts is a
more direct approach.

Note that this function was originally implemented in the scater package as downsampleCounts.

Value

A numeric matrix of downsampled counts, of the same type as x.

Author(s)

Aaron Lun

See Also

downsampleReads

Examples

example(read10xCounts)
downsampled <- downsampleMatrix(counts(sce10x), prop = 0.5)

downsampleReads Downsample reads in a 10X Genomics dataset

Description

Generate a UMI count matrix after downsampling reads from the molecule information file pro-
duced by CellRanger for 10X Genomics data.

Usage

downsampleReads(sample, prop, barcode.length=NULL, bycol=FALSE)

Arguments

sample A string containing the path to the molecule information HDF5 file.

barcode.length An integer scalar specifying the length of the cell barcode, see read10xMolInfo.

prop A numeric scalar or, if bycol=TRUE, a vector of length ncol(x). All values
should lie in [0, 1] specifying the downsampling proportion for the matrix or for
each cell.

bycol A logical scalar indicating whether downsampling should be performed on a
column-by-column basis.

emptyDrops 7

Details

This function downsamples the reads for each molecule by the specified prop, using the information
in sample. It then constructs a UMI count matrix based on the molecules with non-zero read counts.
The aim is to eliminate differences in technical noise that can drive clustering by batch, as described
in downsampleMatrix.

Subsampling the reads with downsampleReads recapitulates the effect of differences in sequencing
depth per cell. This provides an alternative to downsampling with the CellRanger aggr function
or subsampling with the 10X Genomics R kit. Note that this differs from directly subsampling the
UMI count matrix with downsampleMatrix.

If bycol=FALSE, downsampling without replacement is performed on all reads from the entire
dataset. The total number of reads for each cell after downsampling may not be exactly equal
to prop times the original value. Note that this is the more natural approach and is the default,
which differs from the default used in downsampleMatrix.

If bycol=TRUE, sampling without replacement is performed on the reads for each cell. The total
number of reads for each cell after downsampling is guaranteed to be prop times the original total
(rounded to the nearest integer). Different proportions can be specified for different cells by set-
ting prop to a vector, where each proportion corresponds to a cell/GEM combination in the order
returned by get10xMolInfoStats.

Value

A numeric sparse matrix containing the downsampled UMI counts for each gene (row) and barcode
(column).

Author(s)

Aaron Lun

See Also

downsampleMatrix, read10xMolInfo

Examples

Mocking up some 10X HDF5-formatted data.
out <- DropletUtils:::sim10xMolInfo(tempfile(), nsamples=1)

Downsampling by the reads.
downsampleReads(out, barcode.length=4, prop=0.5)

emptyDrops Identify empty droplets

Description

Distinguish between droplets containing cells and ambient RNA in a droplet-based single-cell RNA
sequencing experiment.

8 emptyDrops

Usage

testEmptyDrops(m, lower=100, niters=10000, test.ambient=FALSE,
ignore=NULL, alpha=NULL, BPPARAM=SerialParam())

emptyDrops(m, lower=100, retain=NULL, barcode.args=list(), ...)

Arguments

m A numeric matrix object - usually a dgTMatrix or dgCMatrix - containing droplet
data prior to any filtering or cell calling. Columns represent barcoded droplets,
rows represent genes.

lower A numeric scalar specifying the lower bound on the total UMI count, at or below
which all barcodes are assumed to correspond to empty droplets.

niters An integer scalar specifying the number of iterations to use for the Monte Carlo
p-value calculations.

test.ambient A logical scalar indicating whether results should be returned for barcodes with
totals less than or equal to lower.

ignore A numeric scalar specifying the lower bound on the total UMI count, at or below
which barcodes will be ignored (see Details for how this differs from lower).

alpha A numeric scalar specifying the scaling parameter for the Dirichlet-multinomial
sampling scheme.

BPPARAM A BiocParallelParam object indicating whether parallelization should be used to
compute p-values.

retain A numeric scalar specifying the threshold for the total UMI count above which
all barcodes are assumed to contain cells.

barcode.args Further arguments to pass to barcodeRanks.

... Further arguments to pass to testEmptyDrops.

Value

testEmptyDrops will return a DataFrame with the following components:

Total: Integer, the total UMI count for each barcode.

LogProb: Numeric, the log-probability of observing the barcode’s count vector under the null
model.

PValue: Numeric, the Monte Carlo p-value against the null model.

Limited: Logical, indicating whether a lower p-value could be obtained by increasing niters.

For barcodes with counts below lower, NA values are returned for all fields if test.ambient=FALSE.
This is to ensure that the number of rows in the output DataFrame is identical to ncol(m).

emptyDrops will return a DataFrame like testEmptyDrops, with an additional FDR field.

The metadata of the output DataFrame will contains the ambient profile in ambient, the esti-
mated/specified value of alpha, the specified value of lower and the number of iterations in niters.
For emptyDrops, the metadata will also contain the retention threshold in retain.

emptyDrops 9

Details about testEmptyDrops

The testEmptyDrops function will obtain an estimate of the composition of the ambient pool of
RNA based on the barcodes with total UMI counts less than or equal to lower. This assumes that
a cell-containing droplet would generally have higher total counts than empty droplets containing
RNA from the ambient pool. Counts for the low-count barcodes are pooled together, and an estimate
of the proportion vector for the ambient pool is calculated using goodTuringProportions. The
count vector for each barcode above lower is then tested for a significant deviation from these
proportions.

The null hypothesis is that transcript molecules are included into droplets by multinomial sampling
from the ambient profile. For each barcode, the probability of obtaining its count vector based on
the null model is computed. Then, niters count vectors are simulated from the null model. The
proportion of simulated vectors with probabilities lower than the observed multinomial probability
for that barcode is used to calculate the p-value. We use this Monte Carlo approach as an exact
multinomial p-value is difficult to calculate.

The ignore argument can also be set to ignore barcodes with total counts less than or equal to
ignore. This differs from the lower argument in that the ignored barcodes are not necessarily used
to compute the ambient profile. Users can interpret ignore as the minimum total count required for
a barcode to be considered as a potential cell. In contrast, lower is the maximum total count below
which all barcodes are assumed to be empty droplets.

Details about emptyDrops

The emptyDrops function combines the results of testEmptyDrops with barcodeRanks to identify
droplets that are likely to contain cells. Barcodes that contain more than retain total counts are
always retained. This ensures that large cells with profiles that are very similar to the ambient pool
are not inadvertently discarded. If retain is not specified, it is set to the total count at the knee
point detected by barcodeRanks. Manual specification of retain may be useful if the knee point
was not correctly identified in complex log-rank curves. Users can also set retain=Inf to disable
automatic retention of barcodes with large totals.

The Benjamini-Hochberg correction is also applied to the Monte Carlo p-values to correct for multi-
ple testing. Cells can then be defined by taking all barcodes with significantly non-ambient profiles,
e.g., at a false discovery rate of 0.1%. All barcodes with total counts above K (or retain) are as-
signed p-values of zero during correction, reflecting our assumption that they are true positives.
This ensures that their Monte Carlo p-values do not affect the correction of other genes, and also
means that they will have FDR values of zero. Nonetheless, their original Monte Carlo p-values are
still reported in the output.

Handling overdispersion

If alpha is set to a positive number, sampling is assumed to follow a Dirichlet-multinomial (DM)
distribution. The parameter vector of the DM distribution is defined as the estimated ambient profile
scaled by alpha. Smaller values of alpha model overdispersion in the counts, due to dependencies
in sampling between molecules. If alpha=NULL, a maximum likelihood estimate is obtained from
the count profiles for all barcodes with totals less than or equal to lower. If alpha=Inf, the sampling
of molecules is modelled with a multinomial distribution.

Users can check whether the model is suitable by extracting the p-values for all barcodes with
test.ambient=TRUE. Under the null hypothesis, the p-values for presumed ambient barcodes (i.e.,
with total counts below lower) should be uniformly distributed. Skews in the p-value distribution
are indicative of an inaccuracy in the model and/or its estimates (of alpha or the ambient profile).

10 encodeSequences

Author(s)

Aaron Lun

References

Lun A, Riesenfeld S, Andrews T, Dao TP, Gomes T, participants in the 1st Human Cell Atlas
Jamboree, Marioni JC (2018). Distinguishing cells from empty droplets in droplet-based single-
cell RNA sequencing data. biorXiv.

Phipson B, Smyth GK (2010). Permutation P-values should never be zero: calculating exact P-
values when permutations are randomly drawn. Stat. Appl. Genet. Mol. Biol. 9:Article 39.

See Also

barcodeRanks, defaultDrops

Examples

Mocking up some data:
set.seed(0)
my.counts <- DropletUtils:::simCounts()

Identify likely cell-containing droplets.
out <- emptyDrops(my.counts)
out

is.cell <- out$FDR <= 0.01
sum(is.cell, na.rm=TRUE)

Check if p-values are lower-bounded by 'niters'
(increase 'niters' if any Limited==TRUE and Sig==FALSE)
table(Sig=is.cell, Limited=out$Limited)

encodeSequences Encode nucleotide sequences

Description

Encode short nucleotide sequences into integers with a 2-bit encoding.

Usage

encodeSequences(sequences)

Arguments

sequences A character vector of short nucleotide sequences, e.g., UMIs or cell barcodes.

get10xMolInfoStats 11

Details

Each pair of bits encodes a nucleotide - 00 is A, 01 is C, 10 is G and 11 is T. The least significant
byte contains the 3’-most nucleotides, and the remaining bits are set to zero. Thus, the sequence
“CGGACT” is converted to the binary form:

01 10 10 00 01 11

... which corresponds to the integer 1671.

A consequence of R’s use of 32-bit integers means that no element of sequences can be more than
15 nt long. Otherwise, integer overflow will occur.

Value

An integer vector containing the encoded sequences.

Author(s)

Aaron Lun

References

10X Genomics (2017). Molecule info. https://support.10xgenomics.com/single-cell-gene-expression/
software/pipelines/latest/output/molecule_info

Examples

encodeSequences("CGGACT")

get10xMolInfoStats Get 10x cell statistics

Description

Compute some basic per-cell statistics from the 10x molecule information file.

Usage

get10xMolInfoStats(sample, barcode.length=NULL)

Arguments

sample A string containing the path to the molecule information HDF5 file.
barcode.length An integer scalar specifying the length of the cell barcode, see read10xMolInfo.

Value

A DataFrame containing one row per cell library, with the fields:

cell: Character, the cell barcode.
gem_group: Integer, the GEM group.
num.umis: Integer, the number of UMIs assigned to this cell barcode/GEM group combination.
num.reads: Integer, the number of reads for this combination.
num.genes: Integer, the number of detected genes.

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/output/molecule_info
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/output/molecule_info

12 makeCountMatrix

Author(s)

Aaron Lun

See Also

read10xMolInfo

Examples

Mocking up some 10X HDF5-formatted data.
out <- DropletUtils:::sim10xMolInfo(tempfile())

get10xMolInfoStats(out)

makeCountMatrix Make a count matrix

Description

Construct a count matrix from per-molecule information, typically the cell and gene of origin.

Usage

makeCountMatrix(gene, cell, all.genes=NULL, all.cells=NULL, value=NULL)

Arguments

gene An integer or character vector specifying the gene to which each molecule was
assigned.

cell An integer or character vector specifying the cell to which each molecule was
assigned.

all.genes A character vector containing the names of all genes in the dataset.

all.cells A character vector containing the names of all cells in the dataset.

value A numeric vector containing values for each molecule.

Details

Each element of the vectors gene, cell and (if specified) value contain information for a single
transcript molecule. Each entry of the output matrix corresponds to a single gene and cell com-
bination. If multiple molecules are present with the same combination, their values in value are
summed together, and the sum is used as the entry of the output matrix.

If value=NULL, it will default to a vector of all 1’s. Each entry of the output matrix represents the
number of molecules with the corresponding combination, i.e., UMI counts. Users can pass other
metrics such as the number of reads covering each molecule. This would yield a read count matrix
rather than a UMI count matrix.

If all.genes is not specified, it is kept as NULL for integer gene. Otherwise, it is defined as the
sorted unique values of character gene. The same occurs for cell and all.cells.

If gene is integer, its values should be positive and no greater than length(all.genes) if all.genes!=NULL.
If gene is character, its values should be a subset of those in all.genes. The same requirements
apply to cell and all.cells.

read10xCounts 13

Value

A sparse matrix where rows are genes, columns are cells and entries are the sum of value for
each gene/cell combination. Rows and columns are named if the gene or cell are character or if
all.genes or all.cells are specified.

Author(s)

Aaron Lun

See Also

read10xMolInfo

Examples

nmolecules <- 100
gene.id <- sample(LETTERS, nmolecules, replace=TRUE)
cell.id <- sample(20, nmolecules, replace=TRUE)
makeCountMatrix(gene.id, cell.id)

read10xCounts Load in data from 10x experiment

Description

Creates a SingleCellExperiment from the CellRanger output directories for 10X Genomics data.

Usage

read10xCounts(samples, col.names=FALSE, type=c("auto", "sparse", "HDF5"),
version=c("auto", "2", "3"), genome=NULL)

Arguments

samples A character vector containing one or more directory names, each corresponding
to a 10X sample. Each directory should contain a matrix file, a gene/feature
annotation file, and a barcode annotation file.
Alternatively, strings may contain a path to a HDF5 file in the sparse matrix for-
mat generated by 10X. These can be mixed with directory names when type="auto".

col.names A logical scalar indicating whether the columns of the output object should be
named with the cell barcodes.

type String specifying the type of 10X format to read data from.

version String specifying the version of the 10X format to read data from.

genome String specifying the genome if type="HDF5" and version='2'.

14 read10xCounts

Details

This function was originally developed from the Read10X function from the Seurat package. It was
then taken from the read10xResults implementation in the scater package.

If type="auto", the format of the input file is automatically detected for each samples based on
whether it ends with ".h5". If so, type is set to "HDF5"; otherwise it is set to "sparse".

• If type="sparse", count data are loaded as a dgCMatrix object. This is a conventional
column-sparse compressed matrix format produced by the CellRanger pipeline.

• If type="HDF5", count data are assumed to follow the 10X sparse HDF5 format for large data
sets. It is loaded as a TENxMatrix object, which is a stub object that refers back to the file
in samples. Users may need to set genome if it cannot be automatically determined when
version="2".

CellRanger 3.0 introduced a major change in the format of the output files for both types. If
version="auto", the version of the format is automatically detected from the supplied paths.
For type="sparse", this is based on whether there is a "features.tsv.gz" file in the direc-
tory. For type="HDF5", this is based on whether there is a top-level "matrix" group with a
"matrix/features" subgroup in the file.

Matrices are combined by column if multiple samples were specified. This will throw an error if
the gene information is not consistent across samples.

If col.names=TRUE and length(sample)==1, each column is named by the cell barcode. For
multiple samples, the columns are unnamed to avoid problems with non-unique barcodes across
samples.

Note that user-level manipulation of sparse matrices requires loading of the Matrix package. Oth-
erwise, calculation of rowSums, colSums, etc. will result in errors.

Value

A SingleCellExperiment object containing count data for each gene (row) and cell (column) across
all samples.

• Row metadata will contain the fields "ID" and "Symbol". The former is the gene identifier
(usually Ensembl), while the latter is the gene name. If version="3", it will also contain the
"Type" field specifying the type of feature (e.g., gene or antibody).

• Column metadata will contain the fields "Sample" and "Barcode". The former contains the
value of samples from which each column was obtained. The latter refers to the cell barcode
sequence and GEM group for each cell library.

• Rows are named with the gene identifier. Columns are named with the cell barcode in certain
settings, see Details.

• The assays will contain a single "counts" matrix, containing UMI counts for each gene in
each cell. Note that the matrix representation will depend on the format of the samples, see
Details.

Author(s)

Davis McCarthy, with modifications from Aaron Lun

read10xMolInfo 15

References

Zheng GX, Terry JM, Belgrader P, and others (2017). Massively parallel digital transcriptional
profiling of single cells. Nat Commun 8:14049.

10X Genomics (2017). Gene-Barcode Matrices. https://support.10xgenomics.com/single-cell-gene-expression/
software/pipelines/2.2/output/matrices

10X Genomics (2018). Feature-Barcode Matrices. https://support.10xgenomics.com/single-cell-gene-expression/
software/pipelines/latest/output/matrices

10X Genomics (2018). HDF5 Gene-Barcode Matrix Format. https://support.10xgenomics.
com/single-cell-gene-expression/software/pipelines/2.2/advanced/h5_matrices

10X Genomics (2018). HDF5 Feature Barcode Matrix Format. https://support.10xgenomics.
com/single-cell-gene-expression/software/pipelines/latest/advanced/h5_matrices

See Also

write10xCounts

Examples

Mocking up some 10X genomics output.
example(write10xCounts)

Reading it in.
sce10x <- read10xCounts(tmpdir)

Column names are dropped with multiple 'samples'.
sce10x2 <- read10xCounts(c(tmpdir, tmpdir))

read10xMolInfo Read the 10X molecule information file

Description

Extract relevant fields from the molecule information HDF5 file, produced by CellRanger for 10X
Genomics data.

Usage

read10xMolInfo(sample, barcode.length=NULL, keep.unmapped=FALSE, get.cell=TRUE,
get.umi=TRUE, get.gem=TRUE, get.gene=TRUE, get.reads=TRUE,
version=c("auto", "2", "3"))

Arguments

sample A string containing the path to the molecule information HDF5 file.
barcode.length An integer scalar specifying the length of the cell barcode. Only relevant when

version="2".
keep.unmapped A logical scalar indicating whether unmapped molecules should be reported.
get.cell, get.umi, get.gem, get.gene, get.reads

Logical scalar indicating whether the corresponding field should be extracted.
version String specifying the version of the 10X molecule information format to read

data from.

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/2.2/output/matrices
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/2.2/output/matrices
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/output/matrices
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/output/matrices
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/2.2/advanced/h5_matrices
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/2.2/advanced/h5_matrices
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/h5_matrices
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/h5_matrices

16 read10xMolInfo

Details

Molecules that were not assigned to any gene have gene set to length(genes)+1. By default, these
are removed when keep.unmapped=FALSE.

CellRanger 3.0 introduced a major change in the format of the molecule information files. When
version="auto", the function will attempt to determine the version format of the file. This can
also be user-specified by setting version explicitly.

For files produced by version 2.2 of the CellRanger software, the length of the cell barcode is
not given. Instead, the barcode length is automatically inferred if barcode.length=NULL and
version="2". Currently, version 1 of the 10X chemistry uses 14 nt barcodes, while version 2
uses 16 nt barcodes.

Setting any of the get.* arguments will (generally) avoid extraction of the corresponding field. This
can improve efficiency if that field is not necessary for further analysis. Aside from the missing field,
the results are guaranteed to be identical, i.e., same order and number of rows. Note that some fields
must be loaded to yield similar results, e.g., gene IDs will always be loaded to remove unmapped
reads if keep.unmapped=FALSE.

Value

A list is returned containing two elements. The first element is named data and is a DataFrame
where each row corresponds to a single transcript molecule. The fields are as follows:

barcode: Character, the cell barcode for each molecule.

umi: Integer, the processed UMI barcode in 2-bit encoding.

gem_group: Integer, the GEM group.

gene: Integer, the index of the gene to which the molecule was assigned. This refers to an entry in
the genes vector, see below.

reads: Integer, the number of reads mapped to this molecule.

The field will not be present in the DataFrame if the corresponding get.* argument is FALSE,

The second element of the list is named genes and is a character vector containing the names of all
genes in the annotation. This contains the names of the various entries of gene for the individual
molecules.

Author(s)

Aaron Lun, based on code by Jonathan Griffiths

References

Zheng GX, Terry JM, Belgrader P, and others (2017). Massively parallel digital transcriptional
profiling of single cells. Nat Commun 8:14049.

10X Genomics (2017). Molecule info. https://support.10xgenomics.com/single-cell-gene-expression/
software/pipelines/2.2/output/molecule_info

10X Genomics (2018). Molecule info. https://support.10xgenomics.com/single-cell-gene-expression/
software/pipelines/latest/output/molecule_info

See Also

makeCountMatrix

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/2.2/output/molecule_info
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/2.2/output/molecule_info
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/output/molecule_info
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/output/molecule_info

swappedDrops 17

Examples

Mocking up some 10X HDF5-formatted data.
out <- DropletUtils:::sim10xMolInfo(tempfile())

Reading the resulting file.
read10xMolInfo(out)

swappedDrops Clean barcode-swapped droplet data

Description

Remove the effects of barcode swapping on droplet-based single-cell RNA-seq data, specifically
10X Genomics datasets.

Usage

swappedDrops(samples, barcode.length=NULL, ...)

removeSwappedDrops(cells, umis, genes, nreads, ref.genes, min.frac=0.8,
get.swapped=FALSE, get.diagnostics=FALSE, hdf5.out=TRUE)

Arguments

samples A character vector containing paths to the molecule information HDF5 files,
produced by CellRanger for 10X Genomics data. Each file corresponds to one
sample in a multiplexed pool.

barcode.length An integer scalar specifying the length of the cell barcode, see read10xMolInfo.

... Further arguments to be passed to removeSwappedDrops.

cells A list of character vectors containing cell barcodes. Each vector corresponds to
one sample in a multiplexed pool, and each entry of the vector corresponds to
one molecule.

umis A list of integer vectors containing encoded UMI sequences, organized as de-
scribed for cells. See ?encodeSequences to convert sequences to integers.

genes A list of integer vectors specifying the gene indices, organized as described for
cells. Each index should refer to an element of ref.genes.

nreads A list of integer vectors containing the number of reads per molecule, organized
as described for cells.

ref.genes A character vector containing the names or symbols of all genes.

min.frac A numeric scalar specifying the minimum fraction of reads required for a swapped
molecule to be assigned to a sample.

get.swapped A logical scalar indicating whether the UMI counts corresponding to swapped
molecules should also be returned.

get.diagnostics

A logical scalar indicating whether to return the number of reads for each swapped
molecule in each sample.

hdf5.out A logical scalar indicating whether the diagnotic matrix should be returned as a
HDF5Matrix.

18 swappedDrops

Details

Barcode swapping on the Illumina sequencer occurs when multiplexed samples undergo PCR re-
amplification on the flow cell by excess primer with different barcodes. This results in sequencing
of the wrong sample barcode and molecules being assigned to incorrect samples after debarcoding.
With droplet data, there is the opportunity to remove such effects based on the combination of
gene, UMI and cell barcode for each observed transcript molecule. It is very unlikely that the same
combination will arise from different molecules in multiple samples. Thus, observation of the same
combination across multiple samples is indicative of barcode swapping.

We can remove swapped molecules based on the number of reads assigned to each gene-UMI-
barcode combination. From the total number of reads assigned to that combination, the fraction of
reads in each sample is calculated. The sample with the largest fraction that is greater than min.frac
is defined as the putative sample of origin to which the molecule is assigned. This assumes that the
swapping rate is low, so the sample of origin for a molecule should contain the majority of the
reads. In other all samples, reads for the combination are assumed to derive from swapping and do
not contribute to the count matrix. Setting min.frac=1 will effectively remove all molecules that
appear in multiple samples. We do not recommend setting min.frac lower than 0.5.

If diagnostics=TRUE, a diagnostics matrix is returned containing the number of reads per gene-
UMI-barcode combination in each sample. Each row corresponds to a combination and each col-
umn corresponds to a sample. This can be useful for examining the level of swapping across sam-
ples on a molecule-by-molecule basis, though for the sake of memory, the actual identity of the
molecules is not returned. By default, the matrix is returned as a HDF5Matrix, which reduces
memory usage and avoids potential issues with integer overflow. If hdf5.out=FALSE, a sparse
matrix is returned instead, which is faster but uses more memory.

swappedDrops is a wrapper around removeSwappedDrops that extracts the relevant data from the
10X Genomics molecule information file. For other types of droplet-based data, it may be more
convenient to call removeSwappedDrops directly.

Value

A list is returned with the cleaned entry, itself a list of sparse matrices is returned. Each matrix
corresponds to a sample and contains the UMI count for each gene (row) and cell barcode (column)
after removing swapped molecules. All cell barcodes that were originally observed are reported as
columns, though note that it is possible for some barcodes to contain no counts.

If get.swapped=TRUE, a swapped entry is returned in the top-level list. This is a list containing
sample-specific sparse matrices of UMI counts corresponding to the swapped molecules. Adding
the cleaned and swapped matrices for each sample should yield the total UMI count prior to removal
of swapped molecules.

If get.diagnostics=TRUE, the top-level list will also contain an additional diagnostics matrix.

Format of the molecule information file

swappedDrops makes a few assumptions about the nature of the data in each molecule information
file. These are necessary to simplify downstream processing and are generally acceptable in most
cases.

Each molecule information file should contain data from only a single 10X run. Users should not
combine multiple samples into a single molecule information file. The function will emit a warning
upon detecting multiple GEM groups from any molecule information file. Molecules with different
GEMs will not be recognised as coming from a different sample, though they will be recognised as
being derived from different cell-level libraries.

write10xCounts 19

In files produced by CellRanger version 3.0, an additional per-molecule field is present indicating
the (c)DNA library from which the molecule was derived. Library preparation can be performed
separately for different features (e.g., antibodies, CRISPR tags) such that one 10X run can contain
data from multiple libraries. This allows for arbitrarily complicated multiplexing schemes - for
example, gene expression libraries might be multiplexed together across one set of samples, while
the antibody-derived libraries might be multiplexed across another different set of samples. For
simplicity, we assume that multiplexing was performed across the same set of samples for all
libraries therein.

Author(s)

Jonathan Griffiths, with modifications by Aaron Lun

References

Griffiths JA, Lun ATL, Richard AC, Bach K, Marioni JC (2018). Detection and removal of barcode
swapping in single-cell RNA-seq data. Nat. Commun. 9, 1:2667.

See Also

read10xMolInfo, encodeSequences

Examples

Mocking up some 10x HDF5-formatted data, with swapping.
curfiles <- DropletUtils:::sim10xMolInfo(tempfile(), nsamples=3)

Obtaining count matrices with swapping removed.
out <- swappedDrops(curfiles)
lapply(out$cleaned, dim)

out <- swappedDrops(curfiles, get.swapped=TRUE, get.diagnostics=TRUE)
names(out)

write10xCounts Write count data in the 10x format

Description

Create a directory containing the count matrix and cell/gene annotation from a sparse matrix of
UMI counts, in the format produced by the CellRanger software suite.

Usage

write10xCounts(path, x, barcodes=colnames(x), gene.id=rownames(x),
gene.symbol=gene.id, gene.type="Gene Expression", overwrite=FALSE,
type=c("auto", "sparse", "HDF5"), genome="unknown", version=c("2", "3"))

20 write10xCounts

Arguments

x A sparse numeric matrix of UMI counts.

path A string containing the path to the output directory.

barcodes A character vector of cell barcodes, one per column of x.

gene.id A character vector of gene identifiers, one per row of x.

gene.symbol A character vector of gene symbols, one per row of x.

gene.type A character vector of gene types, expanded to one per row of x. Only used when
version="3".

overwrite A logical scalar specifying whether path should be overwritten if it already
exists.

type String specifying the type of 10X format to save x to.

genome String specifying the genome for storage when type="HDF5". This can be a
character vector with one genome per feature if version="3".

version String specifying the version of the CellRanger format to produce.

Details

This function will try to automatically detect the desired format based on whether path ends with
".h5". If so, it assumes that path specifies a HDF5 file path and sets type="HDF5". Otherwise it
will set type="sparse" under the assumption that path specifies a path to a directory.

Note that there were major changes in the output format for CellRanger version 3.0, to account
for non-gene features such as antibody or CRISPR tags. Users can switch to this new format using
version="3". See the documentation for “latest” for this new format, otherwise see “2.2” or earlier.

Value

For type="sparse", a directory is produced at path. If version="2", this will contain the files
"matrix.mtx", "barcodes.tsv" and "genes.tsv". If version="3", it will instead contain "matrix.mtx.gz",
"barcodes.tsv.gz" and "features.tsv.gz".

For type="HDF5", a HDF5 file is produced at path containing data in column-sparse format. If
version="2", data are stored in the HDF5 group named genome. If version="3", data are stored
in the group "matrix".

A TRUE value is invisibly returned.

Author(s)

Aaron Lun

References

10X Genomics (2017). Gene-Barcode Matrices. https://support.10xgenomics.com/single-cell-gene-expression/
software/pipelines/2.2/output/matrices

10X Genomics (2018). Feature-Barcode Matrices. https://support.10xgenomics.com/single-cell-gene-expression/
software/pipelines/latest/output/matrices

10X Genomics (2018). HDF5 Gene-Barcode Matrix Format. https://support.10xgenomics.
com/single-cell-gene-expression/software/pipelines/2.2/advanced/h5_matrices

10X Genomics (2018). HDF5 Feature Barcode Matrix Format. https://support.10xgenomics.
com/single-cell-gene-expression/software/pipelines/latest/advanced/h5_matrices

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/2.2/output/matrices
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/2.2/output/matrices
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/output/matrices
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/output/matrices
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/2.2/advanced/h5_matrices
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/2.2/advanced/h5_matrices
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/h5_matrices
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/h5_matrices

write10xCounts 21

See Also

read10xCounts

Examples

Mocking up some count data.
library(Matrix)
my.counts <- matrix(rpois(1000, lambda=5), ncol=10, nrow=100)
my.counts <- as(my.counts, "dgCMatrix")
cell.ids <- paste0("BARCODE-", seq_len(ncol(my.counts)))

ngenes <- nrow(my.counts)
gene.ids <- paste0("ENSG0000", seq_len(ngenes))
gene.symb <- paste0("GENE", seq_len(ngenes))

Writing this to file:
tmpdir <- tempfile()
write10xCounts(tmpdir, my.counts, gene.id=gene.ids,

gene.symbol=gene.symb, barcodes=cell.ids)
list.files(tmpdir)

Index

barcodeRanks, 2, 8–10

DataFrame, 3
defaultDrops, 4, 10
dgCMatrix, 8, 14
dgTMatrix, 8
downsampleMatrix, 5, 7
downsampleReads, 5, 6, 6

emptyDrops, 3–5, 7
encodeSequences, 10, 17, 19

get10xMolInfoStats, 7, 11
goodTuringProportions, 9

HDF5Matrix, 17, 18

makeCountMatrix, 12, 16

predict, 3

read10xCounts, 13, 21
read10xMolInfo, 6, 7, 11–13, 15, 17, 19
removeSwappedDrops (swappedDrops), 17

smooth.spline, 2, 3
swappedDrops, 17

TENxMatrix, 14
testEmptyDrops (emptyDrops), 7

write10xCounts, 15, 19

22

	barcodeRanks
	defaultDrops
	downsampleMatrix
	downsampleReads
	emptyDrops
	encodeSequences
	get10xMolInfoStats
	makeCountMatrix
	read10xCounts
	read10xMolInfo
	swappedDrops
	write10xCounts
	Index

