
Package ‘DelayedMatrixStats’
October 16, 2019

Type Package

Title Functions that Apply to Rows and Columns of 'DelayedMatrix'
Objects

Version 1.6.1

Author Peter Hickey <peter.hickey@gmail.com>

Maintainer Peter Hickey <peter.hickey@gmail.com>

Description A port of the 'matrixStats' API for use with DelayedMatrix objects
from the 'DelayedArray' package. High-performing functions operating on rows
and columns of DelayedMatrix objects, e.g. col / rowMedians(),
col / rowRanks(), and col / rowSds(). Functions optimized per data type and
for subsetted calculations such that both memory usage and processing time is
minimized.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 6.1.1

Depends DelayedArray (>= 0.9.8)

Imports methods, matrixStats (>= 0.55.0), Matrix, S4Vectors (>=
0.17.5), IRanges, HDF5Array (>= 1.7.10), BiocParallel

Suggests testthat, knitr, rmarkdown, covr, BiocStyle, microbenchmark,
profmem

VignetteBuilder knitr

URL https://github.com/PeteHaitch/DelayedMatrixStats

BugReports https://github.com/PeteHaitch/DelayedMatrixStats/issues

biocViews Infrastructure, DataRepresentation, Software

git_url https://git.bioconductor.org/packages/DelayedMatrixStats

git_branch RELEASE_3_9

git_last_commit 4378d18

git_last_commit_date 2019-09-08

Date/Publication 2019-10-15

1

https://github.com/PeteHaitch/DelayedMatrixStats
https://github.com/PeteHaitch/DelayedMatrixStats/issues

2 colAlls

R topics documented:
colAlls . 2
colAnyMissings . 4
colAvgsPerRowSet . 6
colCollapse . 7
colCounts . 9
colCummaxs . 10
colDiffs . 12
colIQRDiffs . 14
colIQRs . 17
colLogSumExps . 18
colMads . 19
colMeans2 . 21
colMedians . 22
colOrderStats . 24
colProds . 25
colQuantiles . 27
colRanks . 28
colSums2 . 30
colTabulates . 32
colVars . 33
colWeightedMads . 35
colWeightedMeans . 36
colWeightedMedians . 37
colWeightedSds . 39
DelayedMatrixStats . 41
subset_by_Nindex . 41

Index 42

colAlls Checks if a value exists / does not exist in each row (column) of a
matrix

Description

Checks if a value exists / does not exist in each row (column) of a matrix.

Usage

colAlls(x, rows = NULL, cols = NULL, value = TRUE, na.rm = FALSE,
dim. = dim(x), ...)

colAnys(x, rows = NULL, cols = NULL, value = TRUE, na.rm = FALSE,
dim. = dim(x), ...)

rowAlls(x, rows = NULL, cols = NULL, value = TRUE, na.rm = FALSE,
dim. = dim(x), ...)

rowAnys(x, rows = NULL, cols = NULL, value = TRUE, na.rm = FALSE,
dim. = dim(x), ...)

colAlls 3

S4 method for signature 'DelayedMatrix'
colAlls(x, rows = NULL, cols = NULL,
value = TRUE, na.rm = FALSE, dim. = dim(x),
force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
colAnys(x, rows = NULL, cols = NULL,
value = TRUE, na.rm = FALSE, dim. = dim(x),
force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowAlls(x, rows = NULL, cols = NULL,
value = TRUE, na.rm = FALSE, dim. = dim(x),
force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowAnys(x, rows = NULL, cols = NULL,
value = TRUE, na.rm = FALSE, dim. = dim(x),
force_block_processing = FALSE, ...)

Arguments

x A NxK DelayedMatrix.

rows A vector indicating subset of elements (or rows and/or columns) to operate
over. If NULL, no subsetting is done.

cols A vector indicating subset of elements (or rows and/or columns) to operate
over. If NULL, no subsetting is done.

value A value to search for.

na.rm If TRUE, NAs are excluded first, otherwise not.

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix.

... Additional arguments passed to specific methods.
force_block_processing

FALSE (the default) means that a seed-aware, optimised method is used (if avail-
able). This can be overridden to use the general block-processing strategy by
setting this to TRUE (typically not advised). The block-processing strategy loads
one or more (depending on getAutoBlockSize()) columns (colFoo()) or rows
(rowFoo()) into memory as an ordinary base::array.

Details

These functions takes either a matrix or a vector as input. If a vector, then argument dim. must be
specified and fulfill prod(dim.) == length(x). The result will be identical to the results obtained
when passing matrix(x,nrow = dim.[1L],ncol = dim.[2L]), but avoids having to temporarily
create/allocate a matrix, if only such is needed only for these calculations.

Value

rowAlls() (colAlls()) returns an logical vector of length N (K). Analogously for rowAnys()
(rowAlls()).

4 colAnyMissings

Logical value

When value is logical, the result is as if the function is applied on as.logical(x). More specifi-
cally, if x is numeric, then all zeros are treated as FALSE, non-zero values as TRUE, and all missing
values as NA.

When value is logical, the result is as if the function is applied on as.logical(x). More specifi-
cally, if x is numeric, then all zeros are treated as FALSE, non-zero values as TRUE, and all missing
values as NA.

See Also

rowCounts

Examples

A DelayedMatrix with a 'matrix' seed
dm_matrix <- DelayedArray(matrix(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L)),

ncol = 3))
A DelayedMatrix with a 'SolidRleArraySeed' seed
dm_Rle <- RleArray(Rle(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L))),

dim = c(5, 3))

colAlls(dm_matrix, value = 1)
colAnys(dm_matrix, value = 2)
rowAlls(dm_Rle, value = 1)
rowAnys(dm_Rle, value = 2)

colAnyMissings Checks if there are any missing values in an object or not

Description

Checks if there are any missing values in an object or not. Please use base::anyNA() instead of
anyMissing(), colAnyNAs() instead of colAnyMissings(), and rowAnyNAs() instead of rowAnyMissings().

Usage

colAnyMissings(x, rows = NULL, cols = NULL, ...)

colAnyNAs(x, rows = NULL, cols = NULL, ...)

rowAnyMissings(x, rows = NULL, cols = NULL, ...)

rowAnyNAs(x, rows = NULL, cols = NULL, ...)

S4 method for signature 'DelayedMatrix'
colAnyMissings(x, rows = NULL, cols = NULL,
force_block_processing = FALSE, ...)

colAnyMissings 5

S4 method for signature 'DelayedMatrix'
colAnyNAs(x, rows = NULL, cols = NULL,
force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowAnyMissings(x, rows = NULL, cols = NULL,
force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowAnyNAs(x, rows = NULL, cols = NULL,
force_block_processing = FALSE, ...)

Arguments

x A NxK DelayedMatrix.

rows A vector indicating subset of elements (or rows and/or columns) to operate
over. If NULL, no subsetting is done.

cols A vector indicating subset of elements (or rows and/or columns) to operate
over. If NULL, no subsetting is done.

... Additional arguments passed to specific methods.
force_block_processing

FALSE (the default) means that a seed-aware, optimised method is used (if avail-
able). This can be overridden to use the general block-processing strategy by
setting this to TRUE (typically not advised). The block-processing strategy loads
one or more (depending on getAutoBlockSize()) columns (colFoo()) or rows
(rowFoo()) into memory as an ordinary base::array.

Details

The implementation of this method is optimized for both speed and memory. The method will
return TRUE as soon as a missing value is detected.

Value

Returns TRUE if a missing value was detected, otherwise FALSE.

See Also

Starting with R v3.1.0, there is anyNA() in the base, which provides the same functionality as
anyMissing().

Examples

A DelayedMatrix with a 'matrix' seed
dm_matrix <- DelayedArray(matrix(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L)),

ncol = 3))
A DelayedMatrix with a 'HDF5ArraySeed' seed
NOTE: Requires that the HDF5Array package is installed
library(HDF5Array)
dm_HDF5 <- writeHDF5Array(matrix(c(rep(1L, 5),

as.integer((0:4) ^ 2),

6 colAvgsPerRowSet

seq(-5L, -1L, 1L)),
ncol = 3))

dm_matrix[dm_matrix > 3] <- NA
colAnyNAs(dm_matrix)
dm_HDF5[dm_HDF5 > 3] <- NA
rowAnyNAs(dm_HDF5)

colAvgsPerRowSet Applies a row-by-row (column-by-column) averaging function to
equally-sized subsets of matrix columns (rows)

Description

Applies a row-by-row (column-by-column) averaging function to equally-sized subsets of matrix
columns (rows). Each subset is averaged independently of the others.

Usage

colAvgsPerRowSet(X, W = NULL, cols = NULL, S, FUN = colMeans, ...,
tFUN = FALSE)

rowAvgsPerColSet(X, W = NULL, rows = NULL, S, FUN = rowMeans, ...,
tFUN = FALSE)

S4 method for signature 'DelayedMatrix'
colAvgsPerRowSet(X, W = NULL, cols = NULL, S,
FUN = colMeans, ..., force_block_processing = FALSE, tFUN = FALSE)

S4 method for signature 'DelayedMatrix'
rowAvgsPerColSet(X, W = NULL, rows = NULL, S,
FUN = rowMeans, ..., force_block_processing = FALSE, tFUN = FALSE)

Arguments

X A NxM DelayedMatrix.

W An optional numeric NxM matrix of weights.

cols A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

S An integer KxJ matrix specifying the J subsets. Each column holds K column
(row) indices for the corresponding subset.

FUN The row-by-row (column-by-column) function used to average over each sub-
set of X. This function must accept a numeric NxK (KxM) matrix and the
logical argument na.rm (which is automatically set), and return a numeric
vector of length N (M).

... Additional arguments passed to specific methods.

tFUN If TRUE, the NxK (KxM) matrix passed to FUN() is transposed first.

rows A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

colCollapse 7

force_block_processing

FALSE (the default) means that a seed-aware, optimised method is used (if avail-
able). This can be overridden to use the general block-processing strategy by
setting this to TRUE (typically not advised). The block-processing strategy loads
one or more (depending on getAutoBlockSize()) columns (colFoo()) or rows
(rowFoo()) into memory as an ordinary base::array.

Details

If argument S is a single column vector with indices 1:N, then rowAvgsPerColSet(X,S = S,FUN =
rowMeans) gives the same result as rowMeans(X). Analogously, for colAvgsPerRowSet().

Value

Returns a numeric JxN (MxJ) matrix, where row names equal rownames(X) (colnames(S)) and
column names colnames(S) (colnames(X)).

Examples

A DelayedMatrix with a 'DataFrame' seed
dm_DF <- DelayedArray(S4Vectors::DataFrame(C1 = rep(1L, 5),

C2 = as.integer((0:4) ^ 2),
C3 = seq(-5L, -1L, 1L)))

colAvgsPerRowSet(dm_DF, S = matrix(1:2, ncol = 2))

rowAvgsPerColSet(dm_DF, S = matrix(1:2, ncol = 1))

colCollapse Extracts one cell per row (column) from a matrix

Description

Extracts one cell per row (column) from a matrix. The implementation is optimized for memory
and speed.

Usage

colCollapse(x, idxs, cols = NULL, dim. = dim(x), ...)

rowCollapse(x, idxs, rows = NULL, dim. = dim(x), ...)

S4 method for signature 'DelayedMatrix'
colCollapse(x, idxs, cols = NULL,
dim. = dim(x), force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowCollapse(x, idxs, rows = NULL,
dim. = dim(x), force_block_processing = FALSE, ...)

8 colCollapse

Arguments

x A NxK DelayedMatrix.

idxs An index vector of (maximum) length N (K) specifying the columns (rows) to
be extracted.

cols A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix.

... Additional arguments passed to specific methods.

rows A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

force_block_processing

FALSE (the default) means that a seed-aware, optimised method is used (if avail-
able). This can be overridden to use the general block-processing strategy by
setting this to TRUE (typically not advised). The block-processing strategy loads
one or more (depending on getAutoBlockSize()) columns (colFoo()) or rows
(rowFoo()) into memory as an ordinary base::array.

Value

Returns a vector of length N (K).

See Also

Matrix indexing to index elements in matrices and arrays, cf. [().

Examples

A DelayedMatrix with a 'matrix' seed
dm_matrix <- DelayedArray(matrix(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L)),

ncol = 3))
A DelayedMatrix with a 'HDF5ArraySeed' seed
NOTE: Requires that the HDF5Array package is installed
library(HDF5Array)
dm_HDF5 <- writeHDF5Array(matrix(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L)),

ncol = 3))

Extract the 4th row as a vector
NOTE: An ordinary vector is returned regardless of the backend of
the DelayedMatrix object
colCollapse(dm_matrix, 4)
colCollapse(dm_HDF5, 4)

Extract the 2nd column as a vector
NOTE: An ordinary vector is returned regardless of the backend of
the DelayedMatrix object
rowCollapse(dm_matrix, 2)
rowCollapse(dm_HDF5, 2)

colCounts 9

colCounts Counts the number of occurrences of a specific value

Description

The row- and column-wise functions take either a matrix or a vector as input. If a vector, then
argument dim. must be specified and fulfill prod(dim.) == length(x). The result will be identical
to the results obtained when passing matrix(x,nrow = dim.[1L],ncol = dim.[2L]), but avoids
having to temporarily create/allocate a matrix, if only such is needed only for these calculations.

Usage

colCounts(x, rows = NULL, cols = NULL, value = TRUE, na.rm = FALSE,
dim. = dim(x), ...)

rowCounts(x, rows = NULL, cols = NULL, value = TRUE, na.rm = FALSE,
dim. = dim(x), ...)

S4 method for signature 'DelayedMatrix'
colCounts(x, rows = NULL, cols = NULL,
value = TRUE, na.rm = FALSE, dim. = dim(x),
force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowCounts(x, rows = NULL, cols = NULL,
value = TRUE, na.rm = FALSE, dim. = dim(x),
force_block_processing = FALSE, ...)

Arguments

x A NxK DelayedMatrix.

rows A vector indicating subset of elements (or rows and/or columns) to operate
over. If NULL, no subsetting is done.

cols A vector indicating subset of elements (or rows and/or columns) to operate
over. If NULL, no subsetting is done.

value A value to search for.

na.rm If TRUE, NAs are excluded first, otherwise not.

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix.

... Additional arguments passed to specific methods.

force_block_processing

FALSE (the default) means that a seed-aware, optimised method is used (if avail-
able). This can be overridden to use the general block-processing strategy by
setting this to TRUE (typically not advised). The block-processing strategy loads
one or more (depending on getAutoBlockSize()) columns (colFoo()) or rows
(rowFoo()) into memory as an ordinary base::array.

10 colCummaxs

Value

rowCounts() (colCounts()) returns an integer vector of length N (K). count() returns a scalar
of type integer if the count is less than 2^31-1 (= .Machine$integer.max) otherwise a scalar of
type double.

See Also

rowAlls

Examples

A DelayedMatrix with a 'matrix' seed
dm_matrix <- DelayedArray(matrix(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L)),

ncol = 3))
A DelayedMatrix with a 'DataFrame' seed
dm_DF <- DelayedArray(S4Vectors::DataFrame(C1 = rep(1L, 5),

C2 = as.integer((0:4) ^ 2),
C3 = seq(-5L, -1L, 1L)))

colCounts(dm_matrix, value = 1)
Only count those in the first 4 rows
colCounts(dm_matrix, rows = 1:4, value = 1)

rowCounts(dm_DF, value = 5)
Only count those in the odd-numbered rows of the 2nd column
rowCounts(dm_DF, rows = seq(1, nrow(dm_DF), 2), cols = 2, value = 5)

colCummaxs Cumulative sums, products, minima and maxima for each row (col-
umn) in a matrix

Description

Cumulative sums, products, minima and maxima for each row (column) in a matrix.

Usage

colCummaxs(x, rows = NULL, cols = NULL, dim. = dim(x), ...)

colCummins(x, rows = NULL, cols = NULL, dim. = dim(x), ...)

colCumprods(x, rows = NULL, cols = NULL, dim. = dim(x), ...)

colCumsums(x, rows = NULL, cols = NULL, dim. = dim(x), ...)

rowCummaxs(x, rows = NULL, cols = NULL, dim. = dim(x), ...)

rowCummins(x, rows = NULL, cols = NULL, dim. = dim(x), ...)

rowCumprods(x, rows = NULL, cols = NULL, dim. = dim(x), ...)

colCummaxs 11

rowCumsums(x, rows = NULL, cols = NULL, dim. = dim(x), ...)

S4 method for signature 'DelayedMatrix'
colCummaxs(x, rows = NULL, cols = NULL,
dim. = dim(x), force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
colCummins(x, rows = NULL, cols = NULL,
dim. = dim(x), force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
colCumprods(x, rows = NULL, cols = NULL,
dim. = dim(x), force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
colCumsums(x, rows = NULL, cols = NULL,
dim. = dim(x), force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowCummaxs(x, rows = NULL, cols = NULL,
dim. = dim(x), force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowCummins(x, rows = NULL, cols = NULL,
dim. = dim(x), force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowCumprods(x, rows = NULL, cols = NULL,
dim. = dim(x), force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowCumsums(x, rows = NULL, cols = NULL,
dim. = dim(x), force_block_processing = FALSE, ...)

Arguments

x A NxK DelayedMatrix.

rows A vector indicating subset of elements (or rows and/or columns) to operate
over. If NULL, no subsetting is done.

cols A vector indicating subset of elements (or rows and/or columns) to operate
over. If NULL, no subsetting is done.

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix.

... Additional arguments passed to specific methods.
force_block_processing

FALSE (the default) means that a seed-aware, optimised method is used (if avail-
able). This can be overridden to use the general block-processing strategy by
setting this to TRUE (typically not advised). The block-processing strategy loads
one or more (depending on getAutoBlockSize()) columns (colFoo()) or rows
(rowFoo()) into memory as an ordinary base::array.

12 colDiffs

Value

Returns a numeric NxK matrix of the same mode as x, except when x is of mode logical, then
the return type is integer.

See Also

See cumsum(), cumprod(), cummin(), and cummax().

Examples

A DelayedMatrix with a 'matrix' seed
dm_matrix <- DelayedArray(matrix(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L)),

ncol = 3))
A DelayedMatrix with a 'Matrix' seed
dm_Matrix <- DelayedArray(Matrix::Matrix(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L)),

ncol = 3))

colCummaxs(dm_matrix)

colCummins(dm_matrix)

colCumprods(dm_matrix)

colCumsums(dm_matrix)

Only use rows 2-4
rowCummaxs(dm_Matrix, rows = 2:4)

Only use rows 2-4
rowCummins(dm_Matrix, rows = 2:4)

Only use rows 2-4
rowCumprods(dm_Matrix, rows = 2:4)

Only use rows 2-4
rowCumsums(dm_Matrix, rows = 2:4)

colDiffs Calculates difference for each row (column) in a matrix

Description

Calculates difference for each row (column) in a matrix.

Usage

colDiffs(x, rows = NULL, cols = NULL, lag = 1L, differences = 1L,
dim. = dim(x), ...)

colDiffs 13

rowDiffs(x, rows = NULL, cols = NULL, lag = 1L, differences = 1L,
dim. = dim(x), ...)

S4 method for signature 'DelayedMatrix'
colDiffs(x, rows = NULL, cols = NULL,
lag = 1L, differences = 1L, dim. = dim(x),
force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowDiffs(x, rows = NULL, cols = NULL,
lag = 1L, differences = 1L, dim. = dim(x),
force_block_processing = FALSE, ...)

Arguments

x A NxK DelayedMatrix.

rows A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

cols A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

lag An integer specifying the lag.

differences An integer specifying the order of difference.

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix.

... Additional arguments passed to specific methods.
force_block_processing

FALSE (the default) means that a seed-aware, optimised method is used (if avail-
able). This can be overridden to use the general block-processing strategy by
setting this to TRUE (typically not advised). The block-processing strategy loads
one or more (depending on getAutoBlockSize()) columns (colFoo()) or rows
(rowFoo()) into memory as an ordinary base::array.

Value

Returns a numeric Nx(K-1) or (N-1)xK matrix.

See Also

See also diff2().

Examples

A DelayedMatrix with a 'matrix' seed
dm_matrix <- DelayedArray(matrix(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L)),

ncol = 3))
A DelayedMatrix with a 'HDF5ArraySeed' seed
NOTE: Requires that the HDF5Array package is installed
library(HDF5Array)
dm_HDF5 <- writeHDF5Array(matrix(c(rep(1L, 5),

as.integer((0:4) ^ 2),

14 colIQRDiffs

seq(-5L, -1L, 1L)),
ncol = 3))

colDiffs(dm_matrix)

rowDiffs(dm_HDF5)
In reverse column order
rowDiffs(dm_HDF5, cols = seq(ncol(dm_HDF5), 1, -1))

colIQRDiffs Estimation of scale based on sequential-order differences

Description

Estimation of scale based on sequential-order differences, corresponding to the scale estimates pro-
vided by var, sd, mad and IQR.

Usage

colIQRDiffs(x, rows = NULL, cols = NULL, na.rm = FALSE, diff = 1L,
trim = 0, ...)

colMadDiffs(x, rows = NULL, cols = NULL, na.rm = FALSE, diff = 1L,
trim = 0, ...)

colSdDiffs(x, rows = NULL, cols = NULL, na.rm = FALSE, diff = 1L,
trim = 0, ...)

colVarDiffs(x, rows = NULL, cols = NULL, na.rm = FALSE, diff = 1L,
trim = 0, ...)

rowIQRDiffs(x, rows = NULL, cols = NULL, na.rm = FALSE, diff = 1L,
trim = 0, ...)

rowMadDiffs(x, rows = NULL, cols = NULL, na.rm = FALSE, diff = 1L,
trim = 0, ...)

rowSdDiffs(x, rows = NULL, cols = NULL, na.rm = FALSE, diff = 1L,
trim = 0, ...)

rowVarDiffs(x, rows = NULL, cols = NULL, na.rm = FALSE, diff = 1L,
trim = 0, ...)

S4 method for signature 'DelayedMatrix'
colIQRDiffs(x, rows = NULL, cols = NULL,
na.rm = FALSE, diff = 1L, trim = 0,
force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
colMadDiffs(x, rows = NULL, cols = NULL,
na.rm = FALSE, diff = 1L, trim = 0,
force_block_processing = FALSE, ...)

colIQRDiffs 15

S4 method for signature 'DelayedMatrix'
colSdDiffs(x, rows = NULL, cols = NULL,
na.rm = FALSE, diff = 1L, trim = 0,
force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
colVarDiffs(x, rows = NULL, cols = NULL,
na.rm = FALSE, diff = 1L, trim = 0,
force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowIQRDiffs(x, rows = NULL, cols = NULL,
na.rm = FALSE, diff = 1L, trim = 0,
force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowMadDiffs(x, rows = NULL, cols = NULL,
na.rm = FALSE, diff = 1L, trim = 0,
force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowSdDiffs(x, rows = NULL, cols = NULL,
na.rm = FALSE, diff = 1L, trim = 0,
force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowVarDiffs(x, rows = NULL, cols = NULL,
na.rm = FALSE, diff = 1L, trim = 0,
force_block_processing = FALSE, ...)

Arguments

x A NxK DelayedMatrix.

rows A vector indicating subset of elements (or rows and/or columns) to operate
over. If NULL, no subsetting is done.

cols A vector indicating subset of elements (or rows and/or columns) to operate
over. If NULL, no subsetting is done.

na.rm If TRUE, NAs are excluded, otherwise not.

diff The positional distance of elements for which the difference should be calcu-
lated.

trim A double in [0,1/2] specifying the fraction of observations to be trimmed from
each end of (sorted) x before estimation.

... Additional arguments passed to specific methods.
force_block_processing

FALSE (the default) means that a seed-aware, optimised method is used (if avail-
able). This can be overridden to use the general block-processing strategy by
setting this to TRUE (typically not advised). The block-processing strategy loads
one or more (depending on getAutoBlockSize()) columns (colFoo()) or rows
(rowFoo()) into memory as an ordinary base::array.

16 colIQRDiffs

Details

Note that n-order difference MAD estimates, just like the ordinary MAD estimate by mad, apply a
correction factor such that the estimates are consistent with the standard deviation under Gaussian
distributions.

The interquartile range (IQR) estimates does not apply such a correction factor. If asymptotically
normal consistency is wanted, the correction factor for IQR estimate is 1 / (2 * qnorm(3/4)),
which is half of that used for MAD estimates, which is 1 / qnorm(3/4). This correction factor
needs to be applied manually, i.e. there is no constant argument for the IQR functions.

Value

Returns a numeric vector of length 1, length N, or length K.

References

[1] J. von Neumann et al., The mean square successive difference. Annals of Mathematical Statis-
tics, 1941, 12, 153-162.

See Also

For the corresponding non-differentiated estimates, see var, sd, mad and IQR. Internally, diff2() is
used which is a faster version of diff().

Examples

A DelayedMatrix with a 'Matrix' seed
dm_Matrix <- DelayedArray(Matrix::Matrix(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L)),

ncol = 3))
A DelayedMatrix with a 'SolidRleArraySeed' seed
dm_Rle <- RleArray(Rle(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L))),

dim = c(5, 3))

colIQRDiffs(dm_Matrix)

colMadDiffs(dm_Matrix)

colSdDiffs(dm_Matrix)

colVarDiffs(dm_Matrix)

Only using rows 2-4
rowIQRDiffs(dm_Rle, rows = 2:4)

Only using rows 2-4
rowMadDiffs(dm_Rle, rows = 2:4)

Only using rows 2-4
rowSdDiffs(dm_Rle, rows = 2:4)

Only using rows 2-4

colIQRs 17

rowVarDiffs(dm_Rle, rows = 2:4)

colIQRs Estimates of the interquartile range for each row (column) in a matrix

Description

Estimates of the interquartile range for each row (column) in a matrix.

Usage

colIQRs(x, rows = NULL, cols = NULL, na.rm = FALSE, ...)

rowIQRs(x, rows = NULL, cols = NULL, na.rm = FALSE, ...)

S4 method for signature 'DelayedMatrix'
colIQRs(x, rows = NULL, cols = NULL,
na.rm = FALSE, force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowIQRs(x, rows = NULL, cols = NULL,
na.rm = FALSE, force_block_processing = FALSE, ...)

Arguments

x A NxK DelayedMatrix.

rows A vector indicating subset of elements (or rows and/or columns) to operate
over. If NULL, no subsetting is done.

cols A vector indicating subset of elements (or rows and/or columns) to operate
over. If NULL, no subsetting is done.

na.rm If TRUE, missing values are dropped first, otherwise not.

... Additional arguments passed to specific methods.
force_block_processing

FALSE (the default) means that a seed-aware, optimised method is used (if avail-
able). This can be overridden to use the general block-processing strategy by
setting this to TRUE (typically not advised). The block-processing strategy loads
one or more (depending on getAutoBlockSize()) columns (colFoo()) or rows
(rowFoo()) into memory as an ordinary base::array.

Value

Returns a numeric vector of length N (K).

Missing values

Contrary to IQR, which gives an error if there are missing values and na.rm = FALSE, iqr() and its
corresponding row and column-specific functions return NA_real_.

See Also

See IQR. See rowSds().

18 colLogSumExps

Examples

A DelayedMatrix with a 'matrix' seed
dm_matrix <- DelayedArray(matrix(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L)),

ncol = 3))
A DelayedMatrix with a 'Matrix' seed
dm_Matrix <- DelayedArray(Matrix::Matrix(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L)),

ncol = 3))

colIQRs(dm_matrix)

Only using rows 2-4
rowIQRs(dm_matrix, rows = 2:4)

colLogSumExps Accurately computes the logarithm of the sum of exponentials across
rows or columns

Description

Accurately computes the logarithm of the sum of exponentials across rows or columns.

Usage

colLogSumExps(lx, rows = NULL, cols = NULL, na.rm = FALSE,
dim. = dim(lx), ...)

rowLogSumExps(lx, rows = NULL, cols = NULL, na.rm = FALSE,
dim. = dim(lx), ...)

S4 method for signature 'DelayedMatrix'
colLogSumExps(lx, rows = NULL, cols = NULL,
na.rm = FALSE, dim. = dim(lx), force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowLogSumExps(lx, rows = NULL, cols = NULL,
na.rm = FALSE, dim. = dim(lx), force_block_processing = FALSE, ...)

Arguments

lx A NxK DelayedMatrix. Typically, lx are log(x) values.

rows A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

cols A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

na.rm If TRUE, any missing values are ignored, otherwise not.

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix.

colMads 19

... Additional arguments passed to specific methods.
force_block_processing

FALSE (the default) means that a seed-aware, optimised method is used (if avail-
able). This can be overridden to use the general block-processing strategy by
setting this to TRUE (typically not advised). The block-processing strategy loads
one or more (depending on getAutoBlockSize()) columns (colFoo()) or rows
(rowFoo()) into memory as an ordinary base::array.

Value

A numeric vector of length N (K).

Benchmarking

These methods are implemented in native code and have been optimized for speed and memory.

See Also

To calculate the same on vectors, logSumExp().

Examples

x <- DelayedArray(matrix(runif(10), ncol = 2))
colLogSumExps(log(x))
rowLogSumExps(log(x))

colMads Standard deviation estimates for each row (column) in a matrix

Description

Standard deviation estimates for each row (column) in a matrix.

Usage

colMads(x, rows = NULL, cols = NULL, center = NULL,
constant = 1.4826, na.rm = FALSE, dim. = dim(x), ...)

colSds(x, rows = NULL, cols = NULL, na.rm = FALSE, center = NULL,
dim. = dim(x), ...)

rowMads(x, rows = NULL, cols = NULL, center = NULL,
constant = 1.4826, na.rm = FALSE, dim. = dim(x), ...)

rowSds(x, rows = NULL, cols = NULL, na.rm = FALSE, center = NULL,
dim. = dim(x), ...)

S4 method for signature 'DelayedMatrix'
colMads(x, rows = NULL, cols = NULL,
center = NULL, constant = 1.4826, na.rm = FALSE, dim. = dim(x),
force_block_processing = FALSE, ...)

20 colMads

S4 method for signature 'DelayedMatrix'
colSds(x, rows = NULL, cols = NULL,
na.rm = FALSE, center = NULL, dim. = dim(x),
force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowMads(x, rows = NULL, cols = NULL,
center = NULL, constant = 1.4826, na.rm = FALSE, dim. = dim(x),
force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowSds(x, rows = NULL, cols = NULL,
na.rm = FALSE, center = NULL, dim. = dim(x),
force_block_processing = FALSE, ...)

Arguments

x A NxK DelayedMatrix.

rows A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

cols A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

center (optional) The center, defaults to the row means for the SD estimators and row
medians for the MAD estimators.

constant A scale factor. See mad for details.

na.rm If TRUE, NAs are excluded first, otherwise not.

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix.

... Additional arguments passed to specific methods.
force_block_processing

FALSE (the default) means that a seed-aware, optimised method is used (if avail-
able). This can be overridden to use the general block-processing strategy by
setting this to TRUE (typically not advised). The block-processing strategy loads
one or more (depending on getAutoBlockSize()) columns (colFoo()) or rows
(rowFoo()) into memory as an ordinary base::array.

Value

Returns a numeric vector of length N (K).

See Also

sd, mad and var. rowIQRs().

Examples

A DelayedMatrix with a 'data.frame' seed
dm_df <- DelayedArray(data.frame(C1 = rep(1L, 5),

C2 = as.integer((0:4) ^ 2),
C3 = seq(-5L, -1L, 1L)))

A DelayedMatrix with a 'DataFrame' seed

colMeans2 21

dm_DF <- DelayedArray(S4Vectors::DataFrame(C1 = rep(1L, 5),
C2 = as.integer((0:4) ^ 2),
C3 = seq(-5L, -1L, 1L)))

colMads(dm_df)

colSds(dm_df)

rowMads(dm_DF)

rowSds(dm_DF)

colMeans2 Calculates the mean for each row (column) in a matrix

Description

Calculates the mean for each row (column) in a matrix.

Usage

colMeans2(x, rows = NULL, cols = NULL, na.rm = FALSE,
dim. = dim(x), ...)

rowMeans2(x, rows = NULL, cols = NULL, na.rm = FALSE,
dim. = dim(x), ...)

S4 method for signature 'DelayedMatrix'
colMeans2(x, rows = NULL, cols = NULL,
na.rm = FALSE, dim. = dim(x), force_block_processing = FALSE, ...)

S4 method for signature 'Matrix'
colMeans2(x, rows = NULL, cols = NULL,
na.rm = FALSE, dim. = dim(x), ...)

S4 method for signature 'SolidRleArraySeed'
colMeans2(x, rows = NULL, cols = NULL,
na.rm = FALSE, dim. = dim(x), ...)

S4 method for signature 'DelayedMatrix'
rowMeans2(x, rows = NULL, cols = NULL,
na.rm = FALSE, dim. = dim(x), force_block_processing = FALSE, ...)

S4 method for signature 'Matrix'
rowMeans2(x, rows = NULL, cols = NULL,
na.rm = FALSE, dim. = dim(x), ...)

Arguments

x A NxK DelayedMatrix.

rows A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

22 colMedians

cols A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

na.rm If TRUE, NAs are excluded first, otherwise not.

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix.

... Additional arguments passed to specific methods.
force_block_processing

FALSE (the default) means that a seed-aware, optimised method is used (if avail-
able). This can be overridden to use the general block-processing strategy by
setting this to TRUE (typically not advised). The block-processing strategy loads
one or more (depending on getAutoBlockSize()) columns (colFoo()) or rows
(rowFoo()) into memory as an ordinary base::array.

Details

The implementation of rowMeans2() and colMeans2() is optimized for both speed and memory.

Value

Returns a numeric vector of length N (K).

Examples

A DelayedMatrix with a 'matrix' seed
dm_matrix <- DelayedArray(matrix(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L)),

ncol = 3))
A DelayedMatrix with a 'SolidRleArraySeed' seed
dm_Rle <- RleArray(Rle(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L))),

dim = c(5, 3))

colMeans2(dm_matrix)

NOTE: Temporarily use verbose output to demonstrate which method is
which method is being used
options(DelayedMatrixStats.verbose = TRUE)
By default, this uses a seed-aware method for a DelayedMatrix with a
'SolidRleArraySeed' seed
rowMeans2(dm_Rle)
Alternatively, can use the block-processing strategy
rowMeans2(dm_Rle, force_block_processing = TRUE)
options(DelayedMatrixStats.verbose = FALSE)

colMedians Calculates the median for each row (column) in a matrix

Description

Calculates the median for each row (column) in a matrix.

colMedians 23

Usage

colMedians(x, rows = NULL, cols = NULL, na.rm = FALSE,
dim. = dim(x), ...)

rowMedians(x, rows = NULL, cols = NULL, na.rm = FALSE,
dim. = dim(x), ...)

S4 method for signature 'DelayedMatrix'
colMedians(x, rows = NULL, cols = NULL,
na.rm = FALSE, dim. = dim(x), force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowMedians(x, rows = NULL, cols = NULL,
na.rm = FALSE, dim. = dim(x), force_block_processing = FALSE, ...)

Arguments

x A NxK DelayedMatrix.

rows A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

cols A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

na.rm If TRUE, NAs are excluded first, otherwise not.

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix.

... Additional arguments passed to specific methods.

force_block_processing

FALSE (the default) means that a seed-aware, optimised method is used (if avail-
able). This can be overridden to use the general block-processing strategy by
setting this to TRUE (typically not advised). The block-processing strategy loads
one or more (depending on getAutoBlockSize()) columns (colFoo()) or rows
(rowFoo()) into memory as an ordinary base::array.

Details

The implementation of rowMedians() and colMedians() is optimized for both speed and mem-
ory. To avoid coercing to doubles (and hence memory allocation), there is a special implementa-
tion for integer matrices. That is, if x is an integer matrix, then rowMedians(as.double(x))
(rowMedians(as.double(x))) would require three times the memory of rowMedians(x) (colMedians(x)),
but all this is avoided.

Value

Returns a numeric vector of length N (K).

See Also

See rowWeightedMedians() and colWeightedMedians() for weighted medians. For mean esti-
mates, see rowMeans2() and rowMeans().

24 colOrderStats

Examples

A DelayedMatrix with a 'Matrix' seed
dm_Matrix <- DelayedArray(Matrix::Matrix(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L)),

ncol = 3))

colMedians(dm_Matrix)

rowMedians(dm_Matrix)

colOrderStats Gets an order statistic for each row (column) in a matrix

Description

Gets an order statistic for each row (column) in a matrix.

Usage

colOrderStats(x, rows = NULL, cols = NULL, which, dim. = dim(x), ...)

rowOrderStats(x, rows = NULL, cols = NULL, which, dim. = dim(x), ...)

S4 method for signature 'DelayedMatrix'
colOrderStats(x, rows = NULL, cols = NULL,
which, dim. = dim(x), force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowOrderStats(x, rows = NULL, cols = NULL,
which, dim. = dim(x), force_block_processing = FALSE, ...)

Arguments

x A NxK DelayedMatrix.

rows A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

cols A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

which An integer index in [1,K] ([1,N]) indicating which order statistic to be re-
turned.

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix.

... Additional arguments passed to specific methods.
force_block_processing

FALSE (the default) means that a seed-aware, optimised method is used (if avail-
able). This can be overridden to use the general block-processing strategy by
setting this to TRUE (typically not advised). The block-processing strategy loads
one or more (depending on getAutoBlockSize()) columns (colFoo()) or rows
(rowFoo()) into memory as an ordinary base::array.

colProds 25

Details

The implementation of rowOrderStats() is optimized for both speed and memory. To avoid co-
ercing to doubles (and hence memory allocation), there is a unique implementation for integer
matrices.

Value

Returns a numeric vector of length N (K).

Missing values

This method does not handle missing values, that is, the result corresponds to having na.rm = FALSE
(if such an argument would be available).

See Also

See rowMeans() in colSums().

Examples

A DelayedMatrix with a 'Matrix' seed
dm_Matrix <- DelayedArray(Matrix::Matrix(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L)),

ncol = 3))
Only using columns 2-3
colOrderStats(dm_Matrix, cols = 2:3, which = 1)

Different algorithms, specified by `which`, may give different results
rowOrderStats(dm_Matrix, which = 1)
rowOrderStats(dm_Matrix, which = 2)

colProds Calculates the product for each row (column) in a matrix

Description

Calculates the product for each row (column) in a matrix.

Usage

colProds(x, rows = NULL, cols = NULL, na.rm = FALSE,
method = c("direct", "expSumLog"), ...)

rowProds(x, rows = NULL, cols = NULL, na.rm = FALSE,
method = c("direct", "expSumLog"), ...)

S4 method for signature 'DelayedMatrix'
colProds(x, rows = NULL, cols = NULL,
na.rm = FALSE, method = c("direct", "expSumLog"),
force_block_processing = FALSE, ...)

26 colProds

S4 method for signature 'SolidRleArraySeed'
colProds(x, rows = NULL, cols = NULL,
na.rm = FALSE, method = c("direct", "expSumLog"), ...)

S4 method for signature 'DelayedMatrix'
rowProds(x, rows = NULL, cols = NULL,
na.rm = FALSE, method = c("direct", "expSumLog"),
force_block_processing = FALSE, ...)

Arguments

x A NxK DelayedMatrix.

rows A vector indicating subset of elements (or rows and/or columns) to operate
over. If NULL, no subsetting is done.

cols A vector indicating subset of elements (or rows and/or columns) to operate
over. If NULL, no subsetting is done.

na.rm If TRUE, missing values are ignored, otherwise not.

method A character string specifying how each product is calculated.

... Additional arguments passed to specific methods.
force_block_processing

FALSE (the default) means that a seed-aware, optimised method is used (if avail-
able). This can be overridden to use the general block-processing strategy by
setting this to TRUE (typically not advised). The block-processing strategy loads
one or more (depending on getAutoBlockSize()) columns (colFoo()) or rows
(rowFoo()) into memory as an ordinary base::array.

Details

If method = "expSumLog", then then product() function is used, which calculates the produce via
the logarithmic transform (treating negative values specially). This improves the precision and
lowers the risk for numeric overflow. If method = "direct", the direct product is calculated via the
prod() function.

Value

Returns a numeric vector of length N (K).

Missing values

Note, if method = "expSumLog", na.rm = FALSE, and x contains missing values (NA or NaN), then
the calculated value is also missing value. Note that it depends on platform whether NaN or NA is
returned when an NaN exists, cf. is.nan().

Examples

A DelayedMatrix with a 'matrix' seed
dm_matrix <- DelayedArray(matrix(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L)),

ncol = 3))
A DelayedMatrix with a 'HDF5ArraySeed' seed
NOTE: Requires that the HDF5Array package is installed

colQuantiles 27

library(HDF5Array)
dm_HDF5 <- writeHDF5Array(matrix(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L)),

ncol = 3))

colProds(dm_matrix)

rowProds(dm_matrix)

colQuantiles Estimates quantiles for each row (column) in a matrix

Description

Estimates quantiles for each row (column) in a matrix.

Usage

colQuantiles(x, rows = NULL, cols = NULL, probs = seq(from = 0, to =
1, by = 0.25), na.rm = FALSE, type = 7L, ..., drop = TRUE)

rowQuantiles(x, rows = NULL, cols = NULL, probs = seq(from = 0, to =
1, by = 0.25), na.rm = FALSE, type = 7L, ..., drop = TRUE)

S4 method for signature 'DelayedMatrix'
colQuantiles(x, rows = NULL, cols = NULL,
probs = seq(from = 0, to = 1, by = 0.25), na.rm = FALSE, type = 7L,
force_block_processing = FALSE, ..., drop = TRUE)

S4 method for signature 'DelayedMatrix'
rowQuantiles(x, rows = NULL, cols = NULL,
probs = seq(from = 0, to = 1, by = 0.25), na.rm = FALSE, type = 7L,
force_block_processing = FALSE, ..., drop = TRUE)

Arguments

x A NxK DelayedMatrix.

rows A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

cols A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

probs A numeric vector of J probabilities in [0, 1].

na.rm If TRUE, NAs are excluded first, otherwise not.

type An integer specify the type of estimator. See quantile for more details.

... Additional arguments passed to specific methods.

drop If TRUE, singleton dimensions in the result are dropped, otherwise not.

28 colRanks

force_block_processing

FALSE (the default) means that a seed-aware, optimised method is used (if avail-
able). This can be overridden to use the general block-processing strategy by
setting this to TRUE (typically not advised). The block-processing strategy loads
one or more (depending on getAutoBlockSize()) columns (colFoo()) or rows
(rowFoo()) into memory as an ordinary base::array.

Value

Returns a numeric NxJ (KxJ) matrix, where N (K) is the number of rows (columns) for which the
J quantiles are calculated.

See Also

quantile.

Examples

A DelayedMatrix with a 'data.frame' seed
dm_df <- DelayedArray(data.frame(C1 = rep(1L, 5),

C2 = as.integer((0:4) ^ 2),
C3 = seq(-5L, -1L, 1L)))

colnames, if present, are preserved as rownames on output
colQuantiles(dm_df)

Input has no rownames so output has no rownames
rowQuantiles(dm_df)

colRanks Gets the rank of the elements in each row (column) of a matrix

Description

Gets the rank of the elements in each row (column) of a matrix.

Usage

colRanks(x, rows = NULL, cols = NULL, ties.method = c("max",
"average", "first", "last", "random", "max", "min", "dense"),
dim. = dim(x), preserveShape = FALSE, ...)

rowRanks(x, rows = NULL, cols = NULL, ties.method = c("max",
"average", "first", "last", "random", "max", "min", "dense"),
dim. = dim(x), ...)

S4 method for signature 'DelayedMatrix'
colRanks(x, rows = NULL, cols = NULL,
ties.method = c("max", "average", "first", "last", "random", "max",
"min", "dense"), dim. = dim(x), preserveShape = FALSE,
force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'

colRanks 29

rowRanks(x, rows = NULL, cols = NULL,
ties.method = c("max", "average", "first", "last", "random", "max",
"min", "dense"), dim. = dim(x), force_block_processing = FALSE, ...)

Arguments

x A NxK DelayedMatrix.

rows A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

cols A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

ties.method A character string specifying how ties are treated. For details, see below.

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix.

preserveShape A logical specifying whether the matrix returned should preserve the input
shape of x, or not.

... Additional arguments passed to specific methods.
force_block_processing

FALSE (the default) means that a seed-aware, optimised method is used (if avail-
able). This can be overridden to use the general block-processing strategy by
setting this to TRUE (typically not advised). The block-processing strategy loads
one or more (depending on getAutoBlockSize()) columns (colFoo()) or rows
(rowFoo()) into memory as an ordinary base::array.

Details

These functions rank values and treats missing values the same way as rank(). For equal values
("ties"), argument ties.method determines how these are ranked among each other. More pre-
cisely, for the following values of ties.method, each index set of ties consists of:

• "first" - increasing values that are all unique

• "last" - decreasing values that are all unique

• "min" - identical values equaling the minimum of their original ranks

• "max" - identical values equaling the maximum of their original ranks

• "average" - identical values that equal the sample mean of their original ranks. Because the
average is calculated, the returned ranks may be non-integer values

• "random" - randomly shuffled values of their original ranks.

• "dense" - increasing values that are all unique and, contrary to "first", never contain any
gaps

For more information on ties.method = "dense", see frank() of the data.table package. For
more information on the other alternatives, see rank().

Note that, due to different randomization strategies, the shuffling order produced by these functions
when using ties.method = "random" does not reproduce that of rank().

WARNING: For backward-compatibility reasons, the default is ties.method = "max", which differs
from rank() which uses ties.method = "average" by default. Since we plan to change the default
behavior in a future version, we recommend to explicitly specify the intended value of argument
ties.method.

30 colSums2

Value

A matrix of type integer is returned, unless ties.method = "average" when it is of type numeric.

The rowRanks() function always returns an NxK matrix, where N (K) is the number of rows
(columns) whose ranks are calculated.

The colRanks() function returns an NxK matrix, if preserveShape = TRUE, otherwise a KxN
matrix.

Any names of x are ignored and absent in the result.

Missing values

Missing values are ranked as NA_integer_, as with na.last = "keep" in the rank() function.

Performance

The implementation is optimized for both speed and memory. To avoid coercing to doubles (and
hence memory allocation), there is a unique implementation for integer matrices. Furthermore, it
is more memory efficient to do colRanks(x,preserveShape = TRUE) than t(colRanks(x,preserveShape
= FALSE)).

See Also

For developers, see also Section Utility functions’ in ’Writing R Extensions manual’, particularly
the native functions R_qsort_I() and R_qsort_int_I().

Examples

A DelayedMatrix with a 'Matrix' seed
dm_Matrix <- DelayedArray(Matrix::Matrix(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L)),

ncol = 3))

colRanks(dm_Matrix)

rowRanks(dm_Matrix)

colSums2 Calculates the sum for each row (column) in a matrix

Description

Calculates the sum for each row (column) in a matrix.

Usage

colSums2(x, rows = NULL, cols = NULL, na.rm = FALSE, dim. = dim(x),
...)

rowSums2(x, rows = NULL, cols = NULL, na.rm = FALSE, dim. = dim(x),
...)

colSums2 31

S4 method for signature 'DelayedMatrix'
colSums2(x, rows = NULL, cols = NULL,
na.rm = FALSE, dim. = dim(x), force_block_processing = FALSE, ...)

S4 method for signature 'Matrix'
colSums2(x, rows = NULL, cols = NULL,
na.rm = FALSE, dim. = dim(x), ...)

S4 method for signature 'SolidRleArraySeed'
colSums2(x, rows = NULL, cols = NULL,
na.rm = FALSE, dim. = dim(x), ...)

S4 method for signature 'DelayedMatrix'
rowSums2(x, rows = NULL, cols = NULL,
na.rm = FALSE, dim. = dim(x), force_block_processing = FALSE, ...)

S4 method for signature 'Matrix'
rowSums2(x, rows = NULL, cols = NULL,
na.rm = FALSE, dim. = dim(x), ...)

Arguments

x A NxK DelayedMatrix.

rows A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

cols A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

na.rm If TRUE, NAs are excluded first, otherwise not.

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix.

... Additional arguments passed to specific methods.
force_block_processing

FALSE (the default) means that a seed-aware, optimised method is used (if avail-
able). This can be overridden to use the general block-processing strategy by
setting this to TRUE (typically not advised). The block-processing strategy loads
one or more (depending on getAutoBlockSize()) columns (colFoo()) or rows
(rowFoo()) into memory as an ordinary base::array.

Details

The implementation of rowSums2() and colSums2() is optimized for both speed and memory.

Value

Returns a numeric vector of length N (K).

Examples

A DelayedMatrix with a 'matrix' seed
dm_matrix <- DelayedArray(matrix(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L)),

32 colTabulates

ncol = 3))
A DelayedMatrix with a 'Matrix' seed
dm_Matrix <- DelayedArray(Matrix::Matrix(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L)),

ncol = 3))

colSums2(dm_matrix)

NOTE: Temporarily use verbose output to demonstrate which method is
which method is being used
options(DelayedMatrixStats.verbose = TRUE)
By default, this uses a seed-aware method for a DelayedMatrix with a
'SolidRleArraySeed' seed
rowSums2(dm_Matrix)
Alternatively, can use the block-processing strategy
rowSums2(dm_Matrix, force_block_processing = TRUE)
options(DelayedMatrixStats.verbose = FALSE)

colTabulates Tabulates the values in a matrix by row (column).

Description

Tabulates the values in a matrix by row (column).

Usage

colTabulates(x, rows = NULL, cols = NULL, values = NULL, ...)

rowTabulates(x, rows = NULL, cols = NULL, values = NULL, ...)

S4 method for signature 'DelayedMatrix'
colTabulates(x, rows = NULL, cols = NULL,
values = NULL, force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowTabulates(x, rows = NULL, cols = NULL,
values = NULL, force_block_processing = FALSE, ...)

Arguments

x A NxK DelayedMatrix.

rows A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

cols A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

values An vector of J values of count. If NULL, all (unique) values are counted.

... Additional arguments passed to specific methods.

colVars 33

force_block_processing

FALSE (the default) means that a seed-aware, optimised method is used (if avail-
able). This can be overridden to use the general block-processing strategy by
setting this to TRUE (typically not advised). The block-processing strategy loads
one or more (depending on getAutoBlockSize()) columns (colFoo()) or rows
(rowFoo()) into memory as an ordinary base::array.

Details

An alternative to these functions, is to use table(x,row(x)) and table(x,col(x)), with the
exception that the latter do not support the raw data type. When there are no missing values in
x, we have that all(rowTabulates(x) == t(table(x,row(x)))) and all(colTabulates(x) ==
t(table(x,col(x)))). When there are missing values, we have that all(rowTabulates(x) ==
t(table(x,row(x),useNA = "always")[,seq_len(nrow(x))])) and all(colTabulates(x) ==
t(table(x,col(x),useNA = "always")[,seq_len(ncol(x))])).

Value

Returns a NxJ (KxJ) matrix where N (K) is the number of row (column) vectors tabulated and J
is the number of values counted.

Examples

A DelayedMatrix with a 'DataFrame' seed
dm_DF <- DelayedArray(S4Vectors::DataFrame(C1 = rep(1L, 5),

C2 = as.integer((0:4) ^ 2),
C3 = seq(-5L, -1L, 1L)))

colTabulates(dm_DF)

rowTabulates(dm_DF)

colVars Variance estimates for each row (column) in a matrix

Description

Variance estimates for each row (column) in a matrix.

Usage

colVars(x, rows = NULL, cols = NULL, na.rm = FALSE, center = NULL,
dim. = dim(x), ...)

rowVars(x, rows = NULL, cols = NULL, na.rm = FALSE, center = NULL,
dim. = dim(x), ...)

S4 method for signature 'DelayedMatrix'
colVars(x, rows = NULL, cols = NULL,
na.rm = FALSE, center = NULL, dim. = dim(x),
force_block_processing = FALSE, ...)

34 colVars

S4 method for signature 'DelayedMatrix'
rowVars(x, rows = NULL, cols = NULL,
na.rm = FALSE, center = NULL, dim. = dim(x),
force_block_processing = FALSE, ...)

Arguments

x A NxK DelayedMatrix.

rows A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

cols A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

na.rm If TRUE, missing values are excluded first, otherwise not.

center (optional) The center, defaults to the row means.

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix.

... Additional arguments passed to specific methods.
force_block_processing

FALSE (the default) means that a seed-aware, optimised method is used (if avail-
able). This can be overridden to use the general block-processing strategy by
setting this to TRUE (typically not advised). The block-processing strategy loads
one or more (depending on getAutoBlockSize()) columns (colFoo()) or rows
(rowFoo()) into memory as an ordinary base::array.

Value

Returns a numeric vector of length N (K).

See Also

See rowMeans() and rowSums() in colSums().

Examples

A DelayedMatrix with a 'matrix' seed
dm_matrix <- DelayedArray(matrix(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L)),

ncol = 3))
A DelayedMatrix with a 'HDF5ArraySeed' seed
NOTE: Requires that the HDF5Array package is installed
library(HDF5Array)
dm_HDF5 <- writeHDF5Array(matrix(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L)),

ncol = 3))

colVars(dm_matrix)

rowVars(dm_matrix)

colWeightedMads 35

colWeightedMads Weighted Median Absolute Deviation (MAD)

Description

Computes a weighted MAD of a numeric vector.

Usage

colWeightedMads(x, w = NULL, rows = NULL, cols = NULL,
na.rm = FALSE, constant = 1.4826, center = NULL, ...)

rowWeightedMads(x, w = NULL, rows = NULL, cols = NULL,
na.rm = FALSE, constant = 1.4826, center = NULL, ...)

S4 method for signature 'DelayedMatrix'
colWeightedMads(x, w = NULL, rows = NULL,
cols = NULL, na.rm = FALSE, constant = 1.4826, center = NULL,
force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowWeightedMads(x, w = NULL, rows = NULL,
cols = NULL, na.rm = FALSE, constant = 1.4826, center = NULL,
force_block_processing = FALSE, ...)

Arguments

x A NxK DelayedMatrix.

w a vector of weights the same length as x giving the weights to use for each
element of x. Negative weights are treated as zero weights. Default value is
equal weight to all values.

rows A vector indicating subset of elements (or rows and/or columns) to operate
over. If NULL, no subsetting is done.

cols A vector indicating subset of elements (or rows and/or columns) to operate
over. If NULL, no subsetting is done.

na.rm a logical value indicating whether NA values in x should be stripped before the
computation proceeds, or not. If NA, no check at all for NAs is done. Default
value is NA (for efficiency).

constant A numeric scale factor, cf. mad.

center Optional numeric scalar specifying the center location of the data. If NULL, it is
estimated from data.

... Additional arguments passed to specific methods.
force_block_processing

FALSE (the default) means that a seed-aware, optimised method is used (if avail-
able). This can be overridden to use the general block-processing strategy by
setting this to TRUE (typically not advised). The block-processing strategy loads
one or more (depending on getAutoBlockSize()) columns (colFoo()) or rows
(rowFoo()) into memory as an ordinary base::array.

36 colWeightedMeans

Value

Returns a numeric scalar.

Missing values

Missing values are dropped at the very beginning, if argument na.rm is TRUE, otherwise not.

See Also

For the non-weighted MAD, see mad. Internally weightedMedian() is used to calculate the weighted
median.

Examples

A DelayedMatrix with a 'matrix' seed
dm_matrix <- DelayedArray(matrix(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L)),

ncol = 3))

colWeightedMads(dm_matrix, w = 1:5)

rowWeightedMads(dm_matrix, w = 3:1)

colWeightedMeans Calculates the weighted means for each row (column) in a matrix

Description

Calculates the weighted means for each row (column) in a matrix.

Usage

colWeightedMeans(x, w = NULL, rows = NULL, cols = NULL,
na.rm = FALSE, ...)

rowWeightedMeans(x, w = NULL, rows = NULL, cols = NULL,
na.rm = FALSE, ...)

S4 method for signature 'DelayedMatrix'
colWeightedMeans(x, w = NULL, rows = NULL,
cols = NULL, na.rm = FALSE, force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowWeightedMeans(x, w = NULL, rows = NULL,
cols = NULL, na.rm = FALSE, force_block_processing = FALSE, ...)

colWeightedMedians 37

Arguments

x A NxK DelayedMatrix.

w A numeric vector of length K (N).

rows A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

cols A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

na.rm If TRUE, missing values are excluded from the calculation, otherwise not.

... Additional arguments passed to specific methods.
force_block_processing

FALSE (the default) means that a seed-aware, optimised method is used (if avail-
able). This can be overridden to use the general block-processing strategy by
setting this to TRUE (typically not advised). The block-processing strategy loads
one or more (depending on getAutoBlockSize()) columns (colFoo()) or rows
(rowFoo()) into memory as an ordinary base::array.

Details

The implementations of these methods are optimized for both speed and memory. If no weights are
given, the corresponding rowMeans()/colMeans() is used.

Value

Returns a numeric vector of length N (K).

See Also

See rowMeans() and colMeans() in colSums() for non-weighted means. See also weighted.mean.

Examples

A DelayedMatrix with a 'Matrix' seed
dm_Matrix <- DelayedArray(Matrix::Matrix(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L)),

ncol = 3))

colWeightedMeans(dm_Matrix)
Specifying weights inversely proportional to rowwise variances
colWeightedMeans(dm_Matrix, w = 1 / rowVars(dm_Matrix))
rowWeightedMeans(dm_Matrix, w = 1:3)

colWeightedMedians Calculates the weighted medians for each row (column) in a matrix

Description

Calculates the weighted medians for each row (column) in a matrix.

38 colWeightedMedians

Usage

colWeightedMedians(x, w = NULL, rows = NULL, cols = NULL,
na.rm = FALSE, ...)

rowWeightedMedians(x, w = NULL, rows = NULL, cols = NULL,
na.rm = FALSE, ...)

S4 method for signature 'DelayedMatrix'
colWeightedMedians(x, w = NULL, rows = NULL,
cols = NULL, na.rm = FALSE, force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowWeightedMedians(x, w = NULL, rows = NULL,
cols = NULL, na.rm = FALSE, force_block_processing = FALSE, ...)

Arguments

x A NxK DelayedMatrix.

w A numeric vector of length K (N).

rows A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

cols A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

na.rm If TRUE, missing values are excluded from the calculation, otherwise not.

... Additional arguments passed to specific methods.
force_block_processing

FALSE (the default) means that a seed-aware, optimised method is used (if avail-
able). This can be overridden to use the general block-processing strategy by
setting this to TRUE (typically not advised). The block-processing strategy loads
one or more (depending on getAutoBlockSize()) columns (colFoo()) or rows
(rowFoo()) into memory as an ordinary base::array.

Details

The implementations of these methods are optimized for both speed and memory. If no weights are
given, the corresponding rowMedians()/colMedians() is used.

Value

Returns a numeric vector of length N (K).

See Also

Internally, weightedMedian() is used. See rowMedians() and colMedians() for non-weighted
medians.

Examples

A DelayedMatrix with a 'SolidRleArraySeed' seed
dm_Rle <- RleArray(Rle(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L))),

colWeightedSds 39

dim = c(5, 3))

Specifying weights inversely proportional to rowwise MADs
colWeightedMedians(dm_Rle, w = 1 / rowMads(dm_Rle))

colWeightedSds Weighted variance and weighted standard deviation

Description

Computes a weighted variance / standard deviation of a numeric vector or across rows or columns
of a matrix.

Usage

colWeightedSds(x, w = NULL, rows = NULL, cols = NULL,
na.rm = FALSE, ...)

colWeightedVars(x, w = NULL, rows = NULL, cols = NULL,
na.rm = FALSE, ...)

rowWeightedSds(x, w = NULL, rows = NULL, cols = NULL,
na.rm = FALSE, ...)

rowWeightedVars(x, w = NULL, rows = NULL, cols = NULL,
na.rm = FALSE, ...)

S4 method for signature 'DelayedMatrix'
colWeightedSds(x, w = NULL, rows = NULL,
cols = NULL, na.rm = FALSE, force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
colWeightedVars(x, w = NULL, rows = NULL,
cols = NULL, na.rm = FALSE, force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowWeightedSds(x, w = NULL, rows = NULL,
cols = NULL, na.rm = FALSE, force_block_processing = FALSE, ...)

S4 method for signature 'DelayedMatrix'
rowWeightedVars(x, w = NULL, rows = NULL,
cols = NULL, na.rm = FALSE, force_block_processing = FALSE, ...)

Arguments

x A NxK DelayedMatrix.

w a vector of weights the same length as x giving the weights to use for each
element of x. Negative weights are treated as zero weights. Default value is
equal weight to all values.

rows A vector indicating subset of elements (or rows and/or columns) to operate
over. If NULL, no subsetting is done.

40 colWeightedSds

cols A vector indicating subset of elements (or rows and/or columns) to operate
over. If NULL, no subsetting is done.

na.rm a logical value indicating whether NA values in x should be stripped before the
computation proceeds, or not. If NA, no check at all for NAs is done. Default
value is NA (for efficiency).

... Additional arguments passed to specific methods.
force_block_processing

FALSE (the default) means that a seed-aware, optimised method is used (if avail-
able). This can be overridden to use the general block-processing strategy by
setting this to TRUE (typically not advised). The block-processing strategy loads
one or more (depending on getAutoBlockSize()) columns (colFoo()) or rows
(rowFoo()) into memory as an ordinary base::array.

Details

The estimator used here is the same as the one used by the "unbiased" estimator of the Hmisc
package. More specifically, weightedVar(x,w = w) == Hmisc::wtd.var(x,weights = w),

Value

Returns a numeric scalar.

Missing values

This function handles missing values consistently with weightedMean(). More precisely, if na.rm
= FALSE, then any missing values in either x or w will give result NA_real_. If na.rm = TRUE, then
all (x,w) data points for which x is missing are skipped. Note that if both x and w are missing for a
data points, then it is also skipped (by the same rule). However, if only w is missing, then the final
results will always be NA_real_ regardless of na.rm.

See Also

For the non-weighted variance, see var.

Examples

A DelayedMatrix with a 'SolidRleArraySeed' seed
dm_Rle <- RleArray(Rle(c(rep(1L, 5),

as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L))),

dim = c(5, 3))

colWeightedSds(dm_Rle, w = 1 / rowMeans2(dm_Rle))

Specifying weights inversely proportional to rowwise means
colWeightedVars(dm_Rle, w = 1 / rowMeans2(dm_Rle))

Specifying weights inversely proportional to columnwise means
rowWeightedSds(dm_Rle, w = 1 / colMeans2(dm_Rle))

Specifying weights inversely proportional to columnwise means
rowWeightedVars(dm_Rle, w = 1 / colMeans2(dm_Rle))

DelayedMatrixStats 41

DelayedMatrixStats DelayedMatrixStats: Functions that apply to rows and columns of De-
layedMatrix objects.

Description

DelayedMatrixStats is a port of the matrixStats API to work with DelayedMatrix objects from the
DelayedArray package. High-performing functions operating on rows and columns of Delayed-
Matrix objects, e.g. colMedians() / rowMedians(), colRanks() / rowRanks(), and colSds() /
rowSds(). Functions optimized per data type and for subsetted calculations such that both memory
usage and processing time is minimized.

subset_by_Nindex subset_by_Nindex

Description

subset_by_Nindex() is an internal generic function not aimed to be used directly by the user. It is
basically an S4 generic for DelayedArray:::subset_by_Nindex.

Usage

subset_by_Nindex(x, Nindex)

Arguments

x An array-like object.

Nindex An unnamed list of subscripts as positive integer vectors, one vector per dimen-
sion in x. Empty and missing subscripts (represented by integer(0) and NULL
list elements, respectively) are allowed. The subscripts can contain duplicated
indices. They cannot contain NAs or non-positive values.

Details

subset_by_Nindex(x,Nindex) conceptually performs the operation x[Nindex[1],...,Nindex[length(Nindex)]).
subset_by_Nindex() methods need to support empty and missing subscripts, e.g., subset_by_Nindex(x,list(NULL,integer(0)))
must return an M x 0 object of class class(x) and subset_by_Nindex(x,list(integer(0),integer(0)))
a 0 x 0 object of class class(x).

Also, subscripts are allowed to contain duplicate indices so things like subset_by_Nindex(x,list(c(1:3,3:1),2L))
need to be supported.

Value

A object of class class(x) of the appropriate type (e.g., integer, double, etc.). For example, if x
is a data.frame representing an M x N matrix of integers, subset_by_Nindex(x,list(NULL,2L)
must return its 2nd column as a data.frame with M rows and 1 column of type integer.

https://CRAN.R-project.org/package=matrixStats
http://bioconductor.org/packages/DelayedArray/

Index

[, 8

base::array, 3, 5, 7–9, 11, 13, 15, 17, 19, 20,
22–24, 26, 28, 29, 31, 33–35, 37, 38,
40

character, 26, 29
colAlls, 2
colAlls,DelayedMatrix-method (colAlls),

2
colAnyMissings, 4
colAnyMissings,DelayedMatrix-method

(colAnyMissings), 4
colAnyNAs (colAnyMissings), 4
colAnyNAs,DelayedMatrix-method

(colAnyMissings), 4
colAnys (colAlls), 2
colAnys,DelayedMatrix-method (colAlls),

2
colAvgsPerRowSet, 6
colAvgsPerRowSet,DelayedMatrix-method

(colAvgsPerRowSet), 6
colCollapse, 7
colCollapse,DelayedMatrix-method

(colCollapse), 7
colCounts, 9
colCounts,DelayedMatrix-method

(colCounts), 9
colCummaxs, 10
colCummaxs,DelayedMatrix-method

(colCummaxs), 10
colCummins (colCummaxs), 10
colCummins,DelayedMatrix-method

(colCummaxs), 10
colCumprods (colCummaxs), 10
colCumprods,DelayedMatrix-method

(colCummaxs), 10
colCumsums (colCummaxs), 10
colCumsums,DelayedMatrix-method

(colCummaxs), 10
colDiffs, 12
colDiffs,DelayedMatrix-method

(colDiffs), 12
colIQRDiffs, 14

colIQRDiffs,DelayedMatrix-method
(colIQRDiffs), 14

colIQRs, 17
colIQRs,DelayedMatrix-method (colIQRs),

17
colLogSumExps, 18
colLogSumExps,DelayedMatrix-method

(colLogSumExps), 18
colMadDiffs (colIQRDiffs), 14
colMadDiffs,DelayedMatrix-method

(colIQRDiffs), 14
colMads, 19
colMads,DelayedMatrix-method (colMads),

19
colMeans2, 21
colMeans2,DelayedMatrix-method

(colMeans2), 21
colMeans2,Matrix-method (colMeans2), 21
colMeans2,SolidRleArraySeed-method

(colMeans2), 21
colMedians, 22
colMedians,DelayedMatrix-method

(colMedians), 22
colOrderStats, 24
colOrderStats,DelayedMatrix-method

(colOrderStats), 24
colProds, 25
colProds,DelayedMatrix-method

(colProds), 25
colProds,SolidRleArraySeed-method

(colProds), 25
colQuantiles, 27
colQuantiles,DelayedMatrix-method

(colQuantiles), 27
colRanks, 28
colRanks,DelayedMatrix-method

(colRanks), 28
colSdDiffs (colIQRDiffs), 14
colSdDiffs,DelayedMatrix-method

(colIQRDiffs), 14
colSds (colMads), 19
colSds,DelayedMatrix-method (colMads),

19

42

INDEX 43

colSums, 25, 34, 37
colSums2, 30
colSums2,DelayedMatrix-method

(colSums2), 30
colSums2,Matrix-method (colSums2), 30
colSums2,SolidRleArraySeed-method

(colSums2), 30
colTabulates, 32
colTabulates,DelayedMatrix-method

(colTabulates), 32
colVarDiffs (colIQRDiffs), 14
colVarDiffs,DelayedMatrix-method

(colIQRDiffs), 14
colVars, 33
colVars,DelayedMatrix-method (colVars),

33
colWeightedMads, 35
colWeightedMads,DelayedMatrix-method

(colWeightedMads), 35
colWeightedMeans, 36
colWeightedMeans,DelayedMatrix-method

(colWeightedMeans), 36
colWeightedMedians, 37
colWeightedMedians,DelayedMatrix-method

(colWeightedMedians), 37
colWeightedSds, 39
colWeightedSds,DelayedMatrix-method

(colWeightedSds), 39
colWeightedVars (colWeightedSds), 39
colWeightedVars,DelayedMatrix-method

(colWeightedSds), 39
cummax, 12
cummin, 12
cumprod, 12
cumsum, 12

data.frame, 41
DelayedMatrix, 3, 5, 6, 8, 9, 11, 13, 15, 17,

18, 20, 21, 23, 24, 26, 27, 29, 31, 32,
34, 35, 37–39

DelayedMatrixStats, 41
DelayedMatrixStats-package

(DelayedMatrixStats), 41
diff, 16
diff2, 13, 16
double, 10, 15, 23, 25, 30

FALSE, 5
function, 6

getAutoBlockSize, 3, 5, 7–9, 11, 13, 15, 17,
19, 20, 22–24, 26, 28, 29, 31, 33–35,
37, 38, 40

integer, 3, 6, 8–13, 18, 20, 22–25, 27, 29–31,
34

IQR, 14, 16, 17
is.nan, 26

logical, 3, 6, 12, 29
logSumExp, 19

mad, 14, 16, 20, 35, 36
matrix, 3, 6–9, 11–13, 18, 20, 22–24, 28–31,

33, 34

NA, 3, 9, 15, 17, 20, 22, 23, 26, 27, 31, 35, 40
names, 30
NaN, 26
NULL, 3, 5, 6, 8, 9, 11, 13, 15, 17, 18, 20–24,

26, 27, 29, 31, 32, 34, 35, 37–40
numeric, 6, 7, 12, 13, 16, 17, 19, 20, 22, 23,

25–28, 30, 31, 34–38, 40

prod, 26
product, 26

quantile, 27, 28

rank, 29, 30
raw, 33
rowAlls (colAlls), 2
rowAlls,DelayedMatrix-method (colAlls),

2
rowAnyMissings (colAnyMissings), 4
rowAnyMissings,DelayedMatrix-method

(colAnyMissings), 4
rowAnyNAs (colAnyMissings), 4
rowAnyNAs,DelayedMatrix-method

(colAnyMissings), 4
rowAnys (colAlls), 2
rowAnys,DelayedMatrix-method (colAlls),

2
rowAvgsPerColSet (colAvgsPerRowSet), 6
rowAvgsPerColSet,DelayedMatrix-method

(colAvgsPerRowSet), 6
rowCollapse (colCollapse), 7
rowCollapse,DelayedMatrix-method

(colCollapse), 7
rowCounts (colCounts), 9
rowCounts,DelayedMatrix-method

(colCounts), 9
rowCummaxs (colCummaxs), 10
rowCummaxs,DelayedMatrix-method

(colCummaxs), 10
rowCummins (colCummaxs), 10
rowCummins,DelayedMatrix-method

(colCummaxs), 10

44 INDEX

rowCumprods (colCummaxs), 10
rowCumprods,DelayedMatrix-method

(colCummaxs), 10
rowCumsums (colCummaxs), 10
rowCumsums,DelayedMatrix-method

(colCummaxs), 10
rowDiffs (colDiffs), 12
rowDiffs,DelayedMatrix-method

(colDiffs), 12
rowIQRDiffs (colIQRDiffs), 14
rowIQRDiffs,DelayedMatrix-method

(colIQRDiffs), 14
rowIQRs, 20
rowIQRs (colIQRs), 17
rowIQRs,DelayedMatrix-method (colIQRs),

17
rowLogSumExps (colLogSumExps), 18
rowLogSumExps,DelayedMatrix-method

(colLogSumExps), 18
rowMadDiffs (colIQRDiffs), 14
rowMadDiffs,DelayedMatrix-method

(colIQRDiffs), 14
rowMads (colMads), 19
rowMads,DelayedMatrix-method (colMads),

19
rowMeans, 23
rowMeans2, 23
rowMeans2 (colMeans2), 21
rowMeans2,DelayedMatrix-method

(colMeans2), 21
rowMeans2,Matrix-method (colMeans2), 21
rowMedians, 38
rowMedians (colMedians), 22
rowMedians,DelayedMatrix-method

(colMedians), 22
rowOrderStats (colOrderStats), 24
rowOrderStats,DelayedMatrix-method

(colOrderStats), 24
rowProds (colProds), 25
rowProds,DelayedMatrix-method

(colProds), 25
rowQuantiles (colQuantiles), 27
rowQuantiles,DelayedMatrix-method

(colQuantiles), 27
rowRanks (colRanks), 28
rowRanks,DelayedMatrix-method

(colRanks), 28
rowSdDiffs (colIQRDiffs), 14
rowSdDiffs,DelayedMatrix-method

(colIQRDiffs), 14
rowSds, 17
rowSds (colMads), 19

rowSds,DelayedMatrix-method (colMads),
19

rowSums2 (colSums2), 30
rowSums2,DelayedMatrix-method

(colSums2), 30
rowSums2,Matrix-method (colSums2), 30
rowTabulates (colTabulates), 32
rowTabulates,DelayedMatrix-method

(colTabulates), 32
rowVarDiffs (colIQRDiffs), 14
rowVarDiffs,DelayedMatrix-method

(colIQRDiffs), 14
rowVars (colVars), 33
rowVars,DelayedMatrix-method (colVars),

33
rowWeightedMads (colWeightedMads), 35
rowWeightedMads,DelayedMatrix-method

(colWeightedMads), 35
rowWeightedMeans (colWeightedMeans), 36
rowWeightedMeans,DelayedMatrix-method

(colWeightedMeans), 36
rowWeightedMedians, 23
rowWeightedMedians

(colWeightedMedians), 37
rowWeightedMedians,DelayedMatrix-method

(colWeightedMedians), 37
rowWeightedSds (colWeightedSds), 39
rowWeightedSds,DelayedMatrix-method

(colWeightedSds), 39
rowWeightedVars (colWeightedSds), 39
rowWeightedVars,DelayedMatrix-method

(colWeightedSds), 39

sd, 14, 16, 20
subset_by_Nindex, 41

TRUE, 3, 5, 6, 9, 15, 17, 18, 20, 22, 23, 26, 27,
31, 34, 36–38

var, 14, 16, 20, 40
vector, 3, 5, 6, 8–11, 13, 15–27, 29, 31–35,

37–40

weighted.mean, 37
weightedMean, 40
weightedMedian, 36, 38

	colAlls
	colAnyMissings
	colAvgsPerRowSet
	colCollapse
	colCounts
	colCummaxs
	colDiffs
	colIQRDiffs
	colIQRs
	colLogSumExps
	colMads
	colMeans2
	colMedians
	colOrderStats
	colProds
	colQuantiles
	colRanks
	colSums2
	colTabulates
	colVars
	colWeightedMads
	colWeightedMeans
	colWeightedMedians
	colWeightedSds
	DelayedMatrixStats
	subset_by_Nindex
	Index

