
Package ‘BiocParallel’
October 16, 2019

Type Package

Title Bioconductor facilities for parallel evaluation

Version 1.18.1

Description This package provides modified versions and novel
implementation of functions for parallel evaluation, tailored to
use with Bioconductor objects.

URL https://github.com/Bioconductor/BiocParallel

BugReports https://github.com/Bioconductor/BiocParallel/issues

biocViews Infrastructure

License GPL-2 | GPL-3

SystemRequirements C++11

Depends methods

Imports stats, utils, futile.logger, parallel, snow

Suggests BiocGenerics, tools, foreach, BatchJobs, BBmisc, doParallel,
Rmpi, GenomicRanges, RNAseqData.HNRNPC.bam.chr14,
TxDb.Hsapiens.UCSC.hg19.knownGene, VariantAnnotation,
Rsamtools, GenomicAlignments, ShortRead, codetools, RUnit,
BiocStyle, knitr, batchtools, data.table

Collate AllGenerics.R DeveloperInterface.R prototype.R bploop.R
ErrorHandling.R log.R bpbackend-methods.R bpisup-methods.R
bplapply-methods.R bpiterate-methods.R bpstart-methods.R
bpstop-methods.R BiocParallelParam-class.R bpmapply-methods.R
bpschedule-methods.R bpvec-methods.R bpvectorize-methods.R
bpworkers-methods.R bpaggregate-methods.R bpvalidate.R
SnowParam-class.R MulticoreParam-class.R register.R
SerialParam-class.R DoparParam-class.R SnowParam-utils.R
BatchJobsParam-class.R BatchtoolsParam-class.R progress.R
ipcmutex.R utilities.R zzz.R

LinkingTo BH

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/BiocParallel

git_branch RELEASE_3_9

git_last_commit 348264a

git_last_commit_date 2019-08-06

1

https://github.com/Bioconductor/BiocParallel
https://github.com/Bioconductor/BiocParallel/issues

2 BiocParallel-package

Date/Publication 2019-10-15

Author Bioconductor Package Maintainer [cre],
Martin Morgan [aut],
Valerie Obenchain [aut],
Michel Lang [aut],
Ryan Thompson [aut],
Nitesh Turaga [aut]

Maintainer Bioconductor Package Maintainer <maintainer@bioconductor.org>

R topics documented:

BiocParallel-package . 2
BatchJobsParam-class . 3
BatchtoolsParam-class . 5
BiocParallelParam-class . 8
bpaggregate . 11
bpiterate . 12
bplapply . 15
bploop . 16
bpmapply . 18
bpok . 19
bpschedule . 20
bptry . 21
bpvalidate . 22
bpvec . 24
bpvectorize . 26
DeveloperInterface . 27
DoparParam-class . 30
ipcmutex . 31
MulticoreParam-class . 33
register . 39
SerialParam-class . 41
SnowParam-class . 42

Index 50

BiocParallel-package Bioconductor facilities for parallel evaluation

Description

This package provides modified versions and novel implementation of functions for parallel evalu-
ation, tailored to use with Bioconductor objects.

Details

This package uses code from the parallel package,

BatchJobsParam-class 3

Author(s)

Author: Bioconductor Package Maintainer [cre], Martin Morgan [aut], Valerie Obenchain [aut],
Michel Lang [aut], Ryan Thompson [aut], Nitesh Turaga [aut]

Maintainer: Bioconductor Package Maintainer <maintainer@bioconductor.org>

BatchJobsParam-class Enable parallelization on batch systems

Description

This class is used to parameterize scheduler options on managed high-performance computing clus-
ters.

Usage

BatchJobsParam(workers, cleanup = TRUE,
work.dir = getwd(), stop.on.error = TRUE, seed = NULL,
resources = NULL, conffile = NULL, cluster.functions = NULL,
progressbar = TRUE, jobname = "BPJOB",
reg.pars=list(seed=seed, work.dir=work.dir),
conf.pars=list(conffile=conffile, cluster.functions=cluster.functions),
submit.pars=list(resources=resources),
...)

Arguments

workers integer(1)Number of workers to divide tasks (e.g., elements in the first argu-
ment of bplapply) between. On Multicore and SSH backends, this defaults to
all available nodes. On managed (e.g., slurm, SGE) clusters workers defaults
to NA, meaning that the number of workers equals the number of tasks. See
argument n.chunks in chunk and submitJobs for more information.

cleanup logical(1)BatchJobs creates temporary directories in the work.dir. If cleanup
is set to TRUE (default), the directories are removed from the file systems au-
tomatically. Set this to FALSE whenever it might become necessary to utilize
any special functionality provided by BatchJobs. To retrieve the registry, call
loadRegistry on the temporary directory.

work.dir character(1)Directory to store temporary files. Note that this must be shared
across computational nodes if you use a distributed computing backend. Default
ist the current working directory of R, see getwd. Ignored when reg.pars is
provided.

stop.on.error logical(1)Stop all jobs as soon as one jobs fails (stop.on.error == TRUE) or
wait for all jobs to terminate. Default is TRUE.

seed integer(1L)Set an initial seed for the RNG. See makeRegistry for more in-
formation. Default is NULL where a random seed is chosen upon initialization.
Ignored when reg.pars is provided.

resources list()List of job specific resources passed to submitJobs. Default is NULL
where the resources defined in the configuration are used. Ignored when submit.pars
is provided.

4 BatchJobsParam-class

conffile character(1)URI to a custom BatchJobs configuration file used for execution.
Default is NULL which relies on BatchJobs to handle configuration files. Ignored
when conf.pars is provided.

cluster.functions

ClusterFunctionsSpecify a specific cluster backend using on of the constructors
provided by BatchJobs, see ClusterFunctions. Default is NULL where the default
cluster functions defined in the configuration are used. Ignored when conf.pars
is provided.

progressbar logical(1) Suppress the progress bar used in BatchJobs and be less verbose.
Default is FALSE.

jobname character(1)Job name that is prepended to the output log and result files. De-
fault is "BPJOB".

reg.pars list() List of parameters passed to BatchJobs::makeRegistry(). When
present, user-supplied arguments seed and work.dir to BatchJobsParam are
ignored.

conf.pars list() List of parameters passed to BatchJobs::setConfig(). When present,
user-supplied arguments conffile, cluster.functions to BatchJobsParam
are ignored.

submit.pars list() List of parameters passed to BatchJobs::submitJobs. When present,
user-supplied argument resources to BatchJobsParam is ignored. submitJobs
parameters reg, id cannot be set.

... Addition arguments, currently not handled.

BatchJobsParam constructor

Return an object with specified values. The object may be saved to disk or reused within a session.

Methods

The following generics are implemented and perform as documented on the corresponding help
page: bpworkers, bpnworkers, bpstart, bpstop, bpisup, bpbackend, bpbackend<-

Author(s)

Michel Lang, mailto:michellang@gmail.com

See Also

getClass("BiocParallelParam") for additional parameter classes.

register for registering parameter classes for use in parallel evaluation.

Examples

p <- BatchJobsParam(progressbar=FALSE)
bplapply(1:10, sqrt, BPPARAM=p)

Not run:
see vignette for additional explanation
funs <- makeClusterFunctionsSLURM("~/slurm.tmpl")
param <- BatchJobsParam(4, cluster.functions=funs)
register(param)
bplapply(1:10, function(i) sqrt)

mailto:michellang@gmail.com

BatchtoolsParam-class 5

End(Not run)

BatchtoolsParam-class Enable parallelization on batch systems

Description

This class is used to parameterize scheduler options on managed high-performance computing clus-
ters using batchtools.

BatchtoolsParam(): Construct a BatchtoolsParam-class object.

batchtoolsWorkers(): Return the default number of workers for each backend.

batchtoolsTemplate(): Return the default template for each backend.

batchtoolsCluster(): Return the default cluster.

batchtoolsRegistryargs(): Create a list of arguments to be used in batchtools’ makeRegistry;
see registryargs argument.

Usage

BatchtoolsParam(
workers = batchtoolsWorkers(cluster),
cluster = batchtoolsCluster(),
registryargs = batchtoolsRegistryargs(),
saveregistry = FALSE,
resources = list(),
template = batchtoolsTemplate(cluster),
stop.on.error = TRUE, progressbar = FALSE, RNGseed = NA_integer_,
timeout = 30L * 24L * 60L * 60L, exportglobals=TRUE,
log = FALSE, logdir = NA_character_, resultdir=NA_character_,
jobname = "BPJOB"

)
batchtoolsWorkers(cluster = batchtoolsCluster())
batchtoolsCluster(cluster)
batchtoolsTemplate(cluster)
batchtoolsRegistryargs(...)

Arguments

workers integer(1)Number of workers to divide tasks (e.g., elements in the first argu-
ment of bplapply) between. On ’multicore’ and ’socket’ backends, this defaults
to multicoreWorkers() and snowWorkers(). On managed (e.g., slurm, SGE)
clusters workers has no default, meaning that the number of workers needs to
be provided by the user.

cluster character(1)Cluster type being used as the backend by BatchtoolsParam.
The available options are "socket", "multicore", "interactive", "sge", "slurm",
"lsf", "torque" and "openlava". The cluster type if available on the machine reg-
isters as the backend. Cluster types which need a template are "sge", "slurm",
"lsf", "openlava", and "torque". If the template is not given then a default is
selected from the batchtools package.

6 BatchtoolsParam-class

registryargs list()Arguments given to the registry created by BatchtoolsParam to config-
ure the registry and where it’s being stored. The registryargs can be spec-
ified by the function batchtoolsRegistryargs() which takes the arguments
file.dir, work.dir, packages, namespaces, source, load, make.default.
It’s useful to configure these option, especially the file.dir to a location which
is accessible to all the nodes on your job scheduler i.e master and workers.
file.dir uses a default setting to make a registry in your working directory.

saveregistry logical(1)Option given to store the entire registry for the job(s). This func-
tionality should only be used when debugging. The storage of the entire registry
can be time and space expensive on disk. The registry will be saved in the direc-
tory specified by file.dir in registryargs; the default locatoin is the current
working directory. The saved registry directories will have suffix "-1", "-2" and
so on, for each time the BatchtoolsParam is used.

resources named list()Arguments passed to the resources argument of batchtools::submitJobs
during evaluation of bplapply and similar functions. These name-value pairs
are used for substitution into the template file.

template character(1)Path to a template for the backend in BatchtoolsParam. It is
possible to check which template is being used by the object using the getter
bpbackend(BatchtoolsParam()). The template needs to be written specific to
each backend. Please check the list of available templates in the batchtools
package.

stop.on.error logical(1)Stop all jobs as soon as one jobs fails (stop.on.error == TRUE) or
wait for all jobs to terminate. Default is TRUE.

progressbar logical(1)Suppress the progress bar used in BatchtoolsParam and be less ver-
bose. Default is FALSE.

RNGseed integer(1)Set an initial seed for the RNG. Default is NULL where a random
seed is chosen upon initialization.

timeout list()Time (in seconds) allowed for worker to complete a task. If the compu-
tation exceeds timeout an error is thrown with message ’reached elapsed time
limit’.

exportglobals logical(1)Export base::options() from manager to workers? Default TRUE.
log logical(1)Option given to save the logs which are produced by the jobs. If

log=TRUE then the logdir option must be specified.
logdir character(1)Path to location where logs are stored. The argument log=TRUE

is required before using the logdir option.
resultdir logical(1)Path where results are stored.
jobname character(1)Job name that is prepended to the output log and result files. De-

fault is "BPJOB".
... name-value pairs Names and values correspond to arguments from batchtools

makeRegistry.

BatchtoolsParam constructor

Return an object with specified values. The object may be saved to disk or reused within a session.

Methods

The following generics are implemented and perform as documented on the corresponding help
page: bpworkers, bpnworkers, bpstart, bpstop, bpisup, bpbackend.
bplapply handles arguments X of classes derived from S4Vectors::List specially, coercing to
list.

BatchtoolsParam-class 7

Author(s)

Nitesh Turaga, mailto:nitesh.turaga@roswellpark.org

See Also

getClass("BiocParallelParam") for additional parameter classes.

register for registering parameter classes for use in parallel evaluation.

The batchtools package.

Examples

Pi approximation
piApprox = function(n) {

nums = matrix(runif(2 * n), ncol = 2)
d = sqrt(nums[, 1]^2 + nums[, 2]^2)
4 * mean(d <= 1)

}

piApprox(1000)

Calculate piApprox 10 times
param <- BatchtoolsParam()
result <- bplapply(rep(10e5, 10), piApprox, BPPARAM=param)

Not run:
see vignette for additional explanation
library(BiocParallel)
param = BatchtoolsParam(workers=5,

cluster="sge",
template="script/test-sge-template.tmpl")

Run parallel job
result = bplapply(rep(10e5, 100), piApprox, BPPARAM=param)

bpmapply
param = BatchtoolsParam()
result = bpmapply(fun, x = 1:3, y = 1:3, MoreArgs = list(z = 1),

SIMPLIFY = TRUE, BPPARAM = param)

bpvec
param = BatchtoolsParam(workers=2)
result = bpvec(1:10, seq_along, BPPARAM=param)

bpvectorize
param = BatchtoolsParam(workers=2)
this returns a function
bpseq_along = bpvectorize(seq_along, BPPARAM=param)
result = bpseq_along(1:10)

bpiterate
ITER <- function(n=5) {

i <- 0L
function() {

i <<- i + 1L
if (i > n)

return(NULL)

mailto:nitesh.turaga@roswellpark.org

8 BiocParallelParam-class

rep(i, n)
}

}

param <- BatchtoolsParam()
res <- bpiterate(ITER=ITER(), FUN=function(x,y) sum(x) + y, y=10, BPPARAM=param)

save logs
logdir <- tempfile()
dir.create(logdir)
param <- BatchtoolsParam(log=TRUE, logdir=logdir)
res <- bplapply(rep(10e5, 10), piApprox, BPPARAM=param)

save registry (should be used only for debugging)
file.dir <- tempfile()
registryargs <- batchtoolsRegistryargs(file.dir = file.dir)
param <- BatchtoolsParam(saveregistry = TRUE, registryargs = registryargs)
res <- bplapply(rep(10e5, 10), piApprox, BPPARAM=param)
dir(dirname(file.dir), basename(file.dir))

End(Not run)

BiocParallelParam-class

BiocParallelParam objects

Description

The BiocParallelParam virtual class stores configuration parameters for parallel execution. Con-
crete subclasses include SnowParam, MulticoreParam, BatchtoolsParam, and DoparParam and
SerialParam.

Details

BiocParallelParam is the virtual base class on which other parameter objects build. There are 5
concrete subclasses:

SnowParam: distributed memory computing

MulticoreParam: shared memory computing

BatchtoolsParam: scheduled cluster computing

DoparParam: foreach computing

SerialParam: non-parallel execution

The parameter objects hold configuration parameters related to the method of parallel execution
such as shared memory, independent memory or computing with a cluster scheduler.

Construction

The BiocParallelParam class is virtual and has no constructor. Instances of the subclasses can be
created with the following:

• SnowParam()

BiocParallelParam-class 9

• MulticoreParam()

• BatchtoolsParam()

• DoparParam()

• SerialParam()

Accessors

Back-end control: In the code below BPPARAM is a BiocParallelParam object.

bpworkers(x), bpworkers(x,...): integer(1) or character(). Gets the number or names
of the back-end workers. The setter is supported for SnowParam and MulticoreParam only.

bpnworkers(x): integer(1). Gets the number of the back-end workers.
bptasks(x), bptasks(x) <-value: integer(1). Get or set the number of tasks for a job.

value must be a scalar integer >= 0L. This argument applies to SnowParam and MulticoreParam
only; DoparParam and BatchtoolsParam have their own approach to dividing a job among
workers.
We define a job as a single call to a function such as bplapply, bpmapply etc. A task is
the division of the X argument into chunks. When tasks == 0 (default), X is divided by the
number of workers. This approach distributes X in (approximately) equal chunks.
A tasks value of > 0 dictates the total number of tasks. Values can range from 1 (all of X to
a single worker) to the length of X (each element of X to a different worker).
When the length of X is less than the number of workers each element of X is sent to a worker
and tasks is ignored. Another case where the tasks value is ignored is when using the
bpiterate function; the number of tasks are defined by the number of data chunks returned
by the ITER function.

bpstart(x): logical(1). Starts the back-end, if necessary.
bpstop(x): logical(1). Stops the back-end, if necessary and possible.
bpisup(x): logical(1). Tests whether the back-end is available for processing, returning a

scalar logical value. bp* functions such as bplapply automatically start the back-end if
necessary.

bpbackend(x), bpbackend(x) <-value: Gets or sets the parallel bpbackend. Not all back-ends
can be retrieved; see methods("bpbackend").

bplog(x), bplog(x) <-value: Get or enable logging, if available. value must be a logical(1).
bpthreshold(x), bpthreshold(x) <-value: Get or set the logging threshold. value must be a

character(1) string of one of the levels defined in the futile.logger package: “TRACE”,
“DEBUG”, “INFO”, “WARN”, “ERROR”, or “FATAL”.

bplogdir(x), bplogdir(x) <-value: Get or set an optional directory for saving log files. The
directory must already exist with read / write ability.

bpresultdir(x), bpresultdir(x) <-value: Get or set an optional directory for saving results
as ’rda’ files. The directory must already exist with read / write ability.

bptimeout(x), bptimeout(x) <-value: numeric(1) Time (in seconds) allowed for worker to
complete a task. This value is passed to base::setTimeLimit() as both the cpu and elapsed
arguments. If the computation exceeds timeout an error is thrown with message ’reached
elapsed time limit’.

bpexportglobals(x), bpexportglobals(x) <-value: logical(1) Export base::options()
from manager to workers? Default TRUE.

bpprogressbar(x), bpprogressbar(x) <-value: Get or set the value to enable text progress
bar. value must be a logical(1).

bpRNGseed(x), bpRNGseed(x) <-value: Get or set the seed for random number generaton.
value must be a numeric(1) or NULL.

10 BiocParallelParam-class

bpjobname(x), bpjobname(x) <-value: Get or set the job name.

Error Handling: In the code below BPPARAM is a BiocParallelParam object.

bpstopOnError(x), bpstopOnError(x) <-value: logical(). Controls if the job stops when
an error is hit.
stop.on.error controls whether the job stops after an error is thrown. When TRUE, the
output contains all successfully completed results up to and including the error. When
stop.on.error == TRUE all computations stop once the error is hit. When FALSE, the job
runs to completion and successful results are returned along with any error messages.

Methods

Evaluation: In the code below BPPARAM is a BiocParallelParam object. Full documentation
for these functions are on separate man pages: see ?bpmapply, ?bplapply, ?bpvec, ?bpiterate
and ?bpaggregate.

bpmapply(FUN,...,MoreArgs=NULL,SIMPLIFY=TRUE,USE.NAMES=TRUE,BPPARAM=bpparam())

bplapply(X,FUN,...,BPPARAM=bpparam())

bpvec(X,FUN,...,AGGREGATE=c,BPPARAM=bpparam())

bpiterate(ITER,FUN,...,BPPARAM=bpparam())

bpaggregate(x,data,FUN,...,BPPARAM=bpparam())

Other: In the code below BPPARAM is a BiocParallelParam object.

show(x)

Author(s)

Martin Morgan and Valerie Obenchain.

See Also

• SnowParam for computing in distributed memory

• MulticoreParam for computing in shared memory

• BatchtoolsParam for computing with cluster schedulers

• DoparParam for computing with foreach

• SerialParam for non-parallel execution

Examples

getClass("BiocParallelParam")

For examples see ?SnowParam, ?MulticoreParam, ?BatchtoolsParam
and ?SerialParam.

bpaggregate 11

bpaggregate Apply a function on subsets of data frames

Description

This is a parallel version of aggregate.

Usage

S4 method for signature 'formula,BiocParallelParam'
bpaggregate(x, data, FUN, ...,

BPREDO=list(), BPPARAM=bpparam())

S4 method for signature 'data.frame,BiocParallelParam'
bpaggregate(x, by, FUN, ...,

simplify=TRUE, BPREDO=list(), BPPARAM=bpparam())

S4 method for signature 'matrix,BiocParallelParam'
bpaggregate(x, by, FUN, ...,

simplify=TRUE, BPREDO=list(), BPPARAM=bpparam())

S4 method for signature 'ANY,missing'
bpaggregate(x, ..., BPREDO=list(), BPPARAM=bpparam())

Arguments

x A data.frame, matrix or a formula.

by A list of factors by which x is split; applicable when x is data.frame or matrix.

data A data.frame; applicable when x is a formula.

FUN Function to apply.

... Additional arguments for FUN.

simplify If set to TRUE, the return values of FUN will be simplified using simplify2array.

BPPARAM An optional BiocParallelParam instance determining the parallel back-end to
be used during evaluation.

BPREDO A list of output from bpaggregate with one or more failed elements. When
a list is given in BPREDO, bpok is used to identify errors, tasks are rerun and
inserted into the original results.

Details

bpaggregate is a generic with methods for data.frame matrix and formula objects. x is divided
into subsets according to factors in by. Data chunks are sent to the workers, FUN is applied and
results are returned as a data.frame.

The function is similar in spirit to aggregate from the stats package but aggregate is not explicitly
called. The bpaggregate formula method reformulates the call and dispatches to the data.frame
method which in turn distributes data chunks to workers with bplapply.

12 bpiterate

Value

See aggregate.

Author(s)

Martin Morgan mailto:mtmorgan@fhcrc.org.

Examples

if (require(Rsamtools) && require(GenomicAlignments)) {

fl <- system.file("extdata", "ex1.bam", package="Rsamtools")
param <- ScanBamParam(what = c("flag", "mapq"))
gal <- readGAlignments(fl, param=param)

Report the mean map quality by range cutoff:
cutoff <- rep(0, length(gal))
cutoff[start(gal) > 1000 & start(gal) < 1500] <- 1
cutoff[start(gal) > 1500] <- 2
bpaggregate(as.data.frame(mcols(gal)$mapq), list(cutoff = cutoff), mean)

}

bpiterate Parallel iteration over an indeterminate number of data chunks

Description

bpiterate iterates over an indeterminate number of data chunks (e.g., records in a file). Each chunk
is processed by parallel workers in an asynchronous fashion; as each worker finishes it receives a
new chunk. Data are traversed a single time.

Usage

bpiterate(ITER, FUN, ..., BPPARAM=bpparam())

S4 method for signature 'ANY,ANY,missing'
bpiterate(ITER, FUN, ..., BPPARAM=bpparam())

S4 method for signature 'ANY,ANY,BatchtoolsParam'
bpiterate(

ITER, FUN, ..., REDUCE, init, reduce.in.order=FALSE, BPPARAM=bpparam()
)

Arguments

ITER A function with no arguments that returns an object to process, generally a chunk
of data from a file. When no objects are left (i.e., end of file) it should return
NULL and continue to return NULL regardless of the number of times it is
invoked after reaching the end of file. This function is run on the master.

mailto:mtmorgan@fhcrc.org

bpiterate 13

FUN A function to process the object returned by ITER; run on parallel workers sep-
arate from the master. When BPPARAM is a MulticoreParam, FUN is ‘deco-
rated‘ with additional arguments and therefore must have . . . in the signature.

BPPARAM An optional BiocParallelParam instance determining the parallel back-end to
be used during evaluation, or a list of BiocParallelParam instances, to be
applied in sequence for nested calls to bpiterate.

REDUCE Optional function that combines (reduces) output from FUN. As each worker
returns, the data are combined with the REDUCE function. REDUCE takes 2 argu-
ments; one is the current result and the other is the output of FUN from a worker
that just finished.

init Optional initial value for REDUCE; must be of the same type as the object returned
from FUN. When supplied, reduce.in.order is set to TRUE.

reduce.in.order

Logical. When TRUE, REDUCE is applied to the results from the workers in
the same order the tasks were sent out.

... Arguments to other methods, and named arguments for FUN.

Details

Supported for SnowParam, MulticoreParam and BatchtoolsParam.

bpiterate iterates through an unknown number of data chunks, dispatching chunks to parallel
workers as they become available. In contrast, other bp*apply functions such as bplapply or
bpmapply require the number of data chunks to be specified ahead of time. This quality makes
bpiterate useful for iterating through files of unknown length.

ITER serves up chunks of data until the end of the file is reached at which point it returns NULL.
Note that ITER should continue to return NULL reguardless of the number of times it is invoked
after reaching the end of the file. FUN is applied to each object (data chunk) returned by ITER.

Value

By default, a list the same length as the number of chunks in ITER(). When REDUCE is used, the
return is consistent with application of the reduction.

Author(s)

Valerie Obenchain mailto:vobencha@fhcrc.org.

See Also

• bpvec for parallel, vectorized calculations.

• bplapply for parallel, lapply-like calculations.

• BiocParallelParam for details of BPPARAM.

• BatchtoolsParam for details of BatchtoolsParam.

Examples

Not run:
if (require(Rsamtools) && require(RNAseqData.HNRNPC.bam.chr14) &&

require(GenomicAlignments) && require(ShortRead)) {

--

mailto:vobencha@fhcrc.org

14 bpiterate

Iterate through a BAM file
--

Select a single file and set 'yieldSize' in the BamFile object.
fl <- RNAseqData.HNRNPC.bam.chr14_BAMFILES[[1]]
bf <- BamFile(fl, yieldSize = 300000)

bamIterator() is initialized with a BAM file and returns a function.
The return function requires no arguments and iterates through the
file returning data chunks the size of yieldSize.
bamIterator <- function(bf) {

done <- FALSE
if (!isOpen(bf))

open(bf)

function() {
if (done)

return(NULL)
yld <- readGAlignments(bf)
if (length(yld) == 0L) {

close(bf)
done <<- TRUE
NULL

} else yld
}

}

FUN counts reads in a region of interest.
roi <- GRanges("chr14", IRanges(seq(19e6, 107e6, by = 10e6), width = 10e6))
counter <- function(reads, roi, ...) {

countOverlaps(query = roi, subject = reads)
}

Initialize the iterator.
ITER <- bamIterator(bf)

The number of chunks returned by ITER() determines the result length.
bpparam <- MulticoreParam(workers = 3)
bpparam <- BatchtoolsParam(workers = 3), see ?BatchtoolsParam
bpiterate(ITER, counter, roi = roi, BPPARAM = bpparam)

Re-initialize the iterator and combine on the fly with REDUCE:
ITER <- bamIterator(bf)
bpparam <- MulticoreParam(workers = 3)
bpiterate(ITER, counter, REDUCE = sum, roi = roi, BPPARAM = bpparam)

--
Iterate through a FASTA file
--

Set data chunk size with 'n' in the FastqStreamer object.
sp <- SolexaPath(system.file('extdata', package = 'ShortRead'))
fl <- file.path(analysisPath(sp), "s_1_sequence.txt")

Create an iterator that returns data chunks the size of 'n'.
fastqIterator <- function(fqs) {

done <- FALSE

bplapply 15

if (!isOpen(fqs))
open(fqs)

function() {
if (done)

return(NULL)
yld <- yield(fqs)
if (length(yld) == 0L) {

close(fqs)
done <<- TRUE
NULL

} else yld
}

}

The process function summarizes the number of times each sequence occurs.
summary <- function(reads, ...) {

ShortRead::tables(reads, n = 0)$distribution
}

Create a param.
bpparam <- SnowParam(workers = 2)

Initialize the streamer and iterator.
fqs <- FastqStreamer(fl, n = 100)
ITER <- fastqIterator(fqs)
bpiterate(ITER, summary, BPPARAM = bpparam)

Results from the workers are combined on the fly when REDUCE is used.
Collapsing the data in this way can substantially reduce memory
requirements.
fqs <- FastqStreamer(fl, n = 100)
ITER <- fastqIterator(fqs)
bpiterate(ITER, summary, REDUCE = merge, all = TRUE, BPPARAM = bpparam)

}

End(Not run)

bplapply Parallel lapply-like functionality

Description

bplapply applies FUN to each element of X. Any type of object X is allowed, provided length, [,
and [[methods are available. The return value is a list of length equal to X, as with lapply.

Usage

bplapply(X, FUN, ..., BPREDO = list(), BPPARAM=bpparam())

Arguments

X Any object for which methods length, [, and [[are implemented.

16 bploop

FUN The function to be applied to each element of X.
... Additional arguments for FUN, as in lapply.
BPPARAM An optional BiocParallelParam instance determining the parallel back-end to

be used during evaluation, or a list of BiocParallelParam instances, to be
applied in sequence for nested calls to BiocParallel functions.

BPREDO A list of output from bplapply with one or more failed elements. When a list
is given in BPREDO, bpok is used to identify errors, tasks are rerun and inserted
into the original results.

Details

See methods{bplapply} for additional methods, e.g., method?bplapply("MulticoreParam").

Value

See lapply.

Author(s)

Martin Morgan mailto:mtmorgan@fhcrc.org. Original code as attributed in mclapply.

See Also

• bpvec for parallel, vectorized calculations.
• BiocParallelParam for possible values of BPPARAM.

Examples

methods("bplapply")

ten tasks (1:10) so ten calls to FUN default registered parallel
back-end. Compare with bpvec.
fun <- function(v) {

message("working") ## 10 tasks
sqrt(v)

}
bplapply(1:10, fun)

bploop Internal Functions for SNOW-style Parallel Evaluation

Description

The functions documented on this page are primarily for use within BiocParallel to enable SNOW-
style parallel evaluation, using communication between manager and worker nodes through sockets.

Usage

S3 method for class 'lapply'
bploop(manager, X, FUN, ARGFUN, BPPARAM, ...)

S3 method for class 'iterate'
bploop(manager, ITER, FUN, ARGFUN, BPPARAM,

REDUCE, init, reduce.in.order, ...)

mailto:mtmorgan@fhcrc.org

bploop 17

Arguments

manager An object representing the manager node. For workers, this is the node to which
the worker will communicate. For managers, this is the form of iteration –
lapply or iterate.

X A vector of jobs to be performed.

FUN A function to apply to each job.

ARGFUN A function accepting an integer value indicating the job number, and returning
the job-specific arguments to FUN.

BPPARAM An instance of a BiocParallelParam class.

ITER A function used to generate jobs. No more jobs are available when ITER()
returns NULL.

REDUCE (Optional) A function combining two values returned by FUN into a single value.

init (Optional) Initial value for reduction.

reduce.in.order

(Optional) logical(1) indicating that reduction must occur in the order jobs are
dispatched (TRUE) or that reduction can occur in the order jobs are completed
(FALSE).

... Additional arguments, ignored in all cases.

Details

Workers enter a loop. They wait to receive a message (R list) from the manager. The message
contains a type element, with evaluation as follows:

“EXEC” Execute the R code in the message, returning the result to the manager.

“DONE” Signal termination to the manager, terminate the worker.

Managers under lapply dispatch pre-determined jobs, X, to workers, collecting the results from
and dispatching new jobs to the first available worker. The manager returns a list of results, in a
one-to-one correspondence with the order of jobs supplied, when all jobs have been evaluated.

Managers under iterate dispatch an undetermined number of jobs to workers, collecting pre-
vious jobs from and dispatching new jobs to the first available worker. Dispatch continues until
available jobs are exhausted. The return value is by default a list of results in a one-to-one corre-
spondence with the order of jobs supplied. The return value is influenced by REDUCE, init, and
reduce.in.order.

Author(s)

Valerie Obenchain, Martin Morgan. Derived from similar functionality in the snow and parallel
packages.

Examples

These functions are not meant to be called by the end user.

18 bpmapply

bpmapply Parallel mapply-like functionality

Description

bpmapply applies FUN to first elements of ..., the second elements and so on. Any type of object
in ... is allowed, provided length, [, and [[methods are available. The return value is a list of
length equal to the length of all objects provided, as with mapply.

Usage

bpmapply(FUN, ..., MoreArgs=NULL, SIMPLIFY=TRUE, USE.NAMES=TRUE,
BPREDO=list(), BPPARAM=bpparam())

S4 method for signature 'ANY,missing'
bpmapply(FUN, ..., MoreArgs=NULL, SIMPLIFY=TRUE,

USE.NAMES=TRUE, BPREDO=list(), BPPARAM=bpparam())

S4 method for signature 'ANY,BiocParallelParam'
bpmapply(FUN, ..., MoreArgs=NULL,

SIMPLIFY=TRUE, USE.NAMES=TRUE, BPREDO=list(), BPPARAM=bpparam())

Arguments

FUN The function to be applied to each element passed via

... Objects for which methods length, [, and [[are implemented. All objects must
have the same length or shorter objects will be replicated to have length equal to
the longest.

MoreArgs List of additional arguments to FUN.

SIMPLIFY If TRUE the result will be simplified using simplify2array.

USE.NAMES If TRUE the result will be named.

BPPARAM An optional BiocParallelParam instance defining the parallel back-end to be
used during evaluation.

BPREDO A list of output from bpmapply with one or more failed elements. When a list
is given in BPREDO, bpok is used to identify errors, tasks are rerun and inserted
into the original results.

Details

See methods{bpmapply} for additional methods, e.g., method?bpmapply("MulticoreParam").

Value

See mapply.

Author(s)

Michel Lang . Original code as attributed in mclapply.

bpok 19

See Also

• bpvec for parallel, vectorized calculations.

• BiocParallelParam for possible values of BPPARAM.

Examples

methods("bpmapply")

fun <- function(greet, who) {
paste(Sys.getpid(), greet, who)

}
greet <- c("morning", "night")
who <- c("sun", "moon")

param <- bpparam()
original <- bpworkers(param)
bpworkers(param) <- 2
result <- bpmapply(fun, greet, who, BPPARAM = param)
cat(paste(result, collapse="\n"), "\n")
bpworkers(param) <- original

bpok Resume computation with partial results

Description

Identifies unsuccessful results returned from bplapply, bpmapply, bpvec, bpaggregate or bpvectorize.

Usage

bpok(x)

Arguments

x Results returned from a call to bp*apply.

Details

• bpok Returns a logical() vector: FALSE for any jobs that resulted in an error. x is the result
list output by bplapply, bpmapply, bpvec, bpaggregate or bpvectorize.

Author(s)

Michel Lang, Martin Morgan and Valerie Obenchain

20 bpschedule

Examples

Catch errors:

By default 'stop.on.error' is TRUE in BiocParallelParam objects.
SnowParam(workers = 2)

If 'stop.on.error' is TRUE an ill-fated bplapply() simply stops,
displaying the error message.
param <- SnowParam(workers = 2, stop.on.error = TRUE)
tryCatch({

bplapply(list(1, "two", 3), sqrt, BPPARAM = param)
}, error=identity)

If 'stop.on.error' is FALSE then the computation continues. Errors
are signalled but the full evaluation can be retrieved
param <- SnowParam(workers = 2, stop.on.error = FALSE)
X <- list(1, "two", 3)
result <- bptry(bplapply(X, sqrt, BPPARAM = param))
result

Check for errors:
fail <- !bpok(result)
fail

Access the traceback with attr():
tail(attr(result[[2]], "traceback"), 5)

Resume calculations:

The 'resume' mechanism is triggered by supplying a list of partial
results as 'BPREDO'. Data elements that failed are rerun and merged
with previous results.

A call of sqrt() on the character "2" returns an error.
param <- SnowParam(workers = 2, stop.on.error = FALSE)
X <- list(1, "two", 3)
result <- bptry(bplapply(X, sqrt, BPPARAM = param))

Fix the input data by changing the character "2" to a numeric 2:
X_mod <- list(1, 2, 3)

Repeat the original call to bplapply() with the partial results as 'BPREDO':
bplapply(X_mod, sqrt, BPPARAM = param , BPREDO = result)

bpschedule Schedule back-end Params

Description

Use functions on this page to influence scheduling of parallel processing.

bptry 21

Usage

bpschedule(x)

Arguments

x An instance of a BiocParallelParam class, e.g., MulticoreParam, SnowParam,
DoparParam.
x can be missing, in which case the default back-end (see register) is used.

... Additional arguments, perhaps used by methods.

Details

bpschedule returns a logical(1) indicating whether the parallel evaluation should occur at this point.

Value

bpschedule returns a scalar logical.

Author(s)

Martin Morgan mailto:mtmorgan@fhcrc.org.

See Also

BiocParallelParam for possible values of x.

Examples

bpschedule(SnowParam()) # TRUE
bpschedule(MulticoreParam(2)) # FALSE on windows

p <- MulticoreParam()
bpschedule(p) # TRUE
bplapply(1:2, function(i, p) {

bpschedule(p) # FALSE
}, p = p, BPPARAM=p)

bptry Try expression evaluation, recovering from bperror signals

Description

This function is meant to be used as a wrapper around bplapply() and friends, returning the eval-
uated expression rather than signalling an error.

Usage

bptry(expr, ..., bplist_error, bperror)

mailto:mtmorgan@fhcrc.org

22 bpvalidate

Arguments

expr An R expression; see tryCatch.

bplist_error A ‘handler’ function of a single argument, used to catch bplist_error con-
ditions signalled by expr. A bplist_error condition is signalled when an
element of bplapply and other iterations contain a evaluation that failed. When
missing, the default retrieves the “result” attribute from the error, containing the
partially evaluated results.
Setting bplist_error=identity returns the evaluated condition.
Setting bplist_error=stop passes the condition to other handlers, notably the
handler provided by bperror.

bperror A ‘handler’ function of a single argument, use to catch bperror conditions sig-
nalled by expr. A bperror is a base class to all errors signaled by BiocParallel
code. When missing, the default returns the condition without signalling an
error.

... Additional named handlers passed to tryCatch(). These user-provided han-
dlers are evaluated before default handlers bplist_error, bperror.

Value

The partially evaluated list of results.

Author(s)

Martin Morgan <martin.morgan@roswellpark.org>

See Also

tryCatch, bplapply.

Examples

param = registered()[[1]]
param
X = list(1, "2", 3)
bptry(bplapply(X, sqrt)) # bplist_error handler
bptry(bplapply(X, sqrt), bplist_error=identity) # bperror handler

bpvalidate Tools for developing functions for parallel execution in distributed
memory

Description

bpvalidate interrogates the function environment and search path to locate undefined symbols.

Usage

bpvalidate(fun)

bpvalidate 23

Arguments

fun The function to be checked.

Details

bpvalidate tests if a function can be run in a distributed memory environment (e.g., SOCK clusters,
Windows machines). bpvalidate looks in the environment of fun, in the NAMESPACE exports of
libraries loaded in fun, and along the search path to identify any symbols outside the scope of fun.

bpvalidate can be used to check functions passed to the bp* family of functions in BiocParallel
or other packages that support parallel evaluation on clusters such as snow, BatchJobs, Rmpi, etc.

testing package functions The environment of a function defined inside a package is the NAMES-
PACE of the package. It is important to test these functions as they will be called from within
the package, with the appropriate environment. Specifically, do not copy/paste the function
into the workspace; once this is done the GlobalEnv becomes the function environment.
To test a package function, load the package then call the function by name (myfun) or explic-
itly (mypkg:::myfun) if not exported.

testing workspace functions The environment of a function defined in the workspace is the Glob-
alEnv. Because these functions do not have an associated package NAMESPACE, the func-
tions and variables used in the body must be explicitly passed or defined. See examples.
Defining functions in the workspace is often done during development or testing. If the func-
tion is later moved inside a package, it can be rewritten in a more lightweight form by taking
advantage of imported symbols in the package NAMESPACE.

NOTE: bpvalidate does not currently work on Generics.

Value

A list of length 2 with named elements ‘inPath‘ and ‘unknown‘.

• inPath A named list of symbols and where they were found. These symbols were found on
the search path instead of the function environment and should probably be imported in the
NAMESPACE or otherwise defined in the package.

• unknown A vector of symbols not found in the function environment or the search path.

Author(s)

Martin Morgan mailto:mtmorgan@fhcrc.org and Valerie Obenchain mailto:vobencha@fhcrc.
org.

Examples

Testing package functions

Not run:
library(myPkg)

Test exported functions by name or the double colon:
bpvalidate(myExportedFun)
bpvalidate(myPkg::myExportedFun)

mailto:mtmorgan@fhcrc.org
mailto:vobencha@fhcrc.org
mailto:vobencha@fhcrc.org

24 bpvec

Non-exported functions are called with the triple colon:
bpvalidate(myPkg:::myInternalFun)

End(Not run)

Testing workspace functions

Functions defined in the workspace have the .GlobalEnv as their
environment. Often the symbols used inside the function body
are not defined in .GlobalEnv and must be passed explicitly.

Loading libraries:
In 'fun1' countBam() is flagged as unknown:
fun1 <- function(fl, ...)

countBam(fl)
bpvalidate(fun1)

countBam() is not defined in .GlobalEnv and must be passed as
an argument or made available by loading the library.
fun2 <- function(fl, ...) {

library(Rsamtools)
countBam(fl)

}
bpvalidate(fun2)

Passing arguments:
'param' is defined in the workspace but not passed to 'fun3'.
bpvalidate() flags 'param' as being found 'inPath' which means
it is not defined in the function environment or inside the function.
library(Rsamtools)
param <- ScanBamParam(flag=scanBamFlag(isMinusStrand=FALSE))

fun3 <- function(fl, ...) {
library(Rsamtools)
countBam(fl, param=param)

}
bpvalidate(fun3)

'param' is explicitly passed by adding it as a formal argument.
fun4 <- function(fl, ..., param) {

library(Rsamtools)
countBam(fl, param=param)

}
bpvalidate(fun4)

The corresponding call to a bp* function includes 'param':
Not run: bplapply(files, fun4, param=param, BPPARAM=SnowParam(2))

bpvec Parallel, vectorized evaluation

bpvec 25

Description

bpvec applies FUN to subsets of X. Any type of object X is allowed, provided length, and [are
defined on X. FUN is a function such that length(FUN(X)) == length(X). The objects returned by
FUN are concatenated by AGGREGATE (c() by default). The return value is FUN(X).

Usage

bpvec(X, FUN, ..., AGGREGATE=c, BPREDO=list(), BPPARAM=bpparam())

Arguments

X Any object for which methods length and [are implemented.

FUN A function to be applied to subsets of X. The relationship between X and FUN(X)
is 1:1, so that length(FUN(X,...)) == length(X). The return value of separate
calls to FUN are concatenated with AGGREGATE.

... Additional arguments for FUN.

AGGREGATE A function taking any number of arguments ... called to reduce results (ele-
ments of the ... argument of AGGREGATE from parallel jobs. The default, c,
concatenates objects and is appropriate for vectors; rbind might be appropriate
for data frames.

BPPARAM An optional BiocParallelParam instance determining the parallel back-end to
be used during evaluation, or a list of BiocParallelParam instances, to be
applied in sequence for nested calls to BiocParallel functions.

BPREDO A list of output from bpvec with one or more failed elements. When a list is
given in BPREDO, bpok is used to identify errors, tasks are rerun and inserted into
the original results.

Details

This method creates a vector of indices for X that divide the elements as evenly as possible given
the number of bpworkers() and bptasks() of BPPARAM. Indices and data are passed to bplapply
for parallel evaluation.

The distinction between bpvec and bplapply is that bplapply applies FUN to each element of
X separately whereas bpvec assumes the function is vectorized, e.g., c(FUN(x[1]),FUN(x[2]))
is equivalent to FUN(x[1:2]). This approach can be more efficient than bplapply but requires
the assumption that FUN takes a vector input and creates a vector output of the same length as
the input which does not depend on partitioning of the vector. This behavior is consistent with
parallel:::pvec and the ?pvec man page should be consulted for further details.

Value

The result should be identical to FUN(X,...) (assuming that AGGREGATE is set appropriately).

When evaluation of individual elements of X results in an error, the result is a list with the same
geometry (i.e., lengths()) as the split applied to X to create chunks for parallel evaluation; one or
more elements of the list contain a bperror element, indicting that the vectorized calculation failed
for at least one of the index values in that chunk.

An error is also signaled when FUN(X) does not return an object of the same length as X; this
condition is only detected when the number of elements in X is greater than the number of workers.

26 bpvectorize

Author(s)

Martin Morgan mailto:mtmorgan@fhcrc.org.

See Also

bplapply for parallel lapply.

BiocParallelParam for possible values of BPPARAM.

pvec for background.

Examples

methods("bpvec")

ten tasks (1:10), called with as many back-end elements are specified
by BPPARAM. Compare with bplapply
fun <- function(v) {

message("working")
sqrt(v)

}
system.time(result <- bpvec(1:10, fun))
result

invalid FUN -- length(class(X)) is not equal to length(X)
bptry(bpvec(1:2, class, BPPARAM=SerialParam()))

bpvectorize Transform vectorized functions into parallelized, vectorized function

Description

This transforms a vectorized function into a parallel, vectorized function. Any function FUN can be
used, provided its parallelized argument (by default, the first argument) has a length and [method
defined, and the return value of FUN can be concatenated with c.

Usage

bpvectorize(FUN, ..., BPREDO=list(), BPPARAM=bpparam())

S4 method for signature 'ANY,ANY'
bpvectorize(FUN, ..., BPREDO=list(), BPPARAM=bpparam())

S4 method for signature 'ANY,missing'
bpvectorize(FUN, ..., BPREDO=list(),

BPPARAM=bpparam())

Arguments

FUN A function whose first argument has a length and can be subset [, and whose
evaluation would benefit by splitting the argument into subsets, each one of
which is independently transformed by FUN. The return value of FUN must sup-
port concatenation with c.

mailto:mtmorgan@fhcrc.org

DeveloperInterface 27

... Additional arguments to parallization, unused.

BPPARAM An optional BiocParallelParam instance determining the parallel back-end to
be used during evaluation.

BPREDO A list of output from bpvectorize with one or more failed elements. When
a list is given in BPREDO, bpok is used to identify errors, tasks are rerun and
inserted into the original results.

Details

The result of bpvectorize is a function with signature ...; arguments to the returned function are
the original arguments FUN. BPPARAM is used for parallel evaluation.

When BPPARAM is a class for which no method is defined (e.g., SerialParam), FUN(X) is used.

See methods{bpvectorize} for additional methods, if any.

Value

A function taking the same arguments as FUN, but evaluated using bpvec for parallel evaluation
across available cores.

Author(s)

Ryan Thompson mailto:rct@thompsonclan.org

See Also

bpvec

Examples

psqrt <- bpvectorize(sqrt) ## default parallelization
psqrt(1:10)

DeveloperInterface Developer interface

Description

Functions documented on this page are meant for developers wishing to implement BPPARAM objects
that extend the BiocParallelParam virtual class to support additional parallel back-ends.

Usage

class extension

.prototype_update(prototype, ...)

manager interface

.send_to(backend, node, value)

.recv_any(backend)

.send_all(backend, value)

mailto:rct@thompsonclan.org

28 DeveloperInterface

.recv_all(backend)

worker interface

.send(worker, value)

.recv(worker)

.close(worker)

supporting implementations

.bpstart_impl(x)

.bpworker_impl(worker)

.bplapply_impl(X, FUN, ..., BPREDO = list(), BPPARAM = bpparam())

.bpiterate_impl(ITER, FUN, ..., REDUCE, init, reduce.in.order = FALSE,
BPPARAM = bpparam())

.bpstop_impl(x)

Arguments

prototype A named list of default values for reference class fields.

x A BPPARAM instance.

backend An object containing information about the cluster, returned by bpbackend(<BPPARAM>).

worker The object to which the worker communicates via .send and .recv. .close
terminates the worker.

node An integer value indicating the node in the backend to which values are to be
sent or received.

value Any R object, to be sent to or from workers.
X, ITER, FUN, REDUCE, init, reduce.in.order, BPREDO, BPPARAM

See bplapply and bpiterate.

... For .prototype_update(), name-value pairs to initialize derived and base class
fields.
For .bplapply_impl(), .bpiterate_impl(), additional arguments to FUN();
see bplapply and bpiterate.

Details

Start a BPPARM implementation by creating a reference class, e.g., extending the virtual class
BiocParallelParam. Because of idiosyncracies in reference class field initialization, an instance
of the class should be created by calling the generator returned by setRefClass() with a list of key-
value pairs providing default parameteter arguments. The default values for the BiocParallelParam
base class is provided in a list .BiocParallelParam_prototype, and the function .prototype_update()
updates a prototype with new values, typically provided by the user. See the example below.

BPPARAM implementations need to implement bpstart() and bpstop() methods; they may
also need to implement, bplapply() and bpiterate() methods. Each method usually performs
implementation-specific functionality before calling the next (BiocParallelParam) method. To avoid
the intricacies of multiple dispatch, the bodies of BiocParallelParam methods are available for direct
use as exported symbols.

• bpstart,BiocParallelParam-method (.bpstart_impl()) initiates logging, random num-
ber generation, and registration of finalizers to ensure that started clusters are stopped.

DeveloperInterface 29

• bpstop,BiocParallelParam-method (.bpstop_impl()) ensures appropriate clean-up of stopped
clusters, including sending the DONE semaphore. bpstart() will usually arrange for work-
ers to enter .bpworker_impl() to listen for and evaluate tasks.

• bplapply,ANY,BiocParallelParam-method and bpiterate,ANY,BiocParallelParam-method
(.bplapply_impl(), .bpiterate_impl()) implement: serial evaluation when there is a sin-
gle core or task available; BPREDO functionality, and parallel lapply-like or iterative calculation.

Invoke .bpstart_impl(), .bpstop_impl(), .bplapply_impl(), and .bpiterate_impl() after
any BPPARAM-specific implementation details.

New implementations will also implement bpisup() and bpbackend() / bpbackend<-(); there are
no default methods.

The backends (object returned by bpbackend()) of new BPPARAM implementations must support
length() (number of nodes). In addition, the backends must support .send_to() and .recv_any()
manager and .send(), .recv(), and .close() worker methods. Default .send_all() and .recv_all()
methods are implemented as simple iterations along the length(cluster), invoking .send_to()
or .recv_any() on each iteration.

Value

The return value of .prototype_update() is a list with elements in prototype substituted with
key-value pairs provided in

All send* and recv* functions are endomorphic, returning a cluster object.

Examples

##
Extend BiocParallelParam; `.A()` is not meant for the end user
##

.A <- setRefClass(
"A",
contains = "BiocParallelParam",
fields = list(id = "character")

)

Use a prototype for default values, including the prototype for
inheritted fields

.A_prototype <- c(
list(id = "default_id"),
.BiocParallelParam_prototype

)

Provide a constructor for the user

A <- function(...) {
prototype <- .prototype_update(.A_prototype, ...)
do.call(.A, prototype)

}

Provide an R function for field access

bpid <- function(x)

30 DoparParam-class

x$id

Create and use an instance, overwriting default values

bpid(A())

a <- A(id = "my_id", threshold = "WARN")
bpid(a)
bpthreshold(a)

DoparParam-class Enable parallel evaluation using registered dopar backend

Description

This class is used to dispatch parallel operations to the dopar backend registered with the foreach
package.

Usage

DoparParam(stop.on.error=TRUE)

Arguments

stop.on.error logical(1)Stop all jobs as soon as one jobs fails (stop.on.error == TRUE) or
wait for all jobs to terminate. Default is TRUE.

Details

DoparParam can be used for shared or non-shared memory computing depending on what backend
is loaded. The doSNOW package supports non-shared memory, doParallel supports both shared and
non-shared. When not specified, the default number of workers in DoparParam is determined by
getDoParWorkers(). See the foreach package vignette for details using the different backends:

http://cran.r-project.org/web/packages/foreach/vignettes/foreach.pdf

DoparParam constructor

Return a proxy object that dispatches parallel evaluation to the registered foreach parallel backend.

There are no options to the constructor. All configuration should be done through the normal inter-
face to the foreach parallel backends.

Methods

The following generics are implemented and perform as documented on the corresponding help
page (e.g., ?bpisup): bpworkers, bpnworkers, bpstart, bpstop, bpisup, bpbackend, bpbackend<-,
bpvec.

Author(s)

Martin Morgan mailto:mtmorgan@fhcrc.org

http://cran.r-project.org/web/packages/foreach/vignettes/foreach.pdf
mailto:mtmorgan@fhcrc.org

ipcmutex 31

See Also

getClass("BiocParallelParam") for additional parameter classes.

register for registering parameter classes for use in parallel evaluation.

foreach-package for the parallel backend infrastructure used by this param class.

Examples

Not run:
First register a parallel backend with foreach
library(doParallel)
registerDoParallel(2)

p <- DoparParam()
bplapply(1:10, sqrt, BPPARAM=p)
bpvec(1:10, sqrt, BPPARAM=p)

register(DoparParam(), default=TRUE)

End(Not run)

ipcmutex Inter-process locks and counters

Description

Functions documented on this page enable locks and counters between processes on the same com-
puter.

Use ipcid() to generate a unique mutex or counter identifier. A mutex or counter with the same
id, including those in different processes, share the same state.

ipcremove() removes external state associated with mutex or counters created with id.

ipclock() blocks until the lock is obtained. ipctrylock() tries to obtain the lock, returning
immediately if it is not available. ipcunlock() releases the lock. ipclocked() queries the lock to
determine whether it is currently held.

ipcyield() returns the current counter, and increments the value for subsequent calls. ipcvalue()
returns the current counter without incrementing. ipcreset() sets the counter to n, such that the
next call to ipcyield() or ipcvalue() returns n.

Usage

Utilities

ipcid(id)

ipcremove(id)

Locks

ipclock(id)

32 ipcmutex

ipctrylock(id)

ipcunlock(id)

ipclocked(id)

Counters

ipcyield(id)

ipcvalue(id)

ipcreset(id, n = 1)

Arguments

id character(1) identifier string for mutex or counter. ipcid() ensures that the
identifier is universally unique.

n integer(1) value from which ipcyield() will increment.

Value

Locks:

ipclock() creates a named lock, returning TRUE on success.

trylock() returns TRUE if the lock is obtained, FALSE otherwise.

ipcunlock() returns TRUE on success, FALSE (e.g., because there is nothing to unlock) otherwise.

ipclocked() returns TRUE when id is locked, and FALSE otherwise.

Counters:

ipcyield() returns an integer(1) value representing the next number in sequence. The first value
returned is 1.

ipcvalue() returns the value to be returned by the next call to ipcyield(), without incrementing
the counter. If the counter is no longer available, ipcyield() returns NA.

ipcreset() returns n, invisibly.

Utilities:

ipcid() returns a character(1) unique identifier, with id (if not missing) prepended.

ipcremove() returns (invisibly) TRUE if external resources were released or FALSE if not (e.g.,
because the resources has already been released).

Examples

ipcid()

Locks

id <- ipcid()

ipclock(id)
ipctrylock(id)
ipcunlock(id)

MulticoreParam-class 33

ipctrylock(id)
ipclocked(id)

ipcremove(id)

id <- ipcid()
result <- bplapply(1:5, function(i, id) {

BiocParallel::ipclock(id)
Sys.sleep(1)
time <- Sys.time()
BiocParallel::ipcunlock(id)
time

}, id)
ipcremove(id)
diff(sort(unlist(result, use.names=FALSE)))

Counters

id <- ipcid()

ipcyield(id)
ipcyield(id)

ipcvalue(id)
ipcyield(id)

ipcreset(id, 10)
ipcvalue(id)
ipcyield(id)

ipcremove(id)

id <- ipcid()
result <- bplapply(1:5, function(i, id) {

BiocParallel::ipcyield(id)
}, id)
ipcremove(id)
sort(unlist(result, use.names=FALSE))

MulticoreParam-class Enable multi-core parallel evaluation

Description

This class is used to parameterize single computer multicore parallel evaluation on non-Windows
computers. multicoreWorkers() chooses the number of workers.

Usage

constructor

MulticoreParam(workers = multicoreWorkers(), tasks = 0L,

34 MulticoreParam-class

stop.on.error = TRUE,
progressbar = FALSE, RNGseed = NULL,
timeout = 30L * 24L * 60L * 60L, exportglobals=TRUE,
log = FALSE, threshold = "INFO", logdir = NA_character_,
resultdir = NA_character_, jobname = "BPJOB",
manager.hostname = NA_character_, manager.port = NA_integer_,
...)

detect workers

multicoreWorkers()

Arguments

workers integer(1) Number of workers. Defaults to all cores available as determined
by detectCores.

tasks integer(1). The number of tasks per job. value must be a scalar integer >=
0L.
In this documentation a job is defined as a single call to a function, such as
bplapply, bpmapply etc. A task is the division of the X argument into chunks.
When tasks == 0 (default), X is divided as evenly as possible over the number
of workers.
A tasks value of > 0 specifies the exact number of tasks. Values can range from
1 (all of X to a single worker) to the length of X (each element of X to a different
worker).
When the length of X is less than the number of workers each element of X is
sent to a worker and tasks is ignored.

stop.on.error logical(1) Enable stop on error.

progressbar logical(1) Enable progress bar (based on plyr:::progress_text).

RNGseed integer(1) Seed for random number generation. When not NULL, this value
is passed to parallel::clusterSetRNGStream to generate random number streams
on each worker.

timeout numeric(1) Time (in seconds) allowed for worker to complete a task. This
value is passed to base::setTimeLimit() as both the cpu and elapsed arguments.
If the computation exceeds timeout an error is thrown with message ’reached
elapsed time limit’.

exportglobals logical(1) Export base::options() from manager to workers? Default TRUE.

log logical(1) Enable logging.

threshold character(1) Logging threshold as defined in futile.logger.

logdir character(1) Log files directory. When not provided, log messages are re-
turned to stdout.

resultdir character(1) Job results directory. When not provided, results are returned as
an R object (list) to the workspace.

jobname character(1) Job name that is prepended to log and result files. Default is
"BPJOB".

manager.hostname

character(1) Host name of manager node. See ’Global Options’, in SnowParam.

MulticoreParam-class 35

manager.port integer(1) Port on manager with which workers communicate. See ’Global
Options’ in SnowParam.

... Additional arguments passed to makeCluster

Details

MulticoreParam is used for shared memory computing. Under the hood the cluster is created with
makeCluster(...,type ="FORK") from the parallel package.

The default number of workers is determined by multicoreWorkers(). On windows, the num-
ber of multicore workers is always 1. Otherwise, the default is normally the maximum of 1 and
parallel::detectCores() -2. Machines with 3 or fewer cores, or machines where number of
cores cannot be determined, are assigned a single worker. Machines with more than 127 cores are
limited to the number of R connections available when the workers start; this is 128 (a hard-coded
limit in R) minus the number of open connections as returned by nrow(showConnections(all=TRUE)).
The option mc.cores can be used to specify an arbitrary number of workers, e.g., options(mc.cores=4L);
the Bioconductor build system enforces a maximum of 4 workers.

A FORK transport starts workers with the mcfork function and communicates between master
and workers using socket connections. mcfork builds on fork() and thus a Linux cluster is not
supported. Because FORK clusters are Posix based they are not supported on Windows. When
MulticoreParam is created/used in Windows it defaults to SerialParam which is the equivalent of
using a single worker.

error handling: By default all computations are attempted and partial results are returned with any
error messages.

• stop.on.error A logical. Stops all jobs as soon as one job fails or wait for all jobs
to terminate. When FALSE, the return value is a list of successful results along with error
messages as ’conditions’.

• The bpok(x) function returns a logical() vector that is FALSE for any jobs that threw
an error. The input x is a list output from a bp*apply function such as bplapply or
bpmapply.

logging: When log = TRUE the futile.logger package is loaded on the workers. All log mes-
sages written in the futile.logger format are captured by the logging mechanism and re-
turned in real-time (i.e., as each task completes) instead of after all jobs have finished.
Messages sent to stdout and stderr are returned to the workspace by default. When log
= TRUE these are diverted to the log output. Those familiar with the outfile argument to
makeCluster can think of log = FALSE as equivalent to outfile = NULL; providing a logdir
is the same as providing a name for outfile except that BiocParallel writes a log file for each
task.
The log output includes additional statistics such as memory use and task runtime. Memory
use is computed by calling gc(reset=TRUE) before code evaluation and gc() (no reseet) after.
The output of the second gc() call is sent to the log file. There are many ways to track mem-
ory use - this particular approach was taken because it is consistent with how the BatchJobs
package reports memory on the workers.

log and result files: Results and logs can be written to a file instead of returned to the workspace.
Writing to files is done from the master as each task completes. Options can be set with
the logdir and resultdir fields in the constructor or with the accessors, bplogdir and
bpresultdir.

random number generation: MulticoreParam and SnowParam use the random number genera-
tion support from the parallel package. These params are snow-derived clusters so the argu-
ments for multicore-derived functions such as mc.set.seed and mc.reset.stream do not
apply.

36 MulticoreParam-class

Random number generation is controlled through the param argument, RNGseed which is
passed to parallel::clusterSetRNGStream. clusterSetRNGStream uses the L’Ecuyer-CMRG
random number generator and distributes streams to the members of a cluster. If RNGseed is
not NULL it serves as the seed to the streams, otherwise the streams are set from the current
seed of the master process after selecting the L’Ecuyer generator. See ?clusterSetRNGStream
for more details.

Constructor

MulticoreParam(workers = multicoreWorkers(),tasks = 0L,stop.on.error = FALSE,tasks
= 0L,progressbar = FALSE,RNGseed = NULL,timeout = Inf,exportglobals=TRUE,log = FALSE,threshold
= "INFO",logdir = NA_character_,resultdir = NA_character_,manager.hostname = NA_character_,manager.port
= NA_integer_,...):
Return an object representing a FORK cluster. The cluster is not created until bpstart is
called. Named arguments in ... are passed to makeCluster.

Accessors: Logging and results

In the following code, x is a MulticoreParam object.

bpprogressbar(x), bpprogressbar(x) <-value: Get or set the value to enable text progress
bar. value must be a logical(1).

bpjobname(x), bpjobname(x) <-value: Get or set the job name.

bpRNGseed(x), bpRNGseed(x) <-value: Get or set the seed for random number generaton. value
must be a numeric(1) or NULL.

bplog(x), bplog(x) <-value: Get or set the value to enable logging. value must be a logical(1).

bpthreshold(x), bpthreshold(x) <-value: Get or set the logging threshold. value must be a
character(1) string of one of the levels defined in the futile.logger package: “TRACE”,
“DEBUG”, “INFO”, “WARN”, “ERROR”, or “FATAL”.

bplogdir(x), bplogdir(x) <-value: Get or set the directory for the log file. value must be a
character(1) path, not a file name. The file is written out as LOGFILE.out. If no logdir is
provided and bplog=TRUE log messages are sent to stdout.

bpresultdir(x), bpresultdir(x) <-value: Get or set the directory for the result files. value
must be a character(1) path, not a file name. Separate files are written for each job with the
prefix JOB (e.g., JOB1, JOB2, etc.). When no resultdir is provided the results are returned
to the session as list.

Accessors: Back-end control

In the code below x is a MulticoreParam object. See the ?BiocParallelParam man page for
details on these accessors.

bpworkers(x)

bpnworkers(x)

bptasks(x), bptasks(x) <-value

bpstart(x)

bpstop(x)

bpisup(x)

bpbackend(x), bpbackend(x) <-value

MulticoreParam-class 37

Accessors: Error Handling

In the code below x is a MulticoreParam object. See the ?BiocParallelParam man page for
details on these accessors.

bpstopOnError(x), bpstopOnError(x) <-value

Methods: Evaluation

In the code below BPPARAM is a MulticoreParam object. Full documentation for these functions
are on separate man pages: see ?bpmapply, ?bplapply, ?bpvec, ?bpiterate and ?bpaggregate.

bpmapply(FUN,...,MoreArgs=NULL,SIMPLIFY=TRUE,USE.NAMES=TRUE,BPPARAM=bpparam())

bplapply(X,FUN,...,BPPARAM=bpparam())

bpvec(X,FUN,...,AGGREGATE=c,BPPARAM=bpparam())

bpiterate(ITER,FUN,...,BPPARAM=bpparam())

bpaggregate(x,data,FUN,...,BPPARAM=bpparam())

Methods: Other

In the code below x is a MulticoreParam object.

show(x): Displays the MulticoreParam object.

Global Options

See the ’Global Options’ section of SnowParam for manager host name and port defaults.

Author(s)

Martin Morgan mailto:mtmorgan@fhcrc.org and Valerie Obenchain

See Also

• register for registering parameter classes for use in parallel evaluation.

• SnowParam for computing in distributed memory

• BatchJobsParam for computing with cluster schedulers

• DoparParam for computing with foreach

• SerialParam for non-parallel evaluation

Examples

Job configuration:

MulticoreParam supports shared memory computing. The object fields
control the division of tasks, error handling, logging and
result format.
bpparam <- MulticoreParam()
bpparam

By default the param is created with the maximum available workers
determined by multicoreWorkers().

mailto:mtmorgan@fhcrc.org

38 MulticoreParam-class

multicoreWorkers()

Fields are modified with accessors of the same name:
bplog(bpparam) <- TRUE
dir.create(resultdir <- tempfile())
bpresultdir(bpparam) <- resultdir
bpparam

Logging:

When 'log == TRUE' the workers use a custom script (in BiocParallel)
that enables logging and access to other job statistics. Log messages
are returned as each job completes rather than waiting for all to finish.

In 'fun', a value of 'x = 1' will throw a warning, 'x = 2' is ok
and 'x = 3' throws an error. Because 'x = 1' sleeps, the warning
should return after the error.

X <- 1:3
fun <- function(x) {

if (x == 1) {
Sys.sleep(2)
if (TRUE & c(TRUE, TRUE)) ## warning

x
} else if (x == 2) {

x ## ok
} else if (x == 3) {

sqrt("FOO") ## error
}

}

By default logging is off. Turn it on with the bplog()<- setter
or by specifying 'log = TRUE' in the constructor.
bpparam <- MulticoreParam(3, log = TRUE, stop.on.error = FALSE)
res <- tryCatch({

bplapply(X, fun, BPPARAM=bpparam)
}, error=identity)
res

When a 'logdir' location is given the messages are redirected to a file:
Not run:
bplogdir(bpparam) <- tempdir()
bplapply(X, fun, BPPARAM = bpparam)
list.files(bplogdir(bpparam))

End(Not run)

Managing results:

By default results are returned as a list. When 'resultdir' is given
files are saved in the directory specified by job, e.g., 'TASK1.Rda',
'TASK2.Rda', etc.
Not run:

register 39

dir.create(resultdir <- tempfile())
bpparam <- MulticoreParam(2, resultdir = resultdir, stop.on.error = FALSE)
bplapply(X, fun, BPPARAM = bpparam)
list.files(bpresultdir(bpparam))

End(Not run)

Error handling:

When 'stop.on.error' is TRUE the job is terminated as soon as an
error is hit. When FALSE, all computations are attempted and partial
results are returned along with errors. In this example the number of
'tasks' is set to equal the length of 'X' so each element is run
separately. (Default behavior is to divide 'X' evenly over workers.)

All results along with error:
bpparam <- MulticoreParam(2, tasks = 4, stop.on.error = FALSE)
res <- bptry(bplapply(list(1, "two", 3, 4), sqrt, BPPARAM = bpparam))
res

Calling bpok() on the result list returns TRUE for elements with no error.
bpok(res)

Random number generation:

Random number generation is controlled with the 'RNGseed' field.
This seed is passed to parallel::clusterSetRNGStream
which uses the L'Ecuyer-CMRG random number generator and distributes
streams to members of the cluster.

bpparam <- MulticoreParam(3, RNGseed = 7739465)
bplapply(seq_len(bpnworkers(bpparam)), function(i) rnorm(1), BPPARAM = bpparam)

register Maintain a global registry of available back-end Params

Description

Use functions on this page to add to or query a registry of back-ends, including the default for use
when no BPPARAM object is provided to functions.

Usage

register(BPPARAM, default=TRUE)
registered(bpparamClass)
bpparam(bpparamClass)

40 register

Arguments

BPPARAM An instance of a BiocParallelParam class, e.g., MulticoreParam, SnowParam,
DoparParam.

default Make this the default BiocParallelParam for subsequent evaluations? If FALSE,
the argument is placed at the lowest priority position.

bpparamClass When present, the text name of the BiocParallelParam class (e.g., “Multi-
coreParam”) to be retrieved from the registry. When absent, a list of all regis-
tered instances is returned.

Details

The registry is a list of back-ends with configuration parameters for parallel evaluation. The first list
entry is the default and is used by BiocParallel functions when no BPPARAM argument is supplied.

At load time the registry is populated with default backends. On Windows these are SnowParam
and SerialParam and on non-Windows MulticoreParam, SnowParam and SerialParam. When
snowWorkers() or multicoreWorkers returns a single core, only SerialParm is registered.

The BiocParallelParam objects are constructed from global options of the corresponding name,
or from the default constructor (e.g., SnowParam()) if no option is specified. The user can set cus-
tomizations during start-up (e.g., in an .Rprofile file) with, for instance, options(MulticoreParam=quote(MulticoreParam(workers=8))).

The act of “registering” a back-end modifies the existing BiocParallelParam in the list; only one
param of each type can be present in the registry. When default=TRUE, the newly registered param
is moved to the top of the list thereby making it the default. When default=FALSE, the param is
modified ‘in place‘ vs being moved to the top.

bpparam(), invoked with no arguments, returns the default BiocParallelParam instance from the
registry. When called with the text name of a bpparamClass, the global options are consulted first,
e.g., options(MulticoreParam=MulticoreParam()) and then the value of registered(bpparamClass).

Value

register returns, invisibly, a list of registered back-ends.

registered returns the back-end of type bpparamClass or, if bpparamClass is missing, a list of
all registered back-ends.

bpparam returns the back-end of type bpparamClass or,

Author(s)

Martin Morgan mailto:mtmorgan@fhcrc.org.

See Also

BiocParallelParam for possible values of BPPARAM.

Examples

--
The registry
--

The default registry.
default <- registered()

mailto:mtmorgan@fhcrc.org

SerialParam-class 41

default

When default = TRUE the last param registered becomes the new default.
snowparam <- SnowParam(workers = 3, type = "SOCK")
register(snowparam, default = TRUE)
registered()

Retrieve the default back-end,
bpparam()

or a specific BiocParallelParam.
bpparam("SnowParam")

restore original registry -- push the defaults in reverse order
for (param in rev(default))

register(param)

--
Specifying a back-end for evaluation
--

The back-end of choice is given as the BPPARAM argument to
the BiocParallel functions. None, one, or multiple back-ends can be
used.

bplapply(1:6, sqrt, BPPARAM = MulticoreParam(3))

When not specified, the default from the registry is used.
bplapply(1:6, sqrt)

SerialParam-class Enable serial evaluation

Description

This class is used to parameterize serial evaluation, primarily to facilitate easy transition from par-
allel to serial code.

Usage

SerialParam(stop.on.error = TRUE, log = FALSE,
threshold = "INFO", logdir = NA_character_, progressbar = FALSE)

Arguments

stop.on.error A logical determining behavior on error; see SnowParam.

log logical(1) Enable logging; see SnowParam.

threshold character(1) Logging threshold; see SnowParam.

logdir character(1) Log files directory. When not provided, log messages are re-
turned to stdout.

progressbar logical(1) Enable progress bar (based on plyr:::progress_text).

42 SnowParam-class

Constructor

SerialParam():
Return an object to be used for serial evaluation of otherwise parallel functions such as
bplapply, bpvec.

Methods

The following generics are implemented and perform as documented on the corresponding help
page (e.g., ?bpworkers): bpworkers. bpisup, bpstart, bpstop, are implemented, but do not have
any side-effects.

Author(s)

Martin Morgan mailto:mtmorgan@fhcrc.org

See Also

getClass("BiocParallelParam") for additional parameter classes.

register for registering parameter classes for use in parallel evaluation.

Examples

p <- SerialParam()
simplify2array(bplapply(1:10, sqrt, BPPARAM=p))
bpvec(1:10, sqrt, BPPARAM=p)

Not run:
register(SerialParam(), default=TRUE)

End(Not run)

SnowParam-class Enable simple network of workstations (SNOW)-style parallel evalua-
tion

Description

This class is used to parameterize simple network of workstations (SNOW) parallel evaluation on
one or several physical computers. snowWorkers() chooses the number of workers.

Usage

constructor

SnowParam(workers = snowWorkers(type), type=c("SOCK", "MPI", "FORK"),
tasks = 0L, stop.on.error = TRUE,
progressbar = FALSE, RNGseed = NULL,
timeout = 30L * 24L * 60L * 60L, exportglobals = TRUE,
log = FALSE, threshold = "INFO", logdir = NA_character_,
resultdir = NA_character_, jobname = "BPJOB",

mailto:mtmorgan@fhcrc.org

SnowParam-class 43

manager.hostname = NA_character_, manager.port = NA_integer_,
...)

coercion

as(SOCKcluster, SnowParam)
as(spawnedMPIcluster,SnowParam)

detect workers

snowWorkers(type = c("SOCK", "MPI", "FORK"))

Arguments

workers integer(1) Number of workers. Defaults to all cores available as determined
by detectCores. For a SOCK cluster workers can be a character() vector of
host names.

type character(1) Type of cluster to use. Possible values are SOCK (default) and
MPI. Instead of type=FORK use MulticoreParam.

tasks integer(1). The number of tasks per job. value must be a scalar integer >=
0L.
In this documentation a job is defined as a single call to a function, such as
bplapply, bpmapply etc. A task is the division of the X argument into chunks.
When tasks == 0 (default), X is divided as evenly as possible over the number
of workers.
A tasks value of > 0 specifies the exact number of tasks. Values can range from
1 (all of X to a single worker) to the length of X (each element of X to a different
worker).
When the length of X is less than the number of workers each element of X is
sent to a worker and tasks is ignored.

stop.on.error logical(1) Enable stop on error.

progressbar logical(1) Enable progress bar (based on plyr:::progress_text).

RNGseed integer(1) Seed for random number generation. When not NULL, this value
is passed to parallel::clusterSetRNGStream to generate random number streams
on each worker.

timeout numeric(1) Time (in seconds) allowed for worker to complete a task. This
value is passed to base::setTimeLimit() as both the cpu and elapsed arguments.
If the computation exceeds timeout an error is thrown with message ’reached
elapsed time limit’.

exportglobals logical(1) Export base::options() from manager to workers? Default TRUE.

log logical(1) Enable logging.

threshold character(1) Logging threshold as defined in futile.logger.

logdir character(1) Log files directory. When not provided, log messages are re-
turned to stdout.

resultdir character(1) Job results directory. When not provided, results are returned as
an R object (list) to the workspace.

44 SnowParam-class

jobname character(1) Job name that is prepended to log and result files. Default is
"BPJOB".

manager.hostname

character(1) Host name of manager node. See ’Global Options’, below.

manager.port integer(1) Port on manager with which workers communicate. See ’Global
Options’, below.

... Additional arguments passed to makeCluster

Details

SnowParam is used for distributed memory computing and supports 2 cluster types: ‘SOCK’ (de-
fault) and ‘MPI’. The SnowParam builds on infrastructure in the snow and parallel packages and
provides the additional features of error handling, logging and writing out results.

The default number of workers is determined by snowWorkers() which is usually the maximum of
1L and parallel::detectCores() -2. Machines with 3 or fewer cores, or machines where num-
ber of cores cannot be determined, are assigned a single worker. Machines with more than 127 cores
are limited to the number of R connections available when the workers start; this is 128 (a hard-
coded limit in R) minus the number of open connections as returned by nrow(showConnections(all=TRUE)).
The option mc.cores can be used to specify an arbitrary number of workers, e.g., options(mc.cores=4L);
the Bioconductor build system enforces a maximum of 4 workers.

error handling: By default all computations are attempted and partial results are returned with any
error messages.

• stop.on.error A logical. Stops all jobs as soon as one job fails or wait for all jobs
to terminate. When FALSE, the return value is a list of successful results along with error
messages as ’conditions’.

• The bpok(x) function returns a logical() vector that is FALSE for any jobs that threw
an error. The input x is a list output from a bp*apply function such as bplapply or
bpmapply.

logging: When log = TRUE the futile.logger package is loaded on the workers. All log mes-
sages written in the futile.logger format are captured by the logging mechanism and re-
turned real-time (i.e., as each task completes) instead of after all jobs have finished.
Messages sent to stdout and stderr are returned to the workspace by default. When log
= TRUE these are diverted to the log output. Those familiar with the outfile argument to
makeCluster can think of log = FALSE as equivalent to outfile = NULL; providing a logdir
is the same as providing a name for outfile except that BiocParallel writes a log file for each
task.
The log output includes additional statistics such as memory use and task runtime. Memory
use is computed by calling gc(reset=TRUE) before code evaluation and gc() (no reseet) after.
The output of the second gc() call is sent to the log file. There are many ways to track mem-
ory use - this particular approach was taken because it is consistent with how the BatchJobs
package reports memory on the workers.

log and result files: Results and logs can be written to a file instead of returned to the workspace.
Writing to files is done from the master as each task completes. Options can be set with
the logdir and resultdir fields in the constructor or with the accessors, bplogdir and
bpresultdir.

random number generation: MulticoreParam and SnowParam use the random number genera-
tion support from the parallel package. These params are snow-derived clusters so the argu-
ments for multicore-derived functions such as mc.set.seed and mc.reset.stream do not
apply.

SnowParam-class 45

Random number generation is controlled through the param argument, RNGseed which is
passed to parallel::clusterSetRNGStream. clusterSetRNGStream uses the L’Ecuyer-CMRG
random number generator and distributes streams to the members of a cluster. If RNGseed is
not NULL it serves as the seed to the streams, otherwise the streams are set from the current
seed of the master process after selecting the L’Ecuyer generator. See ?clusterSetRNGStream
for more details.
NOTE: The PSOCK cluster from the parallel package does not support cluster options scriptdir
and useRscript. PSOCK is not supported because these options are needed to re-direct to an
alternate worker script located in BiocParallel.

Constructor

SnowParam(workers = snowWorkers(),type=c("SOCK","MPI"),tasks = 0L,stop.on.error =
FALSE,progressbar = FALSE,RNGseed = NULL,timeout = Inf,exportglobals = TRUE,log
= FALSE,threshold = "INFO",logdir = NA_character_,resultdir = NA_character_,jobname
= "BPJOB",manager.hostname = NA_character_,manager.port = NA_integer_,...):
Return an object representing a SNOW cluster. The cluster is not created until bpstart is
called. Named arguments in ... are passed to makeCluster.

Accessors: Logging and results

In the following code, x is a SnowParam object.

bpprogressbar(x), bpprogressbar(x) <-value: Get or set the value to enable text progress
bar. value must be a logical(1).

bpjobname(x), bpjobname(x) <-value: Get or set the job name.

bpRNGseed(x), bpRNGseed(x) <-value: Get or set the seed for random number generaton. value
must be a numeric(1) or NULL.

bplog(x), bplog(x) <-value: Get or set the value to enable logging. value must be a logical(1).

bpthreshold(x), bpthreshold(x) <-value: Get or set the logging threshold. value must be a
character(1) string of one of the levels defined in the futile.logger package: “TRACE”,
“DEBUG”, “INFO”, “WARN”, “ERROR”, or “FATAL”.

bplogdir(x), bplogdir(x) <-value: Get or set the directory for the log file. value must be a
character(1) path, not a file name. The file is written out as BPLOG.out. If no logdir is
provided and bplog=TRUE log messages are sent to stdout.

bpresultdir(x), bpresultdir(x) <-value: Get or set the directory for the result files. value
must be a character(1) path, not a file name. Separate files are written for each job with
the prefix TASK (e.g., TASK1, TASK2, etc.). When no resultdir is provided the results are
returned to the session as list.

Accessors: Back-end control

In the code below x is a SnowParam object. See the ?BiocParallelParam man page for details on
these accessors.

bpworkers(x), bpworkers(x) <-value, bpnworkers(x)

bptasks(x), bptasks(x) <-value

bpstart(x)

bpstop(x)

bpisup(x)

bpbackend(x), bpbackend(x) <-value

46 SnowParam-class

Accessors: Error Handling

In the code below x is a SnowParam object. See the ?BiocParallelParam man page for details on
these accessors.

bpstopOnError(x), bpstopOnError(x) <-value

Methods: Evaluation

In the code below BPPARAM is a SnowParam object. Full documentation for these functions are on
separate man pages: see ?bpmapply, ?bplapply, ?bpvec, ?bpiterate and ?bpaggregate.

bpmapply(FUN,...,MoreArgs=NULL,SIMPLIFY=TRUE,USE.NAMES=TRUE,BPPARAM=bpparam())

bplapply(X,FUN,...,BPPARAM=bpparam())

bpvec(X,FUN,...,AGGREGATE=c,BPPARAM=bpparam())

bpiterate(ITER,FUN,...,BPPARAM=bpparam())

bpaggregate(x,data,FUN,...,BPPARAM=bpparam())

Methods: Other

In the code below x is a SnowParam object.

show(x): Displays the SnowParam object.

bpok(x): Returns a logical() vector: FALSE for any jobs that resulted in an error. x is the result
list output by a BiocParallel function such as bplapply or bpmapply.

Coercion

as(from,"SnowParam"): Creates a SnowParam object from a SOCKcluster or spawnedMPIcluster
object. Instances created in this way cannot be started or stopped.

Global Options

The global option mc.cores influences the number of workers determined by snowWorkers() (de-
scribed above) or multicoreWorkers() (see multicoreWorkers).

Workers communicate to the master through socket connections. Socket connections require a
hostname and port. These are determined by arguments manager.hostname and manager.port;
default values are influenced by global options.

The default manager hostname is "localhost" when the number of workers are specified as a numeric(1),
and Sys.info()[["nodename"]] otherwise. The hostname can be over-ridden by the envirnoment
variable MASTER, or the global option bphost (e.g., options(bphost=Sys.info()[["nodename"]]).

The default port is chosen as a random value between 11000 and 11999. The port may be over-
ridden by the environment variable R_PARALLEL_PORT or PORT, and by the option ports, e.g.,
options(ports=12345L).

Author(s)

Martin Morgan and Valerie Obenchain.

SnowParam-class 47

See Also

• register for registering parameter classes for use in parallel evaluation.

• MulticoreParam for computing in shared memory

• BatchJobsParam for computing with cluster schedulers

• DoparParam for computing with foreach

• SerialParam for non-parallel evaluation

Examples

Job configuration:

SnowParam supports distributed memory computing. The object fields
control the division of tasks, error handling, logging and result
format.
bpparam <- SnowParam()
bpparam

Fields are modified with accessors of the same name:
bplog(bpparam) <- TRUE
dir.create(resultdir <- tempfile())
bpresultdir(bpparam) <- resultdir
bpparam

Logging:

When 'log == TRUE' the workers use a custom script (in BiocParallel)
that enables logging and access to other job statistics. Log messages
are returned as each job completes rather than waiting for all to
finish.

In 'fun', a value of 'x = 1' will throw a warning, 'x = 2' is ok
and 'x = 3' throws an error. Because 'x = 1' sleeps, the warning
should return after the error.

X <- 1:3
fun <- function(x) {

if (x == 1) {
Sys.sleep(2)
if (TRUE & c(TRUE, TRUE)) ## warning

x
} else if (x == 2) {

x ## ok
} else if (x == 3) {

sqrt("FOO") ## error
}

}

By default logging is off. Turn it on with the bplog()<- setter
or by specifying 'log = TRUE' in the constructor.
bpparam <- SnowParam(3, log = TRUE, stop.on.error = FALSE)

48 SnowParam-class

tryCatch({
bplapply(X, fun, BPPARAM = bpparam)

}, error=identity)

When a 'logdir' location is given the messages are redirected to a
file:
Not run:
dir.create(logdir <- tempfile())
bplogdir(bpparam) <- logdir
bplapply(X, fun, BPPARAM = bpparam)
list.files(bplogdir(bpparam))

End(Not run)

Managing results:

By default results are returned as a list. When 'resultdir' is given
files are saved in the directory specified by job, e.g., 'TASK1.Rda',
'TASK2.Rda', etc.
Not run:
dir.create(resultdir <- tempfile())
bpparam <- SnowParam(2, resultdir = resultdir)
bplapply(X, fun, BPPARAM = bpparam)
list.files(bpresultdir(bpparam))

End(Not run)

Error handling:

When 'stop.on.error' is TRUE the process returns as soon as an error
is thrown.

When 'stop.on.error' is FALSE all computations are attempted. Partial
results are returned along with errors. Use bptry() to see the
partial results
bpparam <- SnowParam(2, stop.on.error = FALSE)
res <- bptry(bplapply(list(1, "two", 3, 4), sqrt, BPPARAM = bpparam))
res

Calling bpok() on the result list returns TRUE for elements with no
error.
bpok(res)

Random number generation:

Random number generation is controlled with the 'RNGseed' field.
This seed is passed to parallel::clusterSetRNGStream
which uses the L'Ecuyer-CMRG random number generator and distributes
streams to members of the cluster.

bpparam <- SnowParam(3, RNGseed = 7739465)

SnowParam-class 49

bplapply(seq_len(bpnworkers(bpparam)), function(i) rnorm(1),
BPPARAM = bpparam)

Index

∗Topic classes
BiocParallelParam-class, 8
DoparParam-class, 30
MulticoreParam-class, 33
SerialParam-class, 41
SnowParam-class, 42

∗Topic interface
bpvectorize, 26

∗Topic manip
bpiterate, 12
bplapply, 15
bpmapply, 18
bpschedule, 20
bptry, 21
bpvalidate, 22
bpvec, 24
register, 39

∗Topic methods
BiocParallelParam-class, 8
bpiterate, 12
MulticoreParam-class, 33
SnowParam-class, 42

∗Topic package
BiocParallel-package, 2

.BiocParallelParam_prototype
(DeveloperInterface), 27

.bpiterate_impl (DeveloperInterface), 27

.bplapply_impl (DeveloperInterface), 27

.bpstart_impl (DeveloperInterface), 27

.bpstop_impl (DeveloperInterface), 27

.bpworker_impl (DeveloperInterface), 27

.close (DeveloperInterface), 27

.close,ANY-method (DeveloperInterface),
27

.prototype_update (DeveloperInterface),
27

.recv (DeveloperInterface), 27

.recv,ANY-method (DeveloperInterface),
27

.recv_all (DeveloperInterface), 27

.recv_all,ANY-method
(DeveloperInterface), 27

.recv_any (DeveloperInterface), 27

.recv_any,ANY-method
(DeveloperInterface), 27

.send (DeveloperInterface), 27

.send,ANY-method (DeveloperInterface),
27

.send_all (DeveloperInterface), 27

.send_all,ANY-method
(DeveloperInterface), 27

.send_to (DeveloperInterface), 27

.send_to,ANY-method
(DeveloperInterface), 27

aggregate, 11, 12

BatchJobsParam, 37, 47
BatchJobsParam (BatchJobsParam-class), 3
BatchJobsParam-class, 3
batchtoolsCluster

(BatchtoolsParam-class), 5
BatchtoolsParam, 10, 13
BatchtoolsParam

(BatchtoolsParam-class), 5
BatchtoolsParam-class, 5
batchtoolsRegistryargs

(BatchtoolsParam-class), 5
batchtoolsTemplate

(BatchtoolsParam-class), 5
batchtoolsWorkers

(BatchtoolsParam-class), 5
BiocParallel (BiocParallel-package), 2
BiocParallel-package, 2
BiocParallelParam, 11, 13, 16, 18, 19, 21,

25–27, 40
BiocParallelParam

(BiocParallelParam-class), 8
BiocParallelParam-class, 8
bpaggregate, 11
bpaggregate,ANY,missing-method

(bpaggregate), 11
bpaggregate,data.frame,BiocParallelParam-method

(bpaggregate), 11
bpaggregate,formula,BiocParallelParam-method

(bpaggregate), 11

50

INDEX 51

bpaggregate,matrix,BiocParallelParam-method
(bpaggregate), 11

bpbackend, 4, 6, 30
bpbackend (BiocParallelParam-class), 8
bpbackend,BatchJobsParam-method

(BatchJobsParam-class), 3
bpbackend,BatchtoolsParam-method

(BatchtoolsParam-class), 5
bpbackend,DoparParam-method

(DoparParam-class), 30
bpbackend,missing-method

(BiocParallelParam-class), 8
bpbackend,SerialParam-method

(SerialParam-class), 41
bpbackend,SnowParam-method

(SnowParam-class), 42
bpbackend<- (BiocParallelParam-class), 8
bpbackend<-,BatchJobsParam

(BatchJobsParam-class), 3
bpbackend<-,DoparParam,SOCKcluster-method

(DoparParam-class), 30
bpbackend<-,missing,ANY-method

(BiocParallelParam-class), 8
bpbackend<-,SnowParam,cluster-method

(SnowParam-class), 42
bpexportglobals

(BiocParallelParam-class), 8
bpexportglobals,BiocParallelParam-method

(BiocParallelParam-class), 8
bpexportglobals<-

(BiocParallelParam-class), 8
bpexportglobals<-,BiocParallelParam,logical-method

(BiocParallelParam-class), 8
bpisup, 4, 6, 30, 42
bpisup (BiocParallelParam-class), 8
bpisup,ANY-method

(BiocParallelParam-class), 8
bpisup,BatchJobsParam-method

(BatchJobsParam-class), 3
bpisup,BatchtoolsParam-method

(BatchtoolsParam-class), 5
bpisup,DoparParam-method

(DoparParam-class), 30
bpisup,missing-method

(BiocParallelParam-class), 8
bpisup,MulticoreParam-method

(MulticoreParam-class), 33
bpisup,SerialParam-method

(SerialParam-class), 41
bpisup,SnowParam-method

(SnowParam-class), 42
bpiterate, 12

bpiterate,ANY,ANY,BatchJobsParam-method
(bpiterate), 12

bpiterate,ANY,ANY,BatchtoolsParam-method
(bpiterate), 12

bpiterate,ANY,ANY,BiocParallelParam-method
(bpiterate), 12

bpiterate,ANY,ANY,DoparParam-method
(bpiterate), 12

bpiterate,ANY,ANY,missing-method
(bpiterate), 12

bpiterate,ANY,ANY,SerialParam-method
(bpiterate), 12

bpiterate,ANY,ANY,SnowParam-method
(bpiterate), 12

bpjobname (BiocParallelParam-class), 8
bpjobname,BiocParallelParam-method

(BiocParallelParam-class), 8
bpjobname<- (BiocParallelParam-class), 8
bpjobname<-,BiocParallelParam,character-method

(BiocParallelParam-class), 8
bplapply, 6, 13, 15, 22, 26, 42
bplapply,ANY,BatchJobsParam-method

(bplapply), 15
bplapply,ANY,BatchtoolsParam-method

(BatchtoolsParam-class), 5
bplapply,ANY,BiocParallelParam-method

(bplapply), 15
bplapply,ANY,DoparParam-method

(bplapply), 15
bplapply,ANY,list-method (bplapply), 15
bplapply,ANY,missing-method (bplapply),

15
bplapply,ANY,SerialParam-method

(bplapply), 15
bplapply,ANY,SnowParam-method

(bplapply), 15
bplog (BiocParallelParam-class), 8
bplog,BiocParallelParam-method

(BiocParallelParam-class), 8
bplog,SerialParam-method

(SerialParam-class), 41
bplog,SnowParam-method

(SnowParam-class), 42
bplog<- (BiocParallelParam-class), 8
bplog<-,SerialParam,logical-method

(SerialParam-class), 41
bplog<-,SnowParam,logical-method

(SnowParam-class), 42
bplogdir (BiocParallelParam-class), 8
bplogdir,BatchtoolsParam-method

(BatchtoolsParam-class), 5
bplogdir,BiocParallelParam-method

52 INDEX

(BiocParallelParam-class), 8
bplogdir,SerialParam-method

(SerialParam-class), 41
bplogdir<- (BiocParallelParam-class), 8
bplogdir<-,BatchtoolsParam,character-method

(BatchtoolsParam-class), 5
bplogdir<-,BiocParallelParam,character-method

(BiocParallelParam-class), 8
bplogdir<-,SerialParam,character-method

(SerialParam-class), 41
bploop, 16
bpmapply, 18
bpmapply,ANY,BiocParallelParam-method

(bpmapply), 18
bpmapply,ANY,list-method (bpmapply), 18
bpmapply,ANY,missing-method (bpmapply),

18
bpnworkers, 4, 6, 30
bpnworkers (BiocParallelParam-class), 8
bpok, 19
bpparam (register), 39
bpprogressbar

(BiocParallelParam-class), 8
bpprogressbar,BiocParallelParam-method

(BiocParallelParam-class), 8
bpprogressbar<-

(BiocParallelParam-class), 8
bpprogressbar<-,BiocParallelParam,logical-method

(BiocParallelParam-class), 8
bpresultdir (BiocParallelParam-class), 8
bpresultdir,BiocParallelParam-method

(BiocParallelParam-class), 8
bpresultdir<-

(BiocParallelParam-class), 8
bpresultdir<-,BiocParallelParam,character-method

(BiocParallelParam-class), 8
bpRNGseed (BiocParallelParam-class), 8
bpRNGseed,BatchtoolsParam-method

(BatchtoolsParam-class), 5
bpRNGseed,BiocParallelParam-method

(BiocParallelParam-class), 8
bpRNGseed<- (BiocParallelParam-class), 8
bpRNGseed<-,BatchtoolsParam,numeric-method

(BatchtoolsParam-class), 5
bpRNGseed<-,BiocParallelParam,NULL-method

(BiocParallelParam-class), 8
bpRNGseed<-,BiocParallelParam,numeric-method

(BiocParallelParam-class), 8
bprunMPIslave (bploop), 16
bpschedule, 20
bpschedule,ANY-method (bpschedule), 20
bpschedule,BatchJobsParam-method

(BatchJobsParam-class), 3
bpschedule,BatchtoolsParam-method

(BatchtoolsParam-class), 5
bpschedule,missing-method (bpschedule),

20
bpschedule,MulticoreParam-method

(MulticoreParam-class), 33
bpstart, 4, 6, 30, 42
bpstart (BiocParallelParam-class), 8
bpstart,ANY-method

(BiocParallelParam-class), 8
bpstart,BatchJobsParam-method

(BatchJobsParam-class), 3
bpstart,BatchtoolsParam-method

(BatchtoolsParam-class), 5
bpstart,BiocParallelParam-method

(BiocParallelParam-class), 8
bpstart,DoparParam-method

(DoparParam-class), 30
bpstart,missing-method

(BiocParallelParam-class), 8
bpstart,SerialParam-method

(SerialParam-class), 41
bpstart,SnowParam-method

(SnowParam-class), 42
bpstop, 4, 6, 30, 42
bpstop (BiocParallelParam-class), 8
bpstop,ANY-method

(BiocParallelParam-class), 8
bpstop,BatchJobsParam-method

(BatchJobsParam-class), 3
bpstop,BatchtoolsParam-method

(BatchtoolsParam-class), 5
bpstop,BiocParallelParam-method

(BiocParallelParam-class), 8
bpstop,DoparParam-method

(DoparParam-class), 30
bpstop,missing-method

(BiocParallelParam-class), 8
bpstop,SerialParam-method

(SerialParam-class), 41
bpstop,SnowParam-method

(SnowParam-class), 42
bpstopOnError

(BiocParallelParam-class), 8
bpstopOnError,BiocParallelParam-method

(BiocParallelParam-class), 8
bpstopOnError<-

(BiocParallelParam-class), 8
bpstopOnError<-,BiocParallelParam,logical-method

(BiocParallelParam-class), 8
bpstopOnError<-,DoparParam,logical-method

INDEX 53

(BiocParallelParam-class), 8
bptasks (BiocParallelParam-class), 8
bptasks,BiocParallelParam-method

(BiocParallelParam-class), 8
bptasks<- (BiocParallelParam-class), 8
bptasks<-,BiocParallelParam,numeric-method

(BiocParallelParam-class), 8
bpthreshold (BiocParallelParam-class), 8
bpthreshold,BiocParallelParam-method

(BiocParallelParam-class), 8
bpthreshold,SnowParam-method

(SnowParam-class), 42
bpthreshold<-

(BiocParallelParam-class), 8
bpthreshold<-,SerialParam,character-method

(SerialParam-class), 41
bpthreshold<-,SnowParam,character-method

(SnowParam-class), 42
bptimeout (BiocParallelParam-class), 8
bptimeout,BiocParallelParam-method

(BiocParallelParam-class), 8
bptimeout<- (BiocParallelParam-class), 8
bptimeout<-,BiocParallelParam,numeric-method

(BiocParallelParam-class), 8
bptry, 21
bpvalidate, 22
bpvec, 13, 16, 19, 24, 27, 30, 42
bpvec,ANY,BiocParallelParam-method

(bpvec), 24
bpvec,ANY,list-method (bpvec), 24
bpvec,ANY,missing-method (bpvec), 24
bpvectorize, 26
bpvectorize,ANY,ANY-method

(bpvectorize), 26
bpvectorize,ANY,missing-method

(bpvectorize), 26
bpworkers, 4, 6, 30, 42
bpworkers (BiocParallelParam-class), 8
bpworkers,BatchJobsParam-method

(BatchJobsParam-class), 3
bpworkers,BatchtoolsParam-method

(BatchtoolsParam-class), 5
bpworkers,BiocParallelParam-method

(BiocParallelParam-class), 8
bpworkers,DoparParam-method

(DoparParam-class), 30
bpworkers,missing-method

(BiocParallelParam-class), 8
bpworkers,SerialParam-method

(SerialParam-class), 41
bpworkers,SnowParam-method

(SnowParam-class), 42

bpworkers<- (BiocParallelParam-class), 8
bpworkers<-,MulticoreParam,numeric-method

(MulticoreParam-class), 33
bpworkers<-,SnowParam,character-method

(SnowParam-class), 42
bpworkers<-,SnowParam,numeric-method

(SnowParam-class), 42

chunk, 3
ClusterFunctions, 4
coerce,SOCKcluster,DoparParam-method

(DoparParam-class), 30
coerce,SOCKcluster,SnowParam-method

(SnowParam-class), 42
coerce,spawnedMPIcluster,SnowParam-method

(SnowParam-class), 42

DeveloperInterface, 27
DoparParam, 10, 21, 37, 40, 47
DoparParam (DoparParam-class), 30
DoparParam-class, 30

getwd, 3

ipcid (ipcmutex), 31
ipclock (ipcmutex), 31
ipclocked (ipcmutex), 31
ipcmutex, 31
ipcremove (ipcmutex), 31
ipcreset (ipcmutex), 31
ipctrylock (ipcmutex), 31
ipcunlock (ipcmutex), 31
ipcvalue (ipcmutex), 31
ipcyield (ipcmutex), 31

lapply, 15, 16
loadRegistry, 3

makeCluster, 35, 44
makeRegistry, 3, 6
mapply, 18
mclapply, 16, 18
MulticoreParam, 10, 21, 40, 47
MulticoreParam (MulticoreParam-class),

33
MulticoreParam-class, 33
multicoreWorkers, 46
multicoreWorkers

(MulticoreParam-class), 33

parallel, 2
print.remote_error

(BiocParallelParam-class), 8
pvec, 26

54 INDEX

register, 21, 39
registered (register), 39

SerialParam, 10, 27, 37, 47
SerialParam (SerialParam-class), 41
SerialParam-class, 41
show,BatchJobsParam-method

(BatchJobsParam-class), 3
show,BatchtoolsParam-method

(BatchtoolsParam-class), 5
show,BiocParallel-method

(BiocParallelParam-class), 8
show,DoparParam-method

(DoparParam-class), 30
show,MulticoreParam-method

(MulticoreParam-class), 33
show,SnowParam-method

(SnowParam-class), 42
simplify2array, 11, 18
SnowParam, 10, 21, 34, 35, 37, 40, 41
SnowParam (SnowParam-class), 42
SnowParam-class, 42
snowWorkers (SnowParam-class), 42
submitJobs, 3

tryCatch, 22

	BiocParallel-package
	BatchJobsParam-class
	BatchtoolsParam-class
	BiocParallelParam-class
	bpaggregate
	bpiterate
	bplapply
	bploop
	bpmapply
	bpok
	bpschedule
	bptry
	bpvalidate
	bpvec
	bpvectorize
	DeveloperInterface
	DoparParam-class
	ipcmutex
	MulticoreParam-class
	register
	SerialParam-class
	SnowParam-class
	Index

