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Advanced usage

1 Introduction

This vignette details the universalmotif implementation of higher-order motifs (multifreq),
motif enrichment analyses, motif P-values, advanced usage related to motif comparison,
drawing motif trees, and de novo motif searches with MEME. For an introduction to sequence
motifs, see the introductory vignette. For a basic overview of available motif-related functions,
see the motif manipulation vignette. For sequence-related utilities, see the sequences vignette.

2 Higher-order motifs

Though PCM, PPM, PWM, and ICM type motifs are still widely used today, a few ‘next
generation’ motif formats have been proposed. These wish to add another layer of information
to motifs: positional interdependence. To illustrate this, consider the following sequences:

Table 1: Example sequences

# Sequence
1 CAAAACC
2 CAAAACC
3 CAAAACC
4 CTTTTCC
5 CTTTTCC
6 CTTTTCC

This becomes the following PPM:

Table 2: Position probability matrix

Position 1 2 3 4 5 6 7
A 0.0 0.5 0.5 0.5 0.5 0.0 0.0
C 1.0 0.0 0.0 0.0 0.0 1.0 1.0
G 0.0 0.0 0.0 0.0 0.0 0.0 0.0
T 0.0 0.5 0.5 0.5 0.5 0.0 0.0

Based on the PPM representation, all three of CAAAACC, CTTTTCC, and CTATACC are
equally likely. Though looking at the starting sequences, should CTATACC really be considered
so? For transcription factor binding sites, some would say the answer is no. By incorporating
this type of information into the motif, this can allow for increased accuracy in motif searching.
A few implementations of this include: TFFM by Mathelier and Wasserman (2013), BaMM
by Siebert and Soding (2016), and KSM by Guo et al. (2018).

The universalmotif package implements its’ own, rather simplified, version of this concept.
Plainly, the standard PPM has been extended to include k-letter frequencies, with k being
any number higher than 1. For example, the 2-letter version of the table 2 motif would be:
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Table 3: 2-letter probability matrix

Position 1 2 3 4 5 6
AA 0.0 0.5 0.5 0.5 0.0 0.0
AC 0.0 0.0 0.0 0.0 0.5 0.0
AG 0.0 0.0 0.0 0.0 0.0 0.0
AT 0.0 0.0 0.0 0.0 0.0 0.0
CA 0.5 0.0 0.0 0.0 0.0 0.0
CC 0.0 0.0 0.0 0.0 0.0 1.0
CG 0.0 0.0 0.0 0.0 0.0 0.0
CT 0.5 0.0 0.0 0.0 0.0 0.0
GA 0.0 0.0 0.0 0.0 0.0 0.0
GC 0.0 0.0 0.0 0.0 0.0 0.0
GG 0.0 0.0 0.0 0.0 0.0 0.0
GT 0.0 0.0 0.0 0.0 0.0 0.0
TA 0.0 0.0 0.0 0.0 0.0 0.0
TC 0.0 0.0 0.0 0.0 0.5 0.0
TG 0.0 0.0 0.0 0.0 0.0 0.0
TT 0.0 0.5 0.5 0.5 0.0 0.0

This format shows the probability of each letter combined with the probability of the letter
in the next position. The seventh column has been dropped, since it is not needed; the
information in the sixth column is sufficient, and there is no eighth position to draw 2-letter
probabilities from. Now, the probability of getting CTATACC is no longer equal to CTTTTCC
and CAAAACC. This information is kept in the multifreq slot of universalmotif class motifs.
To add this information, use the add_multifreq function.

library(universalmotif)

motif <- create_motif("CWWWWCC", nsites = 6)

sequences <- DNAStringSet(rep(c("CAAAACC", "CTTTTCC"), 3))

motif.k2 <- add_multifreq(motif, sequences, add.k = 2)

# Or:

# motif.k2 <- create_motif(sequences, add.multifreq = 2)

motif.k2

#>

#> Motif name: motif

#> Alphabet: DNA

#> Type: PPM

#> Strands: +-

#> Total IC: 10

#> Consensus: CWWWWCC

#> Target sites: 6

#> k-letter freqs: 2

#>

#> C W W W W C C

#> A 0 0.5 0.5 0.5 0.5 0 0

#> C 1 0.0 0.0 0.0 0.0 1 1

#> G 0 0.0 0.0 0.0 0.0 0 0
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#> T 0 0.5 0.5 0.5 0.5 0 0

This information is most useful with functions such as scan_sequences() and en

rich_motifs(). Though other tools in the universalmotif can work with multifreq motifs
(such as motif_pvalue(), compare_motifs()), keep in mind they are not as well supported as
regular motifs (getting P-values from multifreq motifs is exponentially slower, and P-values
from using compare_motifs() for multifreq motifs are not available by default). See the
sequences vignette for using scan_sequences() with the multifreq slot.

3 Enrichment analyses

The universalmotif package offers the ability to search for enriched motif sites in a set
of sequences via enrich_motifs(). There is little complexity to this, as it simply runs
scan_sequences() twice; once on a set of target sequences, and once on a set of background
sequences. After which the results between the two sequences are collated and run through
enrichment tests. The background sequences can be given explicitly, or else enrich_motifs()

will create background sequences on its own by using shuffle_sequences() on the target
sequences.

Let us consider the following basic example:

library(universalmotif)

data(ArabidopsisMotif)

data(ArabidopsisPromoters)

enrich_motifs(ArabidopsisMotif, ArabidopsisPromoters, shuffle.k = 3,

verbose = 0, progress = FALSE, RC = TRUE)

#> motif total.seq.hits num.seqs.hit num.seqs.total total.bkg.hits

#> 1 YTTTYTTTTTYTTTY 582 50 50 161

#> num.bkg.hit num.bkg.total Pval.hits Qval.hits Eval.hits

#> 1 47 50 3.087588e-57 3.087588e-57 6.175176e-57

Here we can see that the motif is significantly enriched in the target sequences. Looking for
closely at the results, the motif was found 218 times in 43 of the 50 sequences; whereas it
was found 29 times in 21 of the 50 background sequences. The Pval.hits was calculated by
calling fisher.test from the stats package. Another type of test is available which looks for
positional enrichment, i.e. whether one area in the target sequences is favoured.

library(universalmotif)

data(ArabidopsisMotif)

data(ArabidopsisPromoters)

enrich_motifs(ArabidopsisMotif, ArabidopsisPromoters, shuffle.k = 3,

search.mode = "positional", verbose = 0, progress = FALSE,

RC = TRUE)

#> ! No enriched motifs

In this case however no such bias exists in the target sequences. There are a number of tests
available for positional enrichment; see ?enrich_motifs.
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One final point: always keep in mind the threshold parameter, as this will ultimately decide
the number of hits found. (A bad threshold can lead to a false negative.) See the sequences
vignette for a discussion about using P-values to determine the threshold of scan_sequences().
Motif P-values are discussed in more details in the next section of this document.

4 Motif P-values

Motif P-values are not usually discussed outside of the bioinformatics literature, but are
actually quite a challenging topic. For illustrate this, consider the following example motif:

library(universalmotif)

m <- matrix(c(0.10,0.27,0.23,0.19,0.29,0.28,0.51,0.12,0.34,0.26,

0.36,0.29,0.51,0.38,0.23,0.16,0.17,0.21,0.23,0.36,

0.45,0.05,0.02,0.13,0.27,0.38,0.26,0.38,0.12,0.31,

0.09,0.40,0.24,0.30,0.21,0.19,0.05,0.30,0.31,0.08),

byrow=TRUE,nrow=4)

motif <- create_motif(m, alphabet = "DNA", type = "PWM")

motif

#>

#> Motif name: motif

#> Alphabet: DNA

#> Type: PWM

#> Strands: +-

#> Total IC: 10.03

#> Consensus: SHCNNNRNNV

#>

#> S H C N N N R N N V

#> A -1.32 0.10 -0.12 -0.40 0.21 0.15 1.04 -1.07 0.44 0.04

#> C 0.53 0.20 1.03 0.60 -0.12 -0.66 -0.54 -0.27 -0.12 0.51

#> G 0.85 -2.34 -3.64 -0.94 0.11 0.59 0.07 0.59 -1.06 0.30

#> T -1.47 0.66 -0.06 0.26 -0.25 -0.41 -2.31 0.25 0.31 -1.66

Let us then use this motif with scan_sequences():

data(ArabidopsisPromoters)

res <- scan_sequences(motif, ArabidopsisPromoters, verbose = 0,

progress = FALSE, threshold = 0.6,

threshold.type = "logodds")

head(res)

#> motif sequence start stop score max.score score.pct match strand

#> 1 motif AT4G28150 87 96 3.896 6.402864 60.84777 CTCTTTATTC +

#> 2 motif AT4G28150 987 996 4.293 6.402864 67.04812 GTCCGAAAAC +

#> 3 motif AT1G19380 846 855 5.099 6.402864 79.63624 GTCTGGATTA +

#> 4 motif AT4G19520 214 223 4.083 6.402864 63.76834 CTTTGGATAG +

#> 5 motif AT4G19520 323 332 3.903 6.402864 60.95710 CTCTTTAGAA +

#> 6 motif AT4G19520 756 765 4.241 6.402864 66.23598 GTCAAGGGAG +

Now let us imagine that we wish to rank these matches by P-value. First, we must calculate
the match probabilities:
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1https://en.wikipedia.
org/wiki/Branch_and_
bound

## The first match was CTCTTTATTC, with a score of 3.931 (max possible = 6.536)

library(Biostrings)

bkg <- colMeans(oligonucleotideFrequency(ArabidopsisPromoters, 1,

as.prob = TRUE))

bkg

#> A C G T

#> 0.34768 0.16162 0.15166 0.33904

Now, use these to calculate the probability of getting CTCTTTATTC.

hit.prob <- bkg["A"]^1 * bkg["C"]^3 * bkg["G"]^0 * bkg["T"]^6

hit.prob <- unname(hit.prob)

hit.prob

#> [1] 2.229311e-06

Calculating the probability of a single match was easy, but then comes the challenging part:
calculating the probability of all possible matches with a score higher than 3.931, and then
summing these. This final sum then represents the probability of finding a match which scores
at least 3.931. One way is to list all possible sequence combinations, then filtering based on
score; however this “brute force” approach is unreasonable but for the smallest of motifs.

A few algorithms have been proposed to make this more efficient, but the method adopted
by the universalmotif package is that of Luehr, Hartmann, and Söding (2012). The authors
propose using a branch-and-bound1 algorithm (with a few tricks) alongside a certain approxi-
mation. Briefly: motifs are first reorganized so that the highest scoring positions and letters
are considered first in the branch-and-bound algorithm. Then, motifs past a certain width (in
the original paper, 10) are split in sub-motifs. All possible combinations are found in these
sub-motifs using the branch-and-bound algorithm, and P-values calculated for the sub-motifs.
Finally, the P-values are combined.

The motif_pvalue() function modifies this process slightly by allowing the size of the sub-
motifs to be specified via the k parameter; and additionally, whereas the original implementation
can only calculate P-values for motifs with a maximum of 17 positions (and motifs can only
be split in at most two), the universalmotif implementation allows for any length of motif
to be used (and motifs can be split any number of times). Changing k allows one to decide
between speed and accuracy; smaller k leads to faster but worse approximations, and larger k
leads to slower but better approximations. If k is equal to the width of the motif, then the
calculation is exact.

Now, let us return to our original example:

pvals <- motif_pvalue(motif, res$score, progress = FALSE, bkg.probs = bkg)

res2 <- data.frame(motif=res$motif, match=res$match,

pval=pvals)[order(pvals), ]

knitr::kable(head(res2), digits = 22, row.names = FALSE, format = "markdown")

motif match pval
motif GTCCAGATTC 6.872633e-06
motif GTCCTGAGAC 8.184250e-06
motif CTCTAGAGAC 2.015429e-05
motif CCCCGGAGAC 4.507804e-05
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motif match pval
motif CTCCAAAGTC 4.547468e-05
motif GTCTAAAGTC 5.030054e-05

The default k in motif_pvalue() is 6. I have found this to be a good tradeoff between speed
and P-value correctness.

To demonstrate the effect that k has on the output P-value, consider the following (and also
note that for this motif k = 10 represents an exact calculation):

scores <- c(-6, -3, 0, 3, 6)

k <- c(2, 4, 6, 8, 10)

out <- data.frame(k = c(2, 4, 6, 8, 10),

score.minus6 = rep(0, 5),

score.minus3 = rep(0, 5),

score.0 = rep(0, 5),

score.3 = rep(0, 5),

score.6 = rep(0, 5))

for (i in seq_along(scores)) {

for (j in seq_along(k)) {

out[j, i + 1] <- motif_pvalue(motif, scores[i], k = k[j], progress = FALSE,

bkg.probs = bkg)

}

}

knitr::kable(out, format = "markdown", digits = 10)

k score.minus6 score.minus3 score.0 score.3 score.6
2 0.9275584 0.6679457 0.2453828 0.007187964 0.0000e+00
4 0.8835751 0.5738532 0.1750234 0.010256733 0.0000e+00
6 0.8841629 0.5824325 0.1873000 0.013655532 5.3155e-06
8 0.8841629 0.5824325 0.1873000 0.013655532 5.3155e-06

10 0.8842381 0.5826067 0.1874028 0.013669345 5.3155e-06

For this particular motif, while the approximation worsens slightly as k decreases, it is still quite
reasonable down to k = 6. Usually, you should only have to worry about k for longer motifs
(such as those typically generated by MEME), where the number of sub-motifs increases.

Next, I will briefly discuss starting from a P-value and obtaining a score. Though again, some
algorithms have been suggested for doing this in the literature, the best that the universalmotif
package can currently do is guess various scores and run these through motif_pvalue()

until one is found which yields a P-value within a certain tolerance. As long as you start
from a small P-value though, motif_pvalue() should only have to guess two or three times.
Continuing from our previous example:

r <- motif_pvalue(motif, pvalue = c(0.01, 0.001, 0.0001, 0.00001),

progress = FALSE, bkg.probs = bkg, k = 10)

Now let’s check how close the guesses are:
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r2 <- motif_pvalue(motif, score = r, progress = FALSE, bkg.probs = bkg, k = 10)

res <- data.frame(pval=c(0.01, 0.001, 0.0001, 0.00001), score = r,

pval.calc = r2)

knitr::kable(res, format = "markdown", digits = 22)

pval score pval.calc
1e-02 3.596000 5.725453e-03
1e-03 4.857425 4.104470e-04
1e-04 5.645285 2.933222e-05
1e-05 6.145569 2.300537e-06

As you can see, the guessed scores are far from exact. However keep in mind that the
distribution of possible scores is not quite continuous; different starting scores can be calculated
to the same P-value, and vice versa.

5 Advanced motif comparison

Here I will explore the effects of some of the options available in compare_motifs(). See
the relevant section in the basic motif manipulation vignette for an introduction to using
compare_motifs(). Let us begin by comparing the available methods:

library(universalmotif)

library(MotifDb)

motifs <- convert_motifs(MotifDb)

motifs <- filter_motifs(motifs, altname = c("M0003_1.02", "M0004_1.02"))

summarise_motifs(motifs)

#> name altname family organism consensus alphabet strand

#> 1 AFT2 M0003_1.02 AFT Scerevisiae NHNNCACCCN DNA +-

#> 2 PK19363.1 M0004_1.02 AP2 Csativa CGCCGCCR DNA +-

#> icscore

#> 1 5.837403

#> 2 8.973542

try_all <- function(motifs, ...) {

scores <- numeric(8)

methods <- c("MPCC", "PCC", "MEUCL", "EUCL", "MSW", "SW", "MKL", "KL")

for (i in 1:8) {

scores[i] <- compare_motifs(motifs, method = methods[i],

progress = FALSE, ...)[1, 2]

}

res <- data.frame(method = c("MPCC", "PCC", "MEUCL", "EUCL",

"MSW", "SW", "MKL", "KL"),

score = scores,

max = c(1, NA, sqrt(2), NA, 2, NA, NA, NA),

type = c("similarity", "similarity", "distance",

"distance", "similarity", "similarity",
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"distance", "distance"))

knitr::kable(res, format = "markdown")

}

try_all(motifs)

method score max type
MPCC 0.5145697 1.000000 similarity
PCC 18.5245085 NA similarity
MEUCL 0.3881919 1.414214 distance
EUCL 2.3291516 NA distance
MSW 1.5579529 2.000000 similarity
SW 12.0570984 NA similarity
MKL 0.9314823 NA distance
KL 5.5888940 NA distance

From this you can get a sense of how the different methods perform. See the function
documentation at ?compare_motifs for details on the method implementations. For now,
let us explore how changing the other parameters affects the scores. First, we can control
whether to allow the reverse complements to be compared as well:

try_all(motifs, tryRC = FALSE)

method score max type
MPCC 0.5145697 1.000000 similarity
PCC 18.5245085 NA similarity
MEUCL 0.3881919 1.414214 distance
EUCL 2.3291516 NA distance
MSW 1.5579529 2.000000 similarity
SW 12.0570984 NA similarity
MKL 0.9314823 NA distance
KL 5.5888940 NA distance

In this case not allowing the reverse complement of the motifs did nothing; this is because
the current motif orientations had better scores regardless. Next, whether to compare the
motifs as PPM or ICM:

try_all(motifs, use.type = "ICM")

method score max type
MPCC 0.4577775 1.000000 similarity
PCC 23.8933593 NA similarity
MEUCL 0.6497634 1.414214 distance
EUCL 4.2120436 NA distance
MSW 0.7782892 2.000000 similarity
SW 6.2263136 NA similarity
MKL 1.5366031 NA distance
KL 10.6218155 NA distance
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Going from comparing PPM motifs to ICM motifs changes the scores quite a bit; in this case
noticeable by increasing the distance between the two. Be careful about jumping to using
use.type = "ICM" though; keep in mind that the conversion from PPM is ICM is not linear,
so the comparison is inherently quite different in nature. Next, normalise.scores:

try_all(motifs, normalise.scores = TRUE)

method score max type
MPCC 0.3087418 1.000000 similarity
PCC 13.8528827 NA similarity
MEUCL 0.5233627 1.414214 distance
EUCL 3.8819194 NA distance
MSW 1.2057098 2.000000 similarity
SW 9.6456787 NA similarity
MKL 1.2424547 NA distance
KL 9.3148234 NA distance

Again, using this option increases the distance between motifs. To explain this, let’s visualize
the motif alignment:

view_motifs(motifs)

PK19363.1

AFT2

1 2 3 4 5 6 7 8 9 10 11 12
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1.0

1.5

2.0
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0.5

1.0

1.5

2.0

bi
ts

From this image you can see that there is a bit of an overhang. What normalise.scores does
is punish this overhang by multiplying the final score by the ratio of aligned to un-aligned
positions. To illustrate this further, we can restrict the alignment so there are as few as
possible overhangs:
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view_motifs(motifs, min.overlap = 99)
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try_all(motifs, min.overlap = 99)

method score max type
MPCC 0.2705641 1.000000 similarity
PCC 17.3161033 NA similarity
MEUCL 0.4186901 1.414214 distance
EUCL 3.3495210 NA distance
MSW 1.5071373 2.000000 similarity
SW 12.0570984 NA similarity
MKL 0.9939638 NA distance
KL 7.9517102 NA distance

try_all(motifs, min.overlap = 99, normalise.scores = TRUE)

method score max type
MPCC 0.2164513 1.000000 similarity
PCC 13.8528827 NA similarity
MEUCL 0.5233627 1.414214 distance
EUCL 4.1869012 NA distance
MSW 1.2057098 2.000000 similarity
SW 9.6456787 NA similarity
MKL 1.2424547 NA distance
KL 9.9396378 NA distance

Now, using normalise.scores = TRUE is less punishing. These options are important; turning
them off results in the following:
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try_all(motifs, min.overlap = 1)

method score max type
MPCC 0.8198668 1.000000 similarity
PCC 18.5245085 NA similarity
MEUCL 0.3325102 1.414214 distance
EUCL 0.3325102 NA distance
MSW 1.7788739 2.000000 similarity
SW 12.0570984 NA similarity
MKL 0.3737297 NA distance
KL 0.3737297 NA distance

view_motifs(motifs, min.overlap = 1)

PK19363.1 [RC]

AFT2
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In trying to find the highest possible score, compare_motifs() ended up with this alignment,
which most would agree is not a fair comparison of the two motifs. The final parameter I
will discuss is min.mean.ic. When you look at the motifs being compared, they both have
low information content regions. The compare_motifs() function allows you decide whether
you want low information content positions to be scored (positions which don’t pass the set
threshold will not contribute to the score).

motifs2 <- filter_motifs(MotifDb, altname = c("M0100_1.02", "M0104_1.02"))

#> motifs converted to class 'universalmotif'

view_motifs(motifs2, min.mean.ic = 0)
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Arid3b
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try_all(motifs2, min.mean.ic = 0)

method score max type
MPCC 0.9008912 1.000000 similarity
PCC 67.1572807 NA similarity
MEUCL 0.2075896 1.414214 distance
EUCL 1.8508969 NA distance
MSW 1.8802405 2.000000 similarity
SW 16.9221646 NA similarity
MKL 0.2900102 NA distance
KL 2.6100919 NA distance

view_motifs(motifs2, min.mean.ic = 0.7)

Arid3b

DGIL_AUG5s5606g1t1

1 2 3 4 5 6 7 8 9 10 11

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

bi
ts

13



Advanced usage

try_all(motifs2, min.mean.ic = 0.7)

method score max type
MPCC 0.9008912 1.000000 similarity
PCC 44.1436684 NA similarity
MEUCL 0.2644138 1.414214 distance
EUCL 1.4142136 NA distance
MSW 1.8000058 2.000000 similarity
SW 12.6000409 NA similarity
MKL 0.3989916 NA distance
KL 2.7929414 NA distance

In this case, changing the min.mean.ic did not alter the alignment, but had a great impact
on the scores. Setting this too high can be quite punishing; I have found min.mean.ic = 0.5

to be a good middle ground.

6 Motif trees with ggtree

Additionally, this package introduces the motif_tree() function for generating basic tree-like
diagrams for comparing motifs. This allows for a visual result from compare_motifs(). All
options from compare_motifs() are available in motif_tree(). This function uses the ggtree
package and outputs a ggplot object (from the ggplot2 package), so altering the look of the
trees can be done easily after motif_tree() has already been run.

library(universalmotif)

library(MotifDb)

motifs <- convert_motifs(MotifDb)

motifs <- filter_motifs(motifs, organism = "Athaliana")[1:100]

tree <- motif_tree(motifs, layout = "daylight", linecol = "family",

progress = FALSE)

#> Average angle change [1] 0.0728586923874488

#> Average angle change [2] 0.024920471919218

## Make some changes to the tree in regular ggplot2 fashion:

# tree <- tree + ...

tree
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7 Motif discovery with MEME

The universalmotif package provides a simple wrapper to the powerful motif discovery tool
MEME (Bailey and Elkan 1994). To run an analysis with MEME, all that is required is a set
of XStringSet class sequences (defined in the Biostrings package), and run_meme() will take
care of running the program and reading the output for use within R.

The first step is to check that R can find the MEME binary in your $PATH by running
run_meme() without any parameters. If successfull, you should see the default MEME help
message in your console. If not, then you’ll need to provide the complete path to the MEME
binary. There are two options:

library(universalmotif)

## 1. Once per session: via `options`

options(meme.bin = "/path/to/meme/bin/meme")

run_meme(...)

## 2. Once per run: via `run_meme`

run_meme(..., bin = "/path/to/meme/bin/meme")

Now we need to get some sequences to use with run_meme(). At this point we can read
sequences from disk or extract them from one of the Bioconductor BSgenome packages.

library(universalmotif)

data(ArabidopsisPromoters)

## 1. Read sequences from disk (in fasta format):

library(Biostrings)
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# The following `read*` functions are available in Biostrings:

# DNA: readDNAStringSet

# DNA with quality scores: readQualityScaledDNAStringSet

# RNA: readRNAStringSet

# amino acid: readAAStringSet

# any: readBStringSet

sequences <- readDNAStringSet("/path/to/sequences.fasta")

run_meme(sequences, ...)

## 2. Extract from a `BSgenome` object:

library(GenomicFeatures)

library(TxDb.Athaliana.BioMart.plantsmart28)

library(BSgenome.Athaliana.TAIR.TAIR9)

# Let us retrieve the same promoter sequences from ArabidopsisPromoters:

gene.names <- names(ArabidopsisPromoters)

# First get the transcript coordinates from the relevant `TxDb` object:

transcripts <- transcriptsBy(TxDb.Athaliana.BioMart.plantsmart28,

by = "gene")[gene.names]

# There are multiple transcripts per gene, we only care for the first one

# in each:

transcripts <- lapply(transcripts, function(x) x[1])

transcripts <- unlist(GRangesList(transcripts))

# Then the actual sequences:

# Unfortunately this is a case where the chromosome names do not match

# between the two databases

seqlevels(TxDb.Athaliana.BioMart.plantsmart28)

#> [1] "1" "2" "3" "4" "5" "Mt" "Pt"

seqlevels(BSgenome.Athaliana.TAIR.TAIR9)

#> [1] "Chr1" "Chr2" "Chr3" "Chr4" "Chr5" "ChrM" "ChrC"

# So we must first rename the chromosomes in `transcripts`:

seqlevels(transcripts) <- seqlevels(BSgenome.Athaliana.TAIR.TAIR9)

# Finally we can extract the sequences

promoters <- getPromoterSeq(transcripts,

BSgenome.Athaliana.TAIR.TAIR9,

upstream = 0, downstream = 1000)

run_meme(promoters, ...)
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Once the sequences are ready, there are few important options to keep in mind. One is
whether to conserve the output from MEME. The default is not to, but this can be changed
by setting the relevant option.

run_meme(sequences, output = "/path/to/desired/output/folder")

The second important option is the search function (objfun). Some search functions such as
the default classic do not require a set of background sequences, whilst some do (such as
de). If you choose one of the latter, then you can either let MEME create them for you (it will
shuffle the target seqeunces) or you can provide them via the control.sequences parameter.

Finally, choose how you’d like the data imported into R. Once the MEME program exits,
run_meme() will import the results into R with read_meme(); at this point you can decide if
you want just the motifs themselves (readsites = FALSE) or if you’d like the original sequence
sites as well (readsites = TRUE, the default).

There are a wealth of other MEME options available, such as the number of desired motifs
(nmotifs), the width of desired motifs (minw, maxw), the search mode (mod), assigning sequence
weights (weights), using a custom alphabet (alph), and many others. See the output from
run_meme() for a brief description of the options, or visit the online manual for more details.

Session info

#> R version 3.5.2 (2018-12-20)

#> Platform: x86_64-pc-linux-gnu (64-bit)

#> Running under: Ubuntu 16.04.5 LTS

#>

#> Matrix products: default

#> BLAS: /home/biocbuild/bbs-3.8-bioc/R/lib/libRblas.so

#> LAPACK: /home/biocbuild/bbs-3.8-bioc/R/lib/libRlapack.so

#>

#> locale:

#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

#> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C

#> [9] LC_ADDRESS=C LC_TELEPHONE=C

#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

#>

#> attached base packages:

#> [1] stats4 parallel stats graphics grDevices utils datasets

#> [8] methods base

#>

#> other attached packages:

#> [1] MotifDb_1.24.1 Biostrings_2.50.2 XVector_0.22.0

#> [4] IRanges_2.16.0 S4Vectors_0.20.1 BiocGenerics_0.28.0

#> [7] universalmotif_1.0.22 BiocStyle_2.10.0

#>

#> loaded via a namespace (and not attached):

#> [1] Rcpp_1.0.0 ape_5.2
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#> [3] lattice_0.20-38 tidyr_0.8.3

#> [5] Rsamtools_1.34.1 ps_1.3.0

#> [7] ggseqlogo_0.1 gtools_3.8.1

#> [9] assertthat_0.2.0 digest_0.6.18

#> [11] R6_2.4.0 GenomeInfoDb_1.18.2

#> [13] plyr_1.8.4 evaluate_0.13

#> [15] highr_0.7 ggplot2_3.1.0

#> [17] pillar_1.3.1 Rdpack_0.10-1

#> [19] zlibbioc_1.28.0 rlang_0.3.1

#> [21] lazyeval_0.2.1 data.table_1.12.0

#> [23] Matrix_1.2-15 rmarkdown_1.11

#> [25] labeling_0.3 BiocParallel_1.16.6

#> [27] stringr_1.4.0 RCurl_1.95-4.12

#> [29] munsell_0.5.0 DelayedArray_0.8.0

#> [31] compiler_3.5.2 rtracklayer_1.42.2

#> [33] xfun_0.5 pkgconfig_2.0.2

#> [35] htmltools_0.3.6 SummarizedExperiment_1.12.0

#> [37] tidyselect_0.2.5 tibble_2.0.1

#> [39] GenomeInfoDbData_1.2.0 bookdown_0.9

#> [41] matrixStats_0.54.0 XML_3.98-1.19

#> [43] crayon_1.3.4 dplyr_0.8.0.1

#> [45] GenomicAlignments_1.18.1 bitops_1.0-6

#> [47] grid_3.5.2 nlme_3.1-137

#> [49] jsonlite_1.6 gtable_0.2.0

#> [51] magrittr_1.5 scales_1.0.0

#> [53] bibtex_0.4.2 tidytree_0.2.4

#> [55] stringi_1.3.1 splitstackshape_1.4.6

#> [57] ggtree_1.14.6 rvcheck_0.1.3

#> [59] tools_3.5.2 treeio_1.6.2

#> [61] Biobase_2.42.0 glue_1.3.0

#> [63] purrr_0.3.1 processx_3.2.1

#> [65] yaml_2.2.0 colorspace_1.4-0

#> [67] BiocManager_1.30.4 GenomicRanges_1.34.0

#> [69] gbRd_0.4-11 knitr_1.21
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