
Cardinal design and development

Kylie A. Bemis

February 21, 2019

Contents

1 Introduction . 2

2 Design overview . 2

3 iSet: high-throughput imaging experiments 3

3.1 SImageSet: pixel-sparse imaging experiments 4

3.2 MSImageSet: mass spectrometry-based imaging experiments 4

4 ImageData: high-throughput image data 5

4.1 SImageData: pixel-sparse imaging experiments 6

4.2 MSImageData: mass spectrometry imaging data 7
4.2.1 Hashmat: compressed-sparse column matrices 7

5 IAnnotatedDataFrame: pixel metadata for imaging experiments . 8

6 MIAPE-Imaging: Minimum Information About a Proteomics Ex-
periment for MS imaging. 9

7 MSImageProcess: mass spectral pre-processing information . . . 10

8 ResultSet: analysis results for imaging experiments 10

9 Visualization for high-throughput imaging experiments 11

9.1 SImageData and MSImageData . 11

9.2 ResultSet . 11

10 Testing during development . 12

10.1 Simulating mass spectra . 13

10.2 Timing and diagnostics . 13

11 Session info . 13

Cardinal design and development

1 Introduction

Cardinal is designed with two primary purposes in mind: (1) to provide an environment
for experimentalists for the handling, pre-processing, analysis, and visualization of mass
spectrometry-based imaging experiments, and (2) to provide an infrastructure for compu-
tationalists for the development of new computational methods for mass spectrometry-based
imaging experiments.
Although MS imaging has attracted the interest of many statisticians and computer scien-
tists, and a number of algorithms have been designed specifically for such experiments, most
of these methods remain unavailable to experimentalists, because they are often either pro-
prietary, or difficult for non-experts use. Additionally, the complexity of MS imaging creates a
significant barrier to entry for developers. Cardinal aims to remove this hurdle, by providing
R developers with an accessible way to handle MS imaging data.
As an R package, Cardinal allows for the rapid prototyping of new analysis methods. This
vignette describes the design of Cardinal data structures for developers interested in writing
new R packages using or extending them.

2 Design overview

The iSet object is the foundational data structure of Cardinal. What is an iSet?
• Similar to eSet in Biobase and pSet in MSnbase.
• Coordinates high-throughput imaging data, feature data, pixel data, and metadata.
• Provides an interface for manipulating data from imaging experiments.

Just as eSet from Biobase coordinates gene expression data and pSet from MSnbase coordi-
nates proteomics data, iSet coordinates imaging data. It is a virtual class, so it is used only
through its subclasses.
MSImageSet is a subclass of iSet, and is the primary data structure used in Cardinal. It is
designed to coordinate data from mass spectrometry-based imaging experiments. It contains
mass spectra (or mass spectral peaks), feature data (including m/z values), pixel data (in-
cluding pixel coordinates and phenotype data), and other metadata. When a raw MS image
data file is read into Cardinal, it is turned into an MSImageSet, which can then be used with
Cardinal ’s methods for pre-processing, analysis, and visualization.
MSImageData is the class responsible for coordinating the mass spectra themselves, and re-
constructing them into images when necessary. Every MSImageSet has an imageData slot
containing an MSImageData object. It is similar to the assayData slot in Biobase, in that it
uses an environment to store large high-throughput data more efficiently in memory, without
R’s usual copy-on-edit behavior.
IAnnotatedDataFrame extends the Biobase AnnotatedDataFrame class by making a distinction
between pixels and samples. An IAnnotatedDataFrame tracks pixel data, where each row
corresponds to a single pixel, and each column corresponds to some measured variable (such
as phenotype). An MSImageSet may contain multiple samples, where each sample is a single
image, and possibly thousands of pixels corresponding to each sample.

2

Cardinal design and development

ResultSet is a class for containing results of analyses performed on iSet objects. A single Re

sultSet object may contain results for multiple parameter sets. Using a ResultSet provides
users and developers with a standard way of viewing and plotting the results of analyses.
Together, these classes (along with a few others) provide a useful way of accessing and
manipulating MS imaging data while keeping track of important experimental metadata.

3 iSet: high-throughput imaging experiments

Inspired by eSet in Biobase and pSet in MSnbase, the virtual class iSet provides the foun-
dation for other classes in Cardinal. It is a generic class for the storage of imaging data and
experimental metadata.
> getClass("iSet")

Virtual Class "iSet" [package "Cardinal"]

Slots:

Name: imageData pixelData featureData experimentData

Class: ImageData IAnnotatedDataFrame AnnotatedDataFrame MIAxE

Name: protocolData .__classVersion__

Class: AnnotatedDataFrame Versions

Extends:

Class "VersionedBiobase", directly

Class "Versioned", by class "VersionedBiobase", distance 2

Known Subclasses:

Class "SImageSet", directly

Class "ResultSet", directly

Class "MSImageSet", by class "SImageSet", distance 2

Class "CrossValidated", by class "ResultSet", distance 2

Class "PCA", by class "ResultSet", distance 2

Class "PLS", by class "ResultSet", distance 2

Class "OPLS", by class "ResultSet", distance 2

Class "SpatialKMeans", by class "ResultSet", distance 2

Class "SpatialShrunkenCentroids", by class "ResultSet", distance 2

Structure:
• imageData: high-throughput image data
• pixelData: pixel covariates (coordinates, sample, phenotype, etc.)
• featureData: feature covariates (m/z, protein annotation, etc.)
• experimentData: experiment description
• protocolData: sample protocol

3

Cardinal design and development

Of particular note is the imageData slot for the storing of high-throughput image data, which
will be discussed further in Section 4, and the pixelData slot, which will be discussed further
in Section 5.

3.1 SImageSet: pixel-sparse imaging experiments

SImageSet extends iSet without extending its internal structure. SImageSet implements
methods assuming that the structure of imageData is a (# of features) x (# of pixels) matrix,
where each column corresponds to a pixel’s feature vector (e.g., a single mass spectrum),
and each row corresponds to a vector of flattened image intensities.
SImageSet further assumes that there may be a number of missing pixels in the experiment.
This is useful for non-rectangular images, and experiments with multiple images of different
dimensions.
> getClass("SImageSet")

Class "SImageSet" [package "Cardinal"]

Slots:

Name: imageData pixelData featureData experimentData

Class: SImageData IAnnotatedDataFrame AnnotatedDataFrame MIAxE

Name: protocolData .__classVersion__

Class: AnnotatedDataFrame Versions

Extends:

Class "iSet", directly

Class "VersionedBiobase", by class "iSet", distance 2

Class "Versioned", by class "iSet", distance 3

Known Subclasses: "MSImageSet"

3.2 MSImageSet: mass spectrometry-based imaging experiments

MSImageSet extends SImageSet with mass spectrometry-specific features, including expecting
m/z values to be stored in the featureData slot. This is the primary class in Cardinal for
handling MS imaging experiments. It also adds a slot processingData for tracking the what
pre-processing has been applied to the dataset.
> getClass("MSImageSet")

Class "MSImageSet" [package "Cardinal"]

Slots:

Name: processingData experimentData imageData pixelData

Class: MSImageProcess MIAPE-Imaging SImageData IAnnotatedDataFrame

4

Cardinal design and development

Name: featureData protocolData .__classVersion__

Class: AnnotatedDataFrame AnnotatedDataFrame Versions

Extends:

Class "SImageSet", directly

Class "iSet", by class "SImageSet", distance 2

Class "VersionedBiobase", by class "SImageSet", distance 3

Class "Versioned", by class "SImageSet", distance 4

4 ImageData: high-throughput image data

iSet and all of its subclasses have an imageData slot for storing the high-throughput image
data. This must be an object of class ImageData or one of its subclasses.
Similar to the assayData slot in eSet from Biobase and pSet from MSnbase, ImageData uses
an environment as its data slot to store data objects in memory more efficiently, and bypass
R’s usual copy-on-edit behavior. Because these data elements of ImageData may be very
large, editing any metadata in an iSet object would trigger expensive copying of these large
data elements if a usual R list were used. Using an environment avoids this behavior.
ImageData makes no assumptions about the class of objects that make up the elements of
its data slot, but they must be array-like objects that return a positive-length vector to a call
to dim. These data elements must also have the same number of dimensions, but they may
have different extents.
> getClass("ImageData")

Class "ImageData" [package "Cardinal"]

Slots:

Name: data storageMode .__classVersion__

Class: environment character Versions

Extends: "Versioned"

Known Subclasses:

Class "SImageData", directly

Class "MSImageData", by class "SImageData", distance 2

Structure:
• data: high-throughput image data
• storageMode: mode of the data environment

Similar to assayData, the elements of ImageData can be stored in three different ways. These
are as a immutableEnvironment, lockedEnvironment, or environment.

5

Cardinal design and development

The modes lockedEnvironment and environment behave the same as for assayData in Biobase
and MSnbase. Cardinal introduces immutableEnvironment, which is a compromise between
the two. When the storage mode is immutableEnvironment, only changing the values of the
elements of ImageData directly will trigger copying, while changing object metadata will not
trigger copying.

4.1 SImageData: pixel-sparse imaging experiments

While ImageData makes very few assumptions about the objects that are the elements of its
data slot, its subclass SImageData expects a very specific structure to its data elements.
SimageData expects at least one element named “iData” (accessed by iData) which is a (#
of features) x (# of pixels) matrix, where each column is a feature vector (i.e., a single
mass spectrum) associated with a single pixel, and each row is a vector of flattened image
intensities. Additional elements should follow the same structure, with the same dimensions.
> getClass("SImageData")

Class "SImageData" [package "Cardinal"]

Slots:

Name: coord positionArray dim dimnames data

Class: data.frame array numeric list environment

Name: storageMode .__classVersion__

Class: character Versions

Extends:

Class "ImageData", directly

Class "Versioned", by class "ImageData", distance 2

Known Subclasses: "MSImageData"

Structure:
• data: high-throughput image data
• storageMode: mode of the data environment
• coord: data.frame of pixel coordinates.
• positionArray: array mapping coordinates to pixel column indices
• dim: dimensions of array elements in data

• dimnames: dimension names
SimageData implements methods for re-constructing images from the rows of flattened image
intensities on-the-fly. In addition, it assumes the images may be pixel-sparse. This means data
for missing pixels does not need to be stored. Instead, the positionArray slot holds an array

of the same dimension as the true dimensions of the imaging dataset, i.e., the maximum of
each column of coord. For each pixel coordinate from the true image, the positionArray

stores the index of the column for which the associated feature vector is stored in the matrix
elements of data.

6

Cardinal design and development

This allows transforming the image (e.g., changing the pixel coordinates such as transposing
the image, rotating it, etc.) without editing (and thereby triggering R to make a copy of) the
(possibly very large) data matrix elements in data. This also means that it doesn’t matter
what order the pixels’ feature vectors (e.g., mass spectra) are stored.

4.2 MSImageData: mass spectrometry imaging data

MSImageData is a small extension of SImageData, which adds methods for accessing additional
elements of data specific to mass spectrometry. There are an element named “peakData”
(accessed by peakData) for storing the intensities of peaks, and “mzData” (accessed by
mzData) for storing the m/z values of peaks. Generally, these elements will only exist after
peak-picking has been performed. (They may not exist if the data has been reduced to contain
only peaks, i.e., if the “iData” element consists of peaks rather than full mass spectra.)
> getClass("MSImageData")

Class "MSImageData" [package "Cardinal"]

Slots:

Name: coord positionArray dim dimnames data

Class: data.frame array numeric list environment

Name: storageMode .__classVersion__

Class: character Versions

Extends:

Class "SImageData", directly

Class "ImageData", by class "SImageData", distance 2

Class "Versioned", by class "SImageData", distance 3

The “peakData” and “mzData” elements (when they exist) are usually objects of class Hash
mat.

4.2.1 Hashmat: compressed-sparse column matrices

The Hashmat class is a compressed-sparse column matrix implementation designed to store
mass spectral peaks efficiently alongside full spectra, and allow dynamic filtering and re-
alignment of peaks without losing data.
> getClass("Hashmat")

Class "Hashmat" [package "Cardinal"]

Slots:

Name: data keys dim dimnames .__classVersion__

Class: list character numeric list Versions

Extends: "Versioned"

7

Cardinal design and development

Structure:
• data: sparse data matrix elements
• keys: identifiers of non-zero elements
• dim: dimensions of (full) matrix
• dimnames: dimension names

In a Hashmat object, the data slot is a list where each element is a column of the sparse
matrix, represented by a named numeric vector. The keys slot is a character vector. The
columns of the dense matrix are reconstructing by indexing each of the named vectors in
data by the keys. This means that a Hashmat can store matrix elements that are selectively
zero or non-zero depending on the keys.
In the context of mass spectral peak-picking, this means that each sparse column is a vector
of mass spectral peaks. Peaks can be filtered (e.g., removing low-intensity peaks) or aligned
(e.g., to the mean spectrum) loss-lessly, by changing the keys. Filtering peaks simply means
deleting a key, while peak alignment simply means re-arranging the keys. Additionally, the
dimension of the dense matrix will be the same as the full mass spectra, while requiring very
little additional storage.

5 IAnnotatedDataFrame: pixel metadata for imaging
experiments

IAnnotatedDataFrame is extension of AnnotatedDataFrame from Biobase. It serves as the
pixelData slot for iSet and its subclasses. In an AnnotatedDataFrame, each row corresponds
to a sample. However, in an IAnnotatedDataFrame, each row instead corresponds to a pixel.
In an imaging experiment, each image is a sample, and a single image is composed of many
pixels. Therefore, IAnnotatedDataFrame may have very many pixels, but have very few (or
even just a single) sample.
An IAnnotatedDataFrame must have a column named “sample”, which is a factor, and gives
the sample to which each pixel belongs.
For an IAnnotatedDataFrame, pixelNames retrieves the row names, while sampleNames re-
trieves the levels of the “sample” column.
> getClass("IAnnotatedDataFrame")

Class "IAnnotatedDataFrame" [package "Cardinal"]

Slots:

Name: varMetadata data dimLabels .__classVersion__

Class: data.frame data.frame character Versions

Extends:

Class "AnnotatedDataFrame", directly

Class "Versioned", by class "AnnotatedDataFrame", distance 2

8

Cardinal design and development

In addition, varMetadata must have a column named “labelType”, which is a factor, and
takes on the values “pheno”, “sample”, or “dim”. If a variable is “dim”, then it describes
pixel coordinates; if a variable is “sample”, then the variable is the “sample” column and it
is not currently acting as a pixel coordinate; if a variable is “pheno”, then it is describing
phenotype.
Note that the “sample” column may sometimes act as a pixel coordinate, in which case its
“labelType” will be “dim”, while all other times its “labelType” will be “sample”.

6 MIAPE-Imaging: Minimum Information About a Pro-
teomics Experiment for MS imaging

For MSImageSet objects, the experimentData slot must be an object of class MIAPE-Imaging.
That is the Minimum Information About a Protemics Experiment for Imaging. Most of its
unique slots are based on the imzML specification.
> getClass("MIAPE-Imaging")

Class "MIAPE-Imaging" [package "Cardinal"]

Slots:

Name: title abstract url pubMedIds preprocessing

Class: character character character character list

Name: other name lab contact samples

Class: list character character character list

Name: specimenOrigin specimenType stainingMethod tissueThickness tissueWash

Class: character character character numeric character

Name: embeddingMethod inSituChemistry matrixApplication pixelSize instrumentModel

Class: character character character numeric character

Name: instrumentVendor massAnalyzerType ionizationType scanPolarity softwareName

Class: character character character character character

Name: softwareVersion scanType scanPattern scanDirection lineScanDirection

Class: character character character character character

Name: imageShape .__classVersion__

Class: character Versions

Extends:

Class "MIAxE", directly

Class "Versioned", by class "MIAxE", distance 2

9

Cardinal design and development

7 MSImageProcess: mass spectral pre-processing in-
formation

MSImageSet objects also have a processingData slot, which must be an object of class MSIm
ageProcess. This gives information about the pre-processing steps that have been applied to
the dataset. All of the standard pre-processing methods in Cardinal will fill in processingData

with the appropriate processing type automatically.
> getClass("MSImageProcess")

Class "MSImageProcess" [package "Cardinal"]

Slots:

Name: files normalization smoothing baselineReduction

Class: character character character character

Name: spectrumRepresentation peakPicking centroided history

Class: character character logical list

Name: CardinalVersion .__classVersion__

Class: character Versions

Extends: "Versioned"

8 ResultSet: analysis results for imaging experiments

ResultSet is a subclass of iSet, and is used to storing the results of analyses applied to iSet

and iSet-derived objects.
> getClass("ResultSet")

Virtual Class "ResultSet" [package "Cardinal"]

Slots:

Name: resultData modelData imageData pixelData

Class: list AnnotatedDataFrame ImageData IAnnotatedDataFrame

Name: featureData experimentData protocolData .__classVersion__

Class: AnnotatedDataFrame MIAxE AnnotatedDataFrame Versions

Extends:

Class "iSet", directly

Class "VersionedBiobase", by class "iSet", distance 2

Class "Versioned", by class "iSet", distance 3

Known Subclasses: "CrossValidated", "PCA", "PLS", "OPLS", "SpatialKMeans", "SpatialShrunkenCentroids"

10

Cardinal design and development

In addition to the usual iSet slots, a ResultSet also has a resultData slot, which is a
list used to store results, and a modelData slot, which describes the parameters of the
fitted model. The ResultSet class assumes that multiple models may be fit (i.e., multiple
parameter sets over a grid search). Therefore, each element of the resultData list should
be another list containing the results for a single model, and each row of modelData should
describe the parameters for that one model.

9 Visualization for high-throughput imaging experi-
ments

Cardinal provides a thorough methods for data visualization inspired by the lattice graphics
system. Cardinal can display multiple images or plots in a grid of panels based on conditions.
For example, for mass spectrometry imaging, multiple ion images or mass spectra can be
plotted together on the same intensity scale. They can be plotted according to different
conditions, such as the mean spectra for different phenotypes, etc.

9.1 SImageData and MSImageData

The main Cardinal walkthrough vignette describes in detail the plot and image methods for
SImageData and MSImageData objects, which use lattice-style formulae and arguments.

9.2 ResultSet

Of interest to developers is writing simple methods for the plotting of ResultSet objects.
The plot and image methods for ResultSet make it straightforward to write visualization
methods for any kind of analysis results.
The plot method can create plots of results against features (such as model coefficients),
while image creates images of results (such as predicted values).
For example, consider the plot and image methods for the PCA class, which is a subclass of
ResultSet for principal components analysis.
> selectMethod("plot", c("PCA", "missing"))

Method Definition:

function (x, y, ...)

{

.local <- function (x, formula = substitute(mode ~ mz), mode = "loadings",

type = "h", ...)

{

mode <- match.arg(mode)

callNextMethod(x, formula = formula, type = type, ...)

}

.local(x, ...)

}

11

Cardinal design and development

<bytecode: 0x108917f8>

<environment: namespace:Cardinal>

Signatures:

x y

target "PCA" "missing"

defined "PCA" "missing"

> selectMethod("image", "PCA")

Method Definition:

function (x, ...)

{

.local <- function (x, formula = substitute(mode ~ x * y),

mode = "scores", ...)

{

mode <- match.arg(mode)

callNextMethod(x, formula = formula, ...)

}

.local(x, ...)

}

<bytecode: 0xd7c5518>

<environment: namespace:Cardinal>

Signatures:

x

target "PCA"

defined "PCA"

The left-hand side of the formula (which can be changed by the “mode” argument in the
above example) should be an element in the resultData of the ResultSet class. So plot

will plot the PC loadings, while image will plot an image of the PC scores.
Such a method will work for two types of results: matrices with the same number of rows
as the number of features (for plot), and matrices with the same number of rows as the
number of pixels (for image).
Usual lattice-style arguments will work for ResultSet as they would for SImageData and MSIm

ageData, such as “superpose” for plotting results from different models on the same panel or
separate panels.

10 Testing during development

Cardinal provides some simple tools to aid in the development of new analysis methods, such
as for testing simulated data and timing analyses.

12

Cardinal design and development

10.1 Simulating mass spectra

The main Cardinal walkthrough vignette describes in detail the generateSpectrum and generateImage

methods for generating mass spectra and images.

10.2 Timing and diagnostics

Cardinal provides an option for automatically timing all of its own pre-processing and analysis
routines.
> options(Cardinal.timing=TRUE)

Some of its analysis methods such as spatialKMeans and spatialShrunkenCentroids also
report timings as part of their standard resutls.

11 Session info

• R version 3.5.2 (2018-12-20), x86_64-pc-linux-gnu
• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,

LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

• Running under: Ubuntu 16.04.5 LTS

• Matrix products: default
• BLAS: /home/biocbuild/bbs-3.8-bioc/R/lib/libRblas.so
• LAPACK: /home/biocbuild/bbs-3.8-bioc/R/lib/libRlapack.so
• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4,

utils
• Other packages: BiocGenerics 0.28.0, BiocParallel 1.16.6, Cardinal 2.0.4,

EBImage 4.24.0, ProtGenerics 1.14.0, S4Vectors 0.20.1
• Loaded via a namespace (and not attached): Biobase 2.42.0, BiocManager 1.30.4,

BiocStyle 2.10.0, DBI 1.0.0, MASS 7.3-51.1, Matrix 1.2-15, R6 2.4.0,
RCurl 1.95-4.11, Rcpp 1.0.0, abind 1.4-5, assertthat 0.2.0, biglm 0.9-1, bitops 1.0-6,
compiler 3.5.2, crayon 1.3.4, digest 0.6.18, dplyr 0.8.0.1, evaluate 0.13,
fftwtools 0.9-8, glue 1.3.0, grid 3.5.2, htmltools 0.3.6, htmlwidgets 1.3, irlba 2.3.3,
jpeg 0.1-8, knitr 1.21, lattice 0.20-38, locfit 1.5-9.1, magrittr 1.5, matter 1.8.3,
pillar 1.3.1, pkgconfig 2.0.2, png 0.1-7, purrr 0.3.0, rlang 0.3.1, rmarkdown 1.11,
signal 0.7-6, sp 1.3-1, tibble 2.0.1, tidyselect 0.2.5, tiff 0.1-5, tools 3.5.2, xfun 0.5,
yaml 2.2.0

13

	1 Introduction
	2 Design overview
	3 iSet: high-throughput imaging experiments
	3.1 SImageSet: pixel-sparse imaging experiments
	3.2 MSImageSet: mass spectrometry-based imaging experiments

	4 ImageData: high-throughput image data
	4.1 SImageData: pixel-sparse imaging experiments
	4.2 MSImageData: mass spectrometry imaging data
	4.2.1 Hashmat: compressed-sparse column matrices

	5 IAnnotatedDataFrame: pixel metadata for imaging experiments
	6 MIAPE-Imaging: Minimum Information About a Proteomics Experiment for MS imaging
	7 MSImageProcess: mass spectral pre-processing information
	8 ResultSet: analysis results for imaging experiments
	9 Visualization for high-throughput imaging experiments
	9.1 SImageData and MSImageData
	9.2 ResultSet

	10 Testing during development
	10.1 Simulating mass spectra
	10.2 Timing and diagnostics

	11 Session info

