Cardinal 2.0: User’s Guide

Kylie A. Bemis

February 21, 2019

Contents

Introduction and installation. 2
Dataimportandexport, 2
2.1 imzML e e 2
2.2 Analyze 7.5 L Lo 4
2.3 Using readMSIData() and writeMSIData() 4
Components of an imaging experiment 5
3.1 Metadata with XpataFrame. 5

3.1.1 Pixel metadata with PositionDataFrame 5

3.1.2 Feature metadata with MassDataFrame. 7
3.2 Image data with ImageArrayList. 8
3.3 MS imaging experiments with MSImagingExperiment 8

3.3.1 Continuous MS imaging experiments 10

3.3.2 Processed MS imaging experiments 11
Data manipulation and transformation. 12
4.1 Subsetting and combining imaging experiments 12
4.2 Using pixelApply() and featureApply() 14
4.3 Summarization of imaging experiments 14
Visualization. 15
5.1 Visualizing mass spectra with ptot() 15
52 Visualizing molecular ion images with image() 16
5.3 Region-of-interest selection. 17
Processing 17
6.1 Queueing delayed processing with process() 17
6.2 Example processing workflow.o 18
Analysis 19
Sessioninfo. 21

Cardinal 2.0: User’s Guide

Introduction and installation

Cardinal 2.0 provides new classes and methods for the manipulation, transformation, visu-
alization, and analysis of imaging experiments—specifically mass spectrometry (MS) imaging
experiments.

Classes and methods from older versions of Cardinal will continue to be supported; however,
new development should focus on the new classes implemented in Cardinal 2.0.

New features include:

= New imaging data classes such as ImagingExperiment, SparseImagingExperiment,
and MSImagingExperiment which will provide better support for larger-than-memory
datasets

= New imaging metadata classes such as PositionDataFrame and MassDataFrame which
make it easier to manipulate experimental runs, pixel coordinates, and m/z-values by
storing them as separate slots rather than ordinary columns

= New plot() and image() visualization methods that can handle non-gridded pixel
coordinates and allow assigning the resulting plot (and data) to a variable for later
re-plotting

= Support for writing imzML in addition to reading; improved support and options for
importing larger-than-memory imzML for both ‘continuous’ and ‘processed’ formats

= Data manipulation and summarization verbs borrowed from dplyr such as select(),
filter(), mutate(), and summarize() for easier transformation, subsetting, and sum-
marization of imaging datasets

= Delayed batch processing via a new process() method that allows queueing of pre-
processing methods such as normalize() and peakPick() for later parallel execution

This document provides an introduction to several new and existing features of Cardinal.
Cardinal can be installed via the BiocManager package.
> install.packages("BiocManager")

> BiocManager::install("Cardinal")

The same function can be used to update Cardinal and other Bioconductor packages.

Data import and export

2.1

In order to be imported into R by Cardinal, input data must be in either imzML or Analyze
7.5 format. Data can be loaded into memory, or it can be attached on-disk using the
attach.only=TRUE argument to the data import function.

imzML

To import or attach imzML, use the readImzML() function. Both files must be present in the
same folder and have the same name (except for the file extension).

Cardinal 2.0: User’s Guide

> name <- "common name of your .imzML and .ibd files"
> folder <- "/path/to/the/folder/containing/the/files"
> data <- readImzML(name, folder, as="MSImagingExperiment")

The imzML format is an open standard designed specifically for interchange of mass spec-
trometry imaging datasets [1]. Many other formats can be converted to imzML with the
help of free applications available online. See http://www.imzml.org for more information
and links to free converters.

The imzML format uses two files with extensions imzML’ and ‘ibd’ to store data. The
former is an XML-based human-readable text file that stores the metadata about the MS
imaging experiment. The latter is a binary file storing the m/z and intensity data.

The as="MSImagingExperiment" argument is optional and may be used to specify whether
to load the data using new Cardinal 2.0 classes (MSImagingExperiment) or legacy Cardinal
classes (MSImageSet). Its defaults may change in future versions of Cardinal.

> # import large datasets without loading them into memory
> data <- readImzML(name, folder, attach.only=TRUE, as="MSImagingExperiment")

Large imzML files can be attached on-disk without fully loading them into memory by using
the attach.only=TRUE option. Not all Cardinal features are supported for on-disk datasets.

Both ‘continuous’ and ‘processed’ imzML format are supported. When using on-disk data
with attach.only=TRUE, accessing images of ‘processed’ data may be slow (but accessing
spectra should remain fast). This is due to the way the data is stored in the imzML file.

> # import 'processed' data between m/z 500 - 600

> data <- readImzML(name, folder, mass.range=c(500,600), as="MSImagingExperiment")

> # import 'processed' data binned to 100 ppm

> data <- readImzML(name, folder, resolution=100, units="ppm", as="MSImagingExperiment")
> # import 'processed' data binned to 1 m/z

> data <- readImzML(name, folder, resolution=1, units="mz", as="MSImagingExperiment")

For ‘processed’ imzML files, there are additional options. The resolution and units ar-
guments determine how the data is binned. If the data is imported using the new classes
(MSImagingExperiment), this can be changed and the spectra re-binned on-the-fly later.
Additionally, the mass. range argument allows specifying the mass range, which can be com-
putationally efficient. This avoids having to parse this information from the data (which can
potentially take a long time for very large datasets).

> writeImzML (data, name, folder, mz.type="64-bit float", intensity.type="32-bit float")
The writeImzML() function can be used to write an MS imaging dataset to an imzML file.
For ‘processed’ data, re-importing the same dataset may result in the spectra being binned

differently; however, the underlying data is preserved. Any metadata columns will not be
written to the file.

For more information on reading and writing imzML files, see ?readImzML and ?writeImzML.

http://www.imzml.org

Cardinal 2.0: User’s Guide

2.2

2.3

Analyze 7.5

Originally designed for MRI data by the Mayo Clinic, Analyze 7.5 is another common format
used for mass spectrometry imaging data.

The Analyze format uses a collection of three files with extensions "hdr’, “img’, and “t2m’ to
store data. To read datasets stored in the Analyze format, use the readAnalyze() function.
All three files must be present in the same folder and have the same name (except for the
file extension) for the data to be read properly.

> name <- "common name of your .hdr, .img, and .t2m files"
> folder <- "/path/to/the/folder/containing/the/files"
> data <- readAnalyze(name, folder, as="MSImagingExperiment")

The as="MSImagingExperiment" argument is optional may be used to specify whether to load
the data using new Cardinal 2.0 classes (MSImagingExperiment) or legacy Cardinal classes
(MSImageSet). Its defaults may change in future versions of Cardinal.

> # import large datasets without loading them into memory

> data <- readAnalyze(name, folder, attach.only=TRUE, as="MSImagingExperiment")

Large Analyze files can be attached on-disk without fully loading them into memory by using
the attach.only=TRUE option. Not all Cardinal features are supported for on-disk datasets.

> writeAnalyze(data, name, folder, intensity.type="16-bit integer")
The writeAnalyze() function can be used to write an MS imaging dataset to an Analyze
7.5 file. Any metadata columns will not be written to the file.

For more information on reading Analyze files, see ?readAnalyze and ?writeAnalyze.

Using readMSIData() and writeMSIData()

> file <- "/path/to/an/imaging/data/file.extension"
> data <- readMSIData(file, as="MSImagingExperiment")

Cardinal also provides the convenience functions readMSIData() and writeMSIData(), which
will attempt to automatically infer the correct function to use from the provided file exten-
sions. The same rules for naming conventions apply as described above, but one need only
provide the path to any of the data files. For example, to read/write an Analyze file, providing
a path containing any of "hdr’, "img’, or “t2m’. Likewise, to read or write imzML, provide a
path containing either .imzML" or “ibd".

Any additional arguments will be passed to the appropriate underlying read/write functions.

Cardinal 2.0: User’s Guide

Components of an imaging experiment

3.1

3.1.1

In Cardinal, imaging experiment datasets are composed of multiple sets of metadata, in
addition to the actual experimental data. These are (1) pixel metadata, (2) feature (m/z)
metadata, (3) the actual imaging data, and (4) a class that holds all of these and represents
the experiment as a whole.

Unlike many software packages designed for analysis of MS imaging experiments, Cardinal is
designed to work with multiple datasets and incorporate all aspects of experimental design
and metadata.

This section will discuss in detail each component of an imaging dataset in Cardinal, assuming
the context of MS. If you would like to jump straight into working with a dataset, you may
skip ahead to the next section and return here when you have questions on particular aspects
of an imaging dataset.

Metadata with XDataFrame

For storing metadata related to pixels (i.e., individual mass spectra, their coordinates, etc.),
and features (i.e., m/z-values, peaks, proteins, lipids, etc.), Cardinal extends the DataFrame
object from the S4Vectors package.

The XDataFrame class is a data frame class with eXtra "slot-columns" for storing additional
metadata columns separately from ordinary columns. These additional "slot-columns" may
be required to obey special rules not required of other columns.

> xdf <- XDataFrame(a=1:10, b=letters[1:10])
> xdf

XDataFrame with 10 rows and 2 columns
a b
<integer> <character>

1

O© 0o NOoO UL b WN -
O 00 NO Ul b WN
— H QU -h O O 0 T QO

=
[<)
[y
(<)

An ordinary XDataFrame behaves the same as an ordinary data frame. It exists primarily to
allow shared behavior for its sub-classes PositionDataFrame and MassDataFrame.

Pixel metadata with PositionDataFrame

The PositionDataFrame class provides extra columns for storing spatial coordinates and
identifying experimental runs.

Cardinal 2.0: User’s Guide

> coord <- expand.grid(x=1:9, y=1:9)
> run <- factor(rep("Run 1", nrow(coord)))

> pid <- seq_len(nrow(coord))

> pdata <- PositionDataFrame(run=run, coord=coord, pid=pid)
> pdata

PositionDataFrame with 81 rows and 1 column

jrun: coord:x coord:y pid
<factor> <integer> <integer> <integer>

1 Run 1 1 1 1
2 Run 1 2 1 2
3 Run 1 3 1 3
4 Run 1 4 1 4
5 Run 1 5 1 5
77 Run 1 5 9 77
78 Run 1 6 9 78
79 Run 1 7 9 79
80 Run 1 8 9 80
81 Run 1 9 9 81

A PositionDataFrame can be created with any number of ordinary columns (or none), but
the run and coord must always be provided.

> head(run(pdata))
[1] Run 1 Run 1 Run 1 Run 1 Run 1 Run 1

Levels: Run 1

The run slot-column, accessed via run(), uniquely identifies experimental runs. It must be
a factor. It is analogous to the "sample" column in the legacy IAnnotatedDataFrame class
from older versions of Cardinal, but with a less-confusing name. For MS imaging experiments,
this typically identifies data gathered from unique slides.

> coord(pdata)

DataFrame with 81 rows and 2 columns

X y

<integer> <integer>

1 1 1
2 2 1
3 3 1
4 4 1
5 5 1
77 5 9
78 6 9
79 7 9
80 8 9
81 9 9

Cardinal 2.0: User’s Guide

3.1.2

The coord slot-columns, accessed via coord(), provides the spatial coordinates of pixels in an
imaging experiment. |t must be a DataFrame with numeric columns. The spatial coordinates
do not need to be unique; they do not need to be integers; they may also be redundant with
other columns such as run.

> gridded(pdata)
[1] TRUE

> resolution(pdata)
Xy
11
The PositionDataFrame object provides several additional methods useful for plotting and
manipulating imaging data. The gridded() and resolution() return whether the pixels

lie on a gridded raster and their spatial resolution, which are calculated automatically from
coord.

See ?PositionDataFrame for additional methods.

Feature metadata with MassDataFrame

The MassDataFrame class provides extra columns for storing the m/z-values associated with
mass spectral features.

> mz <- seq(from=500, to=600, by=0.2)
> fid <- seqg_along(mz)

> fdata <- MassDataFrame(mz=mz, fid=fid)
> fdata

MassDataFrame with 501 rows and 1 column

imz: fid
<numeric> <integer>

1 500 1
2 500.2 2
3 500.4 3
4 500.6 4
5 500.8 5
497 599.2 497
498 599.4 498
499 599.6 499
500 599.8 500
501 600 501

A MassDataFrame can be created with any number of ordinary columns (or none), but the mz
column must always be provided.

> head(mz(fdata))
[1] 500.0 500.2 500.4 500.6 500.8 501.0

> resolution(fdata)

Cardinal 2.0: User’s Guide

3.2

3.3

mz
0.2

The m/z-values can be accessed viamz(). They must be a non-negative numeric vector sorted
in increasing order. An approximate m/z resolution can be accessed via resolution().

Image data with ImageArraylList

The ImageList and ImageArraylList classes are list-like classes used to store the actual
imaging data. ImageList allows elements of type, as long as they are array-like (i.e., have a
dim attribute). ImageArraylList further imposes that each element has the same number of
dimensions—specifically, the first two dimensions are treated as "rows" and "columns", and
these two dimensions must be equal for all elements.

> set.seed(1)

> data@ <- generateSpectrum(nrow(pdata), range=c(500, 600), peaks=3,
+ baseline=3000, noise=0.01, sd=0.5, resolution=300, step=0.2)

> datal <- generateSpectrum(nrow(pdata), range=c(500, 600), peaks=3,
+ baseline=3000, noise=0.01, sd=0.5, resolution=300, step=0.2)

> idata <- ImageArraylist(list(data@=dataO$x, datal=datal$x))
> idata

Reference class object of class "SimpleImageArrayList"
Field "data":

List of length 2

names(2): data0® datal

An ImageArraylList can be created with a constructor of the same name. It takes a list of
data elements.

> dim(idata[[1]])

[1] 501 81

> dim(idata[["datal"]])

[1] 501 81

The data elements of an ImageArrayList can be accessed via subsetting with double-brackets
like an ordinary list.

MS imaging experiments with MSImagingExperiment

The MSImagingExperiment class represents MS imaging experiments as a whole, and brings
together the pixel metadata, feature (m/z) metadata, and experimental imaging data.

In the long-term, it is intended to replace the legacy MSImageSet class from older versions of
Cardinal. MSImagingExperiment is designed to be more flexible and provide better support
for large datasets.

If needed, the SparseImagingExperiment superclass provides a more general interface for
working with imaging experiments, not specific to MS.

Cardinal 2.0: User’s Guide

> msdata <- MSImagingExperiment(imageData=idata, featureData=fdata, pixelData=pdata)
> msdata

An object of class 'MSImagingExperiment'

<501 feature, 81 pixel> imaging dataset
imageData(2): data® datal
featureData(1l): fid
pixelData(1l): pid
processing complete(0):
processing pending(0):
raster dimensions(2): x =9, y :=9
mass range: 500 to 600
centroided: FALSE

The individual components can be accessed via the pixelData(), featureData(), and imageData()
methods.
> imageData(msdata)

Reference class object of class "SimpleImageArrayList"
Field "data":

List of length 2

names(2): data0® datal

> pixelData(msdata)

PositionDataFrame with 81 rows and 1 column

jrun: coord:x coord:y pid
<factor> <integer> <integer> <integer>

1 Run 1 1 1 1
2 Run 1 2 1 2
3 Run 1 3 1 3
4 Run 1 4 1 4
5 Run 1 5 1 5
77 Run 1 5 9 77
78 Run 1 6 9 78
79 Run 1 7 9 79
80 Run 1 8 9 80
81 Run 1 9 9 81

> featureData(msdata)

MassDataFrame with 501 rows and 1 column

imz: fid
<numeric> <integer>

1 500 1
2 500.2 2
3 500.4 3
4 500.6 4
5 500.8 5
497 599.2 497

498 599.4 498

Cardinal 2.0: User’s Guide

3.3.1

499 599.6 499
500 599.8 500
501 600 501

While pData() and fData() can be used as shortcuts for pixelData() and featureData(),
as in older versions of Cardinal, the iData() function for accessing the imaging data works
slightly differently.

> dim(iData(msdata))

[1] 501 81

> dim(iData(msdata, 1))

[1] 501 81

> dim(iData(msdata, "data0"))
[1] 501 81

> dim(spectra(msdata))

[1] 501 81

The iData() function directly accesses the data elements of imageData(). By default, it
returns the first dataset. It can take an additional argument to specify which dataset to
return. The spectra() function is an analog for it for MSImagingExperiment objects.

Cardinal provides a few subclasses of MSImagingExperiment that are specialized for particular
kinds of data: MSContinuousImagingExperiment and MSProcessedImagingExperiment.

Continuous MS imaging experiments

The MSContinuousImagingExperiment subclass is specialized for MS imaging datasets where
the spectra are stored in a dense matrix, either in-memory or on-disk. This includes MS
experiments loaded from ‘continuous’ imzML files.

An MSContinuousImagingExperiment object is created automatically from the MSImagingExperiment ()
constructor function when provided a dense R matrix or matter_matc matrix.

> msdata® <- MSImagingExperiment(imageData=data@$x, featureData=fdata, pixelData=pdata)
> msdatal

An object of class 'MSContinuousImagingExperiment'
<501 feature, 81 pixel> imaging dataset
imageData(l): intensity
featureData(1l): fid
pixelData(1l): pid
processing complete(0):
processing pending(0):
raster dimensions(2): x =9, y :=9
mass range: 500 to 600
centroided: FALSE

10

Cardinal 2.0: User’s Guide

3.3.2

This class works nearly identically to MSImagingExperiment, but methods written for it can
assume that the data is stored densely, and both spectra and images can be accessed relatively
quickly and efficiently.

Processed MS imaging experiments

The MSProcessedImagingExperiment subclass is specialized for MS imaging datasets where
the spectra are stored sparsely, either in-memory or on-disk. This includes MS experiments
loaded from ‘processed’ imzML files.

An MSProcessedImagingExperiment object is created automatically from the MSImagingExperiment ()
constructor function when provided a sparse_matc matrix.

> t <- matter::rep_vt(list(datal$t), ncol(datal$x))

> x <- lapply(1l:ncol(datal$x), function(i) datal$x[,i])

> datalb <- matter::sparse_mat(data=list(keys=t, values=x),
+ nrow=length(t[[1]]), ncol=length(x), keys=t[[1]])

A sparse_matc matrix is a sparse matrix as implemented by the matter package. Each
column is sparse and are stored as key-value pairs, which may either be an R list in-memory,
or a matter_list stored on-disk.

> msdatal <- MSImagingExperiment(imageData=datalb, featureData=fdata, pixelData=pdata)
> msdatal

An object of class 'MSProcessedImagingExperiment'
<501 feature, 81 pixel> imaging dataset
imageData(l): intensity
featureData(1l): fid
pixelData(1l): pid
processing complete(0):
processing pending(0):
raster dimensions(2): x =9, y :=9
mass range: 500 to 600
centroided: FALSE

This class works very similarly to MSImagingExperiment, but methods written for it should
assume that the data is stored sparsely, so spectra can be accessed relatively quickly and
efficiently, but images may be accessed more slowly.

Additionally, the original, observed m/z-values are stored as the keys for reconstructing the
spectra. They may not match the canonical vector of m/z-values accessed via mz(). This
means that spectra are binned on-the-fly.

The data accessed via iData() and spectra() are the binned data. The original, observed
m/z-values and intensities can be accessed via mzData() and peakData().

> head(mzData(msdatal)[[1]]) # m/z of spectrum 1

[1] 5600.0 500.2 500.4 500.6 500.8 501.0

> head(peakData(msdatal)[[1]]) # intensities of spectrum 1
[1] 3.890952 4.577313 4.223219 4.362255 4.348984 3.061082

> head(mzData(msdatal)[[2]]) # m/z of spectrum 2

11

Cardinal 2.0: User’s Guide

[1] 500.0 5600.2 500.4 500.6 500.8 501.0
> head(peakData(msdatal)[[2]]) # intensities of spectrum 2

[1] 5.586714 4.036220 4.926360 4.775202 4.862122 4.199646

Parameters for how the data are binned for MSProcessedImagingExperiment objects can be
changed with the tolerance() method.

Data manipulation and transformation

41

Cardinal provides a number of methods for manipulation and transformation of imaging
datasets. They are described below.

Subsetting and combining imaging experiments

MSImagingExperiment objects can be subset as a whole using the standard semantics of R,
where the "rows" are the mass features, and the "columns" are the pixels

> msdata[1:10,]

An object of class 'MSImagingExperiment'’
<10 feature, 81 pixel> imaging dataset

imageData(2): data® datal
featureData(1l): fid
pixelData(1): pid
processing complete(0):
processing pending(0):
raster dimensions(2): x =9, y :=9
mass range: 500.0 to 501.8
centroided: FALSE

> msdata[,1:10]

An object of class 'MSImagingExperiment’

<501 feature, 10 pixel> imaging dataset
imageData(2): data@ datal
featureData(1l): fid
pixelData(1l): pid
processing complete(0):
processing pending(0):
raster dimensions(2): x =9, y := 2
mass range: 500 to 600
centroided: FALSE

Datasets can likewise be combined using rbind() and cbind(), where the "rows" are the
mass features, and the "columns" are the pixels.

> cbind(msdata@, msdatal)

12

Cardinal 2.0: User’s Guide

An object of class 'MSContinuousImagingExperiment'
<501 feature, 162 pixel> imaging dataset
imageData(l): intensity
featureData(2): fid fid
pixelData(1l): pid
processing complete(0):
processing pending(0):
raster dimensions(2): x =9, y :=9
mass range: 500 to 600
centroided: FALSE

For cbind(), the mass features (i.e., the m/z-values) must match between all of the datasets.
For rbind(), the run information and spatial coordinates must match.

Several data manipulation verbs are borrowed from the dplyr package for subsetting imaging
experiments as well.

> select(msdata, x < 4, y < 4) # select based on pixels

An object of class 'MSImagingExperiment'
<501 feature, 9 pixel> imaging dataset

imageData(2): data® datal
featureData(1l): fid
pixelData(1l): pid
processing complete(0):
processing pending(0):
raster dimensions(2): x := 3, y := 3
mass range: 500 to 600
centroided: FALSE

> filter(msdata, mz < 550) # filter based on m/z features

An object of class 'MSImagingExperiment'

<250 feature, 81 pixel> imaging dataset
imageData(2): data® datal
featureData(1l): fid
pixelData(l): pid
processing complete(0):
processing pending(0):
raster dimensions(2): x =9, y =9
mass range: 500.0 to 549.8
centroided: FALSE

The select() function subsets based on pixels ("columns") of the imaging dataset.

The filter() function subsets based on the mass features ("rows") of the imaging dataset.

Similar to those functions from dplyr, the names of metadata columns such as ‘mz’ can be
used literally. They can also be chained together via the %>% operator.

> msdata %>%
+ select(x <5, y <5) %%
+ filter(mz > 525)

An object of class 'MSImagingExperiment'

13

Cardinal 2.0: User’s Guide

4.2

4.3

<375 feature, 16 pixel> imaging dataset
imageData(2): data@ datal
featureData(1l): fid
pixelData(l): pid
processing complete(0):
processing pending(0):
raster dimensions(2): x =4, y := 4
mass range: 525.2 to 600.0
centroided: FALSE

Using pixelApply() and featureApply()

The pixelApply() and featureApply() functions apply functions over pixels (i.e., mass
spectra) or over features (i.e., flattened images). When applied to new Cardinal 2.0 classes,
these can be executed in parallel.

> tic <- pixelApply(msdata, sum, BPPARAM=SerialParam()) # calculate TIC
> head(tic)

[1] 2662.5428 780.9577 3296.9571 4113.9654 3984.4219 774.6736

> ms <- featureApply(msdata, mean, BPPARAM=SerialParam()) # calculate mean spectrum

> head(ms)

[1] 4.616381 4.586164 4.306445 4.535474 4.544348 4.519470

Both functions take an argument BPPARAM which will be passed to the bplapply() function.
By default, the registered parallel backend will be used. Otherwise, the specified backend will
be used.

Note that for true parallel backends (i.e., not SerialParam()), Cardinal cannot print a
progress bar to the console. A progress bar must be specified as part of the parallel back-
end, which will be updated according to the number of workers (rather than the number of
iterations).

See ?pixelApply for more details on how the function is applied, and other avaialble options
to these functions. See ?bplapply for more information on the parallel backends.

Summarization of imaging experiments

The summarize() function allows efficient summarization over an imaging dataset. Sum-
marization can be applied over either pixels or features. Internally, it is implemented using
pixelApply() and featureApply().

> summarize(msdata, sum, .by="pixel") # calculate TIC

PositionDataFrame with 81 rows and 1 column

irun: coord:x coord:y sum
<factor> <integer> <integer> <numeric>

1 Run 1 1 1 2662.54280681174
2 Run 1 2 1 780.957674414635

14

Cardinal 2.0: User’s Guide

3 Run 1 3 1 3296.95709988663

Run 1 4 1 4113.96542364712
5 Run 1 1 3984.42193198865
77 Run 1 5 9 2953.88443202541
78 Run 1 6 9 1017.10356322582
79 Run 1 7 9 3793.71846430599
80 Run 1 8 9 3427.26750932456
81 Run 1 9 9 801.721408901517

> summarize(msdata, .stat="mean") # calculate mean spectrum

MassDataFrame with 501 rows and 1 column

imz: mean

<numeric> <numeric>
1 500 4.61638108877944
2 500.2 4.58616391303992
3 500.4 4.30644514134728
4 500.6 4.5354744085881
5 500.8 4.5443475889983
497 599.2 4.5866876186558
498 599.4 4.36153866779736
499 599.6 4.19352262818514
500 599.8 4.47338108221439
501 600 4.54975620378789

Either a summary function(s) can be provided explicitly, or a small number of statistics can
be chosen from the .stat argument.

Statistics calculated via the .stat argument will be calculated efficiently according to the
format of the data, regardless of the desired direction of iteration.

Visualization

5.1

As in previous versions of Cardinal, the plot() function is used to visualize mass spectra,
and the image() function is used to visualize molecular ion images.

The primary differences between these methods when used on older classes and the new
classes are:

= A new default color scale for images that doesn’t use the rainbow color scheme
= Non-gridded pixel coordinates are allowed to better allow for non-rastered image data

= The output visualization can be assigned to a variable for later re-plotting

Visualizing mass spectra with plot()

The plot() method is used for plotting mass spectra.

15

Cardinal 2.0: User’s Guide

5.2

> plot(msdata, pixel=1)

> plot(msdata, coord=list(x=2, y=2))

25 30 35
I I

Intensity
20
Il

Intensity

500 520 540 560 580 600 500 520 540 560 580 600

m/z m/z

(a) Plot of pixel =1 (b) Plotof x =2,y =2

This section will be expanded in the future. See the original “Cardinal walkthrough"” vignette
for additional information on plotting options.

Visualizing molecular ion images with image()

The image() method is used for plotting molecular ion images.

> image(msdata, feature=1)

> image(msdata, mz=550, plusminus=0.5)

(a) Image of feature =1 (b) Image of m/z = 550

This section will be expanded in the future. See the original “Cardinal walkthrough” vignette
for additional information on plotting options.

16

Cardinal 2.0: User’s Guide

5.3

Region-of-interest selection

The selectR0I() function is used to interactively select regions-of-interest. See ?selectR0OI
for details.

Processing

6.1

The pre-processing workflow has been overhauled in Cardinal 2.0 to support more efficient
processing of larger-than-memory datasets.

Queueing delayed processing with process ()

The process () method allows queueing of delayed pre-processing steps to an imaging dataset.
It expects a function that takes a vector (e.g., a mass spectra), processes it, and returns a
vector of the same length as the original vector.

At its simplest, this can be used to immediately apply a transformation function to each
spectrum in an MS imaging dataset.

> tmp <- process(msdata, function(x) x + 1, label="addl")
> tmp

An object of class 'MSImagingExperiment'’

<501 feature, 81 pixel> imaging dataset
imageData(2): data® datal
featureData(1l): fid
pixelData(l): pid
processing complete(l): addl
processing pending(0):
raster dimensions(2): x =9, y =9
mass range: 500 to 600
centroided: FALSE

By supplying the argument delay=TRUE, the transformation function is instead queued, but
not applied. This can be used to add multiple transformation functions to the queue. These
are unaffected by additional transformations, such as subsetting the dataset.

A call to process() without delay=TRUE will apply all of the queued processing functions to
the dataset.

> tmp <- msdata %>%

+ process(function(x) ifelse(x > 0, x, 0), label="pos", delay=TRUE) %>%
+ process(function(x) x + 1, label="addl", delay=TRUE) %>%

+ process(log2, label="1log2", delay=TRUE) %>%

+ select(x <=4, y <= 4) %%

+ filter(mz < 550)

> process(tmp, BPPARAM=SerialParam())

An object of class 'MSImagingExperiment'
<250 feature, 16 pixel> imaging dataset
imageData(2): data® datal

17

Cardinal 2.0: User’s Guide

6.2

featureData(1l): fid

pixelData(1l): pid

processing complete(3): pos addl log2
processing pending(0):

raster dimensions(2): x := 4, y := 4
mass range: 500.0 to 549.8
centroided: FALSE

Internally, process () applies the processing functions using pixelApply() or featureApply(),
so it will be executed in parallel if a parallel backend is registered. Use the BPPARAM argument
to specify another parallel backend.

Example processing workflow

When applied to new Cardinal classes such as MSImagingExperiment, processing methods
such as smoothSignal(), reduceBaseline(), and peakPick() are queued to the dataset.
They are applied the next time process() is called.

> tmp <- msdata %>%

+
+
+
+
+
+
+
+

smoothSignal() %>%

reduceBaseline() %>%

peakPick() %>%

peakFilter() %>%

select(x == 1, y == 1) %%

process(plot=TRUE,
par=list(layout=c(1,3)),
BPPARAM=SerialParam())

Cardinal 2.0 implements the following pre-processing methods for MSImagingExperiment:

normalize() performs normalization, including TIC normalization
smoothSignal() performs smoothing, to reduce noise in the spectra
reduceBaseline() performs baseline reduction

peakPick() detects peaks

peakAlign() aligns peaks to a set of reference peaks

peakFilter() removes peaks according to criteria such as peak frequency

peakBin() bins spectra to a set of reference peaks

This section will be expanded in the future. See the help pages of these functions for more
details on their use.

18

Cardinal 2.0: User’s Guide

Smoothing

20
|

15
|

10

500 520 540 560 580 600
m/z

Baseline reduction

20
|

15
|

500 520 540 560 580 600
m/z

Peak picking

500 520 540 560 580 600

Figure 3: Example processing workflow

7 Analysis

Many of the analysis methods in Cardinal still need to be updated to work with the new
classes. To continue using the analysis methods designed for older classes, an MSImageExper
iment object can be coerced to a MSImageSet object using the as() method.

> msdataOb <- as(msdataO, "MSImageSet")
> msdataOb

An object of class "MSImageSet"
Slot "processingData":
Processing data

Cardinal version: 2.0.4

Files:

Normalization:

Smoothing:

Baseline reduction:

Spectrum representation:

Peak picking:

Cardinal 2.0: User’s Guide

Slot "experimentData":
Experiment data
Experimenter name:
Laboratory:
Contact:
Title:
URL:
PMIDs:
No abstract available.

Slot "imageData":
An object of class 'MSImageData'’
iData: 501 x 81 matrix (0.3 Mb)

Slot "pixelData":

An object of class 'IAnnotatedDataFrame'
pixelNames: x =1, y=1x=2, y=1...x=9, y=9 (81 total)
varLabels: x y sample pid
varMetadata: labelType labelDescription

Slot "featureData":

An object of class 'AnnotatedDataFrame'
featureNames: m/z = 500 m/z = 500.2 ... m/z
varLabels: mz fid
varMetadata: labelDescription

600 (501 total)

Slot "protocolData":
An object of class 'AnnotatedDataFrame': none

Slot ".__classVersion__":
R Biobase iSet SImageSet MSImageSet
"3.5.2" "2.42.0" "0.1.0" "0.1.0" "0.7.0"

MSImageSet objects can be coerced to the newer MSImageExperiment objects as well.

> msdataOc <- as(msdata@b, "MSImagingExperiment")
> msdatalc

An object of class 'MSContinuousImagingExperiment'
<501 feature, 81 pixel> imaging dataset
imageData(l): intensity
featureData(1l): fid
pixelData(1): pid
processing complete(0):
processing pending(0):
raster dimensions(2): x =9, y := 9
mass range: 500 to 600
centroided: FALSE

See the vignettes from the CardinalWorkflows package for a more in-depth walkthrough of
Cardinal’s analytic methods on real experimental data.

20

Cardinal 2.0: User’s Guide

8

Session info

R version 3.5.2 (2018-12-20), x86_64-pc-linux-gnu

Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8
LC_IDENTIFICATION=C

Running under: Ubuntu 16.04.5 LTS

Matrix products: default

BLAS: /home/biocbuild/bbs-3.8-bioc/R/lib/1ibRblas.so
LAPACK: /home/biocbuild/bbs-3.8-bioc/R/1lib/1ibRlapack.so

Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4,
utils

Other packages: BiocGenerics 0.28.0, BiocParallel 1.16.6, Cardinal 2.0.4,
EBImage 4.24.0, ProtGenerics 1.14.0, S4Vectors 0.20.1

Loaded via a namespace (and not attached): Biobase 2.42.0, BiocManager 1.30.4,
BiocStyle 2.10.0, DBI 1.0.0, MASS 7.3-51.1, Matrix 1.2-15, R6 2.4.0,

RCurl 1.95-4.11, Rcpp 1.0.0, abind 1.4-5, assertthat 0.2.0, biglm 0.9-1, bitops 1.0-6,
compiler 3.5.2, crayon 1.3.4, digest 0.6.18, dplyr 0.8.0.1, evaluate 0.13,

fftwtools 0.9-8, glue 1.3.0, grid 3.5.2, htmltools 0.3.6, htmlwidgets 1.3, irlba 2.3.3,
jpeg 0.1-8, knitr 1.21, lattice 0.20-38, locfit 1.5-9.1, magrittr 1.5, matter 1.8.3,
pillar 1.3.1, pkgconfig 2.0.2, png 0.1-7, purrr 0.3.0, rlang 0.3.1, rmarkdown 1.11,
signal 0.7-6, sp 1.3-1, tibble 2.0.1, tidyselect 0.2.5, tiff 0.1-5, tools 3.5.2, xfun 0.5,
yaml| 2.2.0

References

[1] Thorsten Schramm, Alfons Hester, Ivo Klinkert, Jean-Pierre Both, Ron M. A. Heeren,
Alain Brunelle, Olivier Laprévote, Nicolas Desbenoit, Marie-France Robbe, Markus
Stoeckli, Bernhard Spengler, and Andreas Rdmpp. imzml — a common data format for
the flexible exchange and processing of mass spectrometry imaging data. Journal of
Proteomics, 75(16):5106 — 5110, 2012. Special Issue: Imaging Mass Spectrometry: A
User's Guide to a New Technique for Biological and Biomedical Research. URL:
http://www.sciencedirect.com/science/article/pii/S1874391912005568,
doi:http://dx.doi.org/10.1016/j.jprot.2012.07.026.

21

http://www.sciencedirect.com/science/article/pii/S1874391912005568
http://dx.doi.org/http://dx.doi.org/10.1016/j.jprot.2012.07.026

	1 Introduction and installation
	2 Data import and export
	2.1 imzML
	2.2 Analyze 7.5
	2.3 Using readMSIData() and writeMSIData()

	3 Components of an imaging experiment
	3.1 Metadata with XDataFrame
	3.1.1 Pixel metadata with PositionDataFrame
	3.1.2 Feature metadata with MassDataFrame

	3.2 Image data with ImageArrayList
	3.3 MS imaging experiments with MSImagingExperiment
	3.3.1 Continuous MS imaging experiments
	3.3.2 Processed MS imaging experiments

	4 Data manipulation and transformation
	4.1 Subsetting and combining imaging experiments
	4.2 Using pixelApply() and featureApply()
	4.3 Summarization of imaging experiments

	5 Visualization
	5.1 Visualizing mass spectra with plot()
	5.2 Visualizing molecular ion images with image()
	5.3 Region-of-interest selection

	6 Processing
	6.1 Queueing delayed processing with process()
	6.2 Example processing workflow

	7 Analysis
	8 Session info

