Package 'STRINGdb'

April 16, 2019

Type Package

Title STRINGdb (Search Tool for the Retrieval of Interacting proteins database)

Version 1.22.0

Date 2016-03-31

Author Andrea Franceschini <andrea.franceschini@isb-sib.ch>

Maintainer Damian Szklarczyk <damian.szklarczyk@imls.uzh.ch>

Description The STRINGdb package provides a R interface to the STRING proteinprotein interactions database (http://www.string-db.org).

License GPL-2

Depends R (>= 2.14.0)

Imports png, sqldf, plyr, igraph, RCurl, methods, RColorBrewer, gplots, hash, plotrix

Suggests RUnit, BiocGenerics

biocViews Network

git_url https://git.bioconductor.org/packages/STRINGdb

git_branch RELEASE_3_8

git_last_commit d0d3549

git_last_commit_date 2018-10-30

Date/Publication 2019-04-15

R topics documented:

d_diff_exp_color	2
d_proteins_description	3
nchmark_ppi	4
nchmark_ppi_pathway_view	5
effOfvar	5
lColDf	6
ff_exp_example1	6
wnloadAbsentFile	7
wnloadAbsentFileSTRING	7
t_aliases	8
t_annotations	8

get_annotations_desc
get_bioc_graph
get_clusters
get_enrichment
get_graph
get_homologs
get_homologs_besthits
get_interactions
get_link
get_neighbors
get_png
get_ppi_enrichment
get_ppi_enrichment_full
get_proteins
get_pubmed
get_pubmed_interaction
get_STRING_species
get_subnetwork
get_summary 19
get_term_proteins
interactions_example
load
load_all
map
mp
multi_map_df
plot_network
plot_ppi_enrichment
plot_ppi_enrichment_graph
post_payload
ppie.compLambda
ppie.compLambdaL1L2
ppie.compPij
ppie.getNumEdgesBetween
ppi_enrichment
ppi_enrichment_full
remove_homologous_interactions
renameColDf
set_background
STRINGdb-class
35

Index

add_diff_exp_color add_diff_exp_color

Description

Take in input a dataframe containing a logFC column that reports the logarithm of the difference in expression level. Add a "color" column to the data frame such that strongly downregulated genes are colored in green and strong upregulated genes are in red. When the down or up-regulation is instead weak the intensity of the color gets weaker as well, accordingly.

Usage

```
## S4 method for signature 'STRINGdb'
add_diff_exp_color(screen, logFcColStr="logFC")
```

Arguments

screen	Dataframe containing the results of the experiment (e.g. the analyzed results of a microarray or RNAseq experiment)
logFcColStr	name of the colum that contains the logFC of the expression

Value

vector containing the colors

Author(s)

Andrea Franceschini

add_proteins_description

add_proteins_description

Description

Add description colums to the proteins that are present in the data frame given in input. The data frame must contain a column named "STRING_id".

Usage

```
## S4 method for signature 'STRINGdb'
add_proteins_description(screen)
```

Arguments

screen

Dataframe containing the results of the experiment (e.g. the analyzed results of a microarray or RNAseq experiment)

Value

returns the same dataframe given in input with an additional columns containing a description of the proteins.

Author(s)

benchmark_ppi

Description

benchmark a list of protein-protein interactions using pathways (e.g. KEGG). The function outputs a table where the interactions are mapped to KEGG and the number of TPs and FPs are counted.

Usage

```
## S4 method for signature 'STRINGdb'
benchmark_ppi(interactions_dataframe, pathwayType = "KEGG", max_homology_bitscore = 60, precision
```

Arguments

interactions_d	ataframe a data frame contaning the sorted interactions to be benchmarked. The data frame should have the following column names: proteinA, proteinB, score	
pathwayType	category to use to benchmark the interactions (default KEGG)	
max_homology_b	itscore filter out pairs of homologous proteins, having a similarity bitscore higher than this parameter	
precision_wind	OW	
	define the size of the precision window (i.e. the window used to scan the sorted interactions data frame in order to compute the benchmark precision). At the beginning and at the end of the sorted interactions data frame, the window is automatically enlarged (at the beginning) and reduced (at the end)	
exclude_pathways		
	Exlude the terms that should not be used for benchmarking. If this parameter is set to "blacklist", a black list to be used mantained by our group is automatically downloaded from our servers (otherwise it is possible to specify a vector with the terms that have to be excluded).	

Value

interactions data frame where the interactions are mapped to KEGG and the number of TPs and FPs are counted.

Author(s)

benchmark_ppi_pathway_view

benchmark_ppi_pathway_view

Description

Takes in input the results of the benchmark_ppi function, and constructs a new table that provides a view at the pathway level (i.e. it list all the pathways to which the interactions belong)

Usage

```
## S4 method for signature 'STRINGdb'
benchmark_ppi_pathway_view(benchmark_ppi_data_frame, precision_threshold=0.2, pathwayType = "KEGG
```

Arguments

benchmark_ppi_data_frame

data frame that comes out from the benchmark_ppi function.

precision_threshold

threshold that specify where to stop taking considering the interactions in the sorted input data frame (the list is scanned until the precision goes below this value).

pathwayType the pathway category to use (KEGG by default)

Value

data frame containing the pathways (i.e. terms) of the input proteins. Several parameters are reported: pathway coverage (i.e. number of interactions in the list belonging to the pathway / maximum number of interactions between the pathay proteins (i.e. proteins * (proteins-1)/2)) total_representation (i.e. number of interactions in the list belonging to the pathway / size of the input data frame)

Author(s)

Andrea Franceschini

coeff0fvar coeff0fvar

Description

coefficient of variation

Usage

coeff0fvar(x)

Arguments

x input number

Details

coefficient of variation

Value

coefficient of variation

Author(s)

Andrea Franceschini

delColDf delColDf

Description

delete a column in the data frame

Usage

delColDf(df, colName)

Arguments

df	data frame
colName	name of the column to be deleted

Value

data frame

Author(s)

Andrea Franceschini

diff_exp_example1 example of microarray data (data processed from GEO GSE9008)

Description

example of microarray data (data processed from GEO GSE9008)

Usage

data(diff_exp_example1)

6

downloadAbsentFile

Format

Data frames with 20861 observations on the following 3 variables.

gene a character vector pvalue a numeric vector logFC a numeric vector

Source

Whyte L, Huang YY, Torres K, Mehta RG. Molecular mechanisms of resveratrol action in lung cancer cells using dual protein and microarray analyses. Cancer Res 2007.

downloadAbsentFile downloadAbsentFile

Description

download a file only if it is not present.

Usage

```
downloadAbsentFile(urlStr, oD = tempdir())
```

Arguments

urlStr	url from which to download the file
oD	directory where to store the file

Author(s)

Andrea Franceschini

downloadAbsentFileSTRING

downloadAbsentFileSTRING

Description

download a STRING file only if it is not present or if it is corrupted.

Usage

```
downloadAbsentFileSTRING(urlStr, oD = tempdir())
```

Arguments

urlStr	url from which to download the file
oD	directory where to store the file

Author(s)

get_aliases

Description

Loads and returns the STRING alias table.

Usage

S4 method for signature 'STRINGdb'
get_aliases()

Value

a data frame containing the STRING alias table

Author(s)

Andrea Franceschini

get_annotations get_annotations

Description

Loads and returns STRING annotations (i.e. GO annotations, KEGG pathways, domain databases). The annotations are stored in the "annotations" variable.

Usage

```
## S4 method for signature 'STRINGdb'
get_annotations( )
```

Value

a data frame containing the annotations to the STRING proteins (e.g. GeneOntology, KEGG pathways, InterPro domains)

Author(s)

get_annotations_desc get_annotations_desc

Description

Returns a data frame with the description of every STRING annotation term (it downloads and caches the information the first time that is called).

Usage

```
## S4 method for signature 'STRINGdb'
get_annotations_desc()
```

Value

data frame with the description of every STRING annotation term.

Author(s)

Andrea Franceschini

get_bioc_graph get_bioc_graph

Description

Returns the interaction graph as an object of the graph package in Bioconductor.

Usage

```
## S4 method for signature 'STRINGdb'
get_bioc_graph()
```

Value

interaction graph as an object of the graph package in Bioconductor.

Author(s)

get_clusters get_clusters

Description

Returns a list of clusters of interacting proteins. See the iGraph (http://igraph.sourceforge.net/) documentation for additional information on the algorithms.

Usage

```
## S4 method for signature 'STRINGdb'
get_clusters(string_ids, algorithm="fastgreedy")
```

Arguments

string_ids	a vector of STRING identifiers.
algorithm	algorithm to use for the clustering. You can choose between "fastgreedy", "walk-
	trap", "spinglass" and "edge.betweenness").

Value

list of clusters of interacting proteins.

Author(s)

Andrea Franceschini

get_enrichment get_enrichment

Description

Returns the enrichment in pathways of the vector of STRING proteins that is given in input.

Usage

```
## S4 method for signature 'STRINGdb'
get_enrichment(string_ids, category = "Process", methodMT = "fdr", iea = TRUE, minScore=NULL)
```

Arguments

string_ids	a vector of STRING identifiers.
category	category for which to compute the enrichment (i.e. "Process", "Component", "Function", "KEGG", "Pfam", "InterPro"). The default category is "Process".
methodMT	method to be used for the multiple testing correction. (i.e. "fdr", "bonferroni"). The default is "fdr".
iea	specify whether you also want to use electronic inference annotations
minScore	with Tissue and Disease categories is possible to filter the annotations having an annotation score higher than this threshold (from 0 to 5)

get_graph

Value

Data frame containing the enrichment in pathways of the vector of STRING proteins that is given in input.

Author(s)

Andrea Franceschini

get_graph get_graph

Description

Return an igraph object with the STRING network (for information about iGraph visit http://igraph.sourceforge.net)

Usage

```
## S4 method for signature 'STRINGdb'
get_graph()
```

Value

igraph object with the STRING network

Author(s)

Andrea Franceschini

References

Csardi G, Nepusz T: The igraph software package for complex network research, InterJournal, Complex Systems 1695. 2006. http://igraph.sf.net

See Also

In order to simplify the most common tasks, we do also provide convenient functions that wrap some iGraph functions. get_interactions(string_ids) # returns the interactions in between the input proteins get_neighbors(string_ids) # Get the neighborhoods of a protein (or of a vector of proteins) that is given in input. get_subnetwork(string_ids) # returns a subgraph from the given input proteins

get_homologs get_homologs

Description

Returns the homologs of the given input identifiers that are present in the given target_species_id.

Usage

```
## S4 method for signature 'STRINGdb'
get_homologs(string_ids, target_species_id, bitscore_threshold=NULL)
```

Arguments

string_ids a vector of STRING identifiers. target_species_id NCBI taxonomy identifier of the species to query for homologs (the species must be present in the STRING database) bitscore_threshold threshold on the bitscore of the blast alignment.

Value

Data frame containing the homologs of the given input identifiers and that are present in the given target_species_id.

Author(s)

Andrea Franceschini

get_homologs_besthits get_homologs_besthits

Description

Returns the best blast hits x species of the given input identifiers.

Usage

```
## S4 method for signature 'STRINGdb'
get_homologs_besthits(string_ids, symbets = FALSE, target_species_id = NULL, bitscore_threshold=N
```

Arguments

get_interactions

Value

Data frame containing the best blast hits x species of the given input identifiers.

Author(s)

Andrea Franceschini

get_interactions get_interactions

Description

Shows the interactions in between the proteins that are given in input.

Usage

```
## S4 method for signature 'STRINGdb'
get_interactions(string_ids)
```

Arguments

string_ids a vector of STRING identifiers

Value

Data frame containing the interactions in between the input proteins.

Author(s)

Andrea Franceschini

get_link get_link

Description

Returns a short link to the network page of our STRING website that shows the protein interactions between the given identifiers.

Usage

```
## S4 method for signature 'STRINGdb'
get_link(string_ids, required_score=NULL, network_flavor="evidence", payload_id = NULL)
```

Arguments

string_ids	a vector of STRING identifiers.
required_score	minimum STRING combined score of the interactions (if left NULL we get the combined score of the object, which is 400 by default).
network_flavor	specify the flavor of the network ("evidence", "confidence" or "actions". default "evidence").
payload_id	an identifier of payload data on the STRING server (see method post_payload for additional informations)

Value

short link to the network page of our STRING website that shows the protein interactions between the input identifiers.

Author(s)

Andrea Franceschini

get_neighbors get_neighbors

Description

Get the neighborhoods of a protein (or of a vector of proteins) that is given in input.

Usage

```
## S4 method for signature 'STRINGdb'
get_neighbors(string_ids)
```

Arguments

string_ids a vector of STRING identifiers

Value

vector containing the neighborhoods of a protein (or of a vector of proteins) that is given in input.

Author(s)

get_png

get_png

Description

Returns a png image of a STRING protein network with the given identifiers.

Usage

```
## S4 method for signature 'STRINGdb'
get_png(string_ids, required_score=NULL, network_flavor="evidence", file=NULL, payload_id=NULL)
```

Arguments

string_ids	a vector of STRING identifiers.
required_score	minimum STRING combined score of the interactions (if left NULL we get the combined score of the object, which is 400 by default).
network_flavor	specify the flavor of the network ("evidence", "confidence" or "actions". default "evidence").
file	file where to save the image
payload_id	identifier of the payload

Value

Returns a png image of a STRING protein network with the given identifiers.

Author(s)

Andrea Franceschini

get_ppi_enrichment get_ppi_enrichment

Description

Returns a pvalue representing the enrichment in interactions of the list of proteins (i.e. the probability to obtain such a number of interactions by chance).

Usage

```
## S4 method for signature 'STRINGdb'
get_ppi_enrichment(string_ids)
```

Arguments

string_ids a vector of STRING identifiers

Value

Returns a pvalue representing the enrichment in interactions of the list of proteins (i.e. the probability to obtain such a number of interactions by chance).

Author(s)

Andrea Franceschini

get_ppi_enrichment_full

get_ppi_enrichment_full

Description

Returns a vector showing the enrichment in protein interactions in various positions of the list of genes in input. In practice, a list of 3 vectors is returned: 1) enrichment (i.e. enrichment computed in the window from 1 to x) 2) enrichmentWindow (i.e. enrichment computed in a sliding window of size determined by the "edgeWindow" parameters and the sliding steps determined by the "sliceWindow" parameter) 3) enrichmentWindowExtended (i.e. like the enrichmentWindow, but it also includes an initial window of size "windowExtendedReferenceThreshold" with respect to which to compute the enrichment)

Usage

S4 method for signature 'STRINGdb'
get_ppi_enrichment_full(string_ids, sliceWindow = 20, edgeWindow = 140, windowExtendedReferenceTH

Arguments

string_ids	a vector of STRING identifiers	
sliceWindow	defines the interval in proteins after which to compute the enrichment, scanning the list (i.e. the resolution)	
edgeWindow	size of the window that we use to compute the enrichment (i.e. the window pvalue is computed using the proteins inside this "edgeWindow")	
windowExtendedReferenceThreshold		
	defines the size of a window at the beginning of the list. The enrichment will be computed always including the proteins in this window	
growingWindowLimit		
	threshold where to stop the computation of the enrichment	

Value

Returns a vector showing the enrichment in protein interactions in various positions of the list of genes in input.

Author(s)

Andrea Franceschini

16

get_proteins get_proteins

Description

Returns the STRING proteins data frame. (it downloads and caches the information the first time that is called).

Usage

```
## S4 method for signature 'STRINGdb'
get_proteins()
```

Value

STRING proteins data frame.

Author(s)

Andrea Franceschini

get_pubmed get_pubmed

Description

Returns vector with the PUBMED IDs of the publications that contain the names of the proteins in the input vector.

Usage

S4 method for signature 'STRINGdb'
get_pubmed(string_ids)

Arguments

string_ids a vector of STRING identifiers

Value

vector with the PUBMED IDs of the publications that contain the names of the proteins in the input vector.

Author(s)

get_pubmed_interaction

get_pubmed_interaction

Description

Returns vector with the PUBMED IDs of the publications that contain the names of both the input proteins.

Usage

```
## S4 method for signature 'STRINGdb'
get_pubmed_interaction(STRING_id_a, STRING_id_b )
```

Arguments

STRING_id_a	STRING identifier
STRING_id_b	STRING identifier

Value

vector with the PUBMED IDs of the publications that contain the names of both the input proteins.

Author(s)

Andrea Franceschini

get_STRING_species get_STRING_species

Description

Returns a data frame with the species (i.e. organisms) that are present in STRING.

Usage

```
get_STRING_species(version=NULL, species_name=NULL)
```

Arguments

version STRING version species_name name of the species that you are searching

Value

data frame with the species (i.e. organisms) that are present in STRING.

Author(s)

get_subnetwork get_subnetwork

Description

Returns the subgraph generated by the given input proteins.

Usage

```
## S4 method for signature 'STRINGdb'
get_subnetwork(string_ids )
```

Arguments

string_ids a vector of STRING identifiers

Value

Returns the subgraph (i.e. an iGraph object) generated by the given input proteins.

Author(s)

Andrea Franceschini

get_summary get_summary

Description

Returns a summary of the STRING sub-network containing the identifiers provided in input.

Usage

```
## S4 method for signature 'STRINGdb'
get_summary(string_ids)
```

Arguments

string_ids a vector of STRING identifiers

Value

Returns a summary (i.e. a text description) of the STRING sub-network containing the identifiers provided in input.

Author(s)

get_term_proteins get_term_proteins

Description

Returns the proteins annotated to belong to a given term.

Usage

```
## S4 method for signature 'STRINGdb'
get_term_proteins(term_ids, string_ids=NULL, enableIEA=TRUE)
```

Arguments

term_ids	vector of terms
string_ids	a vector of STRING identifiers. If the variable is set, the method returns only the proteins that are present in this vector.
enableIEA	whether to consider also Electronic Inferred Annotations

Value

Returns the proteins annotated to belong to a given term.

Author(s)

Andrea Franceschini

interactions_example example of a protein-protein interactions sorted data frame

Description

example of a sorted list of protein-protein interactions, resulta our cooccurrence algorithm (SVD_Phy)

Usage

```
data(interactions_example)
```

Format

Data frames with 20861 observations on the following 3 variables.

proteinA a character vector

proteinB a character vector

score a numeric vector

load

load

Description

Downloads and returns the STRING network (the network is set also in the graph variable of the STRING_db object).

It makes use of the variables: "backgroundV" vector containing STRING identifiers to be used as background (i.e. the STRING network loaded will contain only the proteins that are present also in this vector) "score_threshold" STRING combined score threshold (the network loaded contains only interactions having a combined score greater than this threshold)

Usage

S4 method for signature 'STRINGdb'
load()

Value

STRING network (i.e. an iGraph object. For info look to http://igraph.sourceforge.net)

Author(s)

Andrea Franceschini

load_all

load_all

Description

Force download and loading of all the files (so that you can later store the object on the hard disk if you like). It makes use of the variables: "backgroundV" vector containing STRING identifiers to be used as background (i.e. the STRING network loaded will contain only the proteins that are present also in this vector) "score_threshold" STRING combined score threshold (the network loaded contains only interactions having a combined score greater than this threshold)

Usage

```
## S4 method for signature 'STRINGdb'
load_all()
```

Author(s)

map

тар

Description

Maps the gene identifiers of the input dataframe to STRING identifiers. It returns the input dataframe with the "STRING_id" additional column.

Usage

```
## S4 method for signature 'STRINGdb'
map(my_data_frame, my_data_frame_id_col_names, takeFirst=TRUE, removeUnmappedRows=FALSE, quiet=FA
```

Arguments

my_data_frame	data frame provided as input.	
my_data_frame_	id_col_names	
	vector contatining the names of the columns of "my_data_frame" that have to be used for the mapping.	
takeFirst	boolean indicating what to do in case of multiple STRING proteins that map to the same name. If TRUE, only the first of those is taken. Otherwise all of them are used. (default TRUE)	
removeUnmappedRows		
	remove the rows that cannot be mapped to STRING (by default those lines are left and their STRING_id is set to NA).	
quiet	Setting this variable to TRUE we can avoid printing the warning relative to the unmapped values.	

Value

Returns the dataframe that is given in input with the "STRING_id" additional column.

Author(s)

Andrea Franceschini

mp

тp

Description

Maps the gene identifiers of the input vector to STRING identifiers (using a take first approach). It returns a vector with the STRING identifiers of the mapped proteins.

Usage

```
## S4 method for signature 'STRINGdb'
mp(protein_aliases)
```

multi_map_df

Arguments

protein_aliases

vector of protein aliases that we want to convert to STRING identifiers

Value

It returns a vector with the STRING identifiers of the mapped proteins.

Author(s)

Andrea Franceschini

multi_map_df multi_map_df

Description

mapping function (it add the possibility to map using more than one column of the data frame)

Usage

multi_map_df(dfToMap, dfMap, strColsFrom, strColFromDfMap, strColToDfMap, caseSensitive=FALSE)

Arguments

dfToMap	input data frame (that contains the columns that need to be mapped)
dfMap	data frame containing the mapping data
strColsFrom	sorted vector containing the names of the columns to be used in the input data frame for the mapping (the order of the elements in the vector defines the priority for the mapping)
strColFromDfMa	p
	name of the column in the mapping data frame to be used as source for the mapping
strColToDfMap	name of the column in the mapping data frame to be used as target for the map- ping
caseSensitive	specify whether the mapping should be case sensitive

Value

data frame with an additional column containing the result of the mapping

Author(s)

plot_network

Description

Plots an image of the STRING network with the given proteins.

Usage

```
## S4 method for signature 'STRINGdb'
plot_network(string_ids, payload_id=NULL, required_score=NULL, add_link=TRUE, add_summary=TRUE)
```

Arguments

string_ids	a vector of STRING identifiers
payload_id	an identifier of payload data on the STRING server (see method post_payload for additional informations)
required_score	a threshold on the score that overrides the default score_threshold, that we use only for the picture
add_link	parameter to specify whether you want to generate and add a short link to the relative page in STRING. As default this option is active but we suggest to de- activate it in case one is generating many images (e.g. in a loop). Deactivating this option avoids to generate and store a lot of short-urls on our server.
add_summary	parameter to specify whether you want to add a summary text to the picture. This summary includes a p-value and the number of proteins/interactions.

Author(s)

Andrea Franceschini

plot_ppi_enrichment plot_ppi_enrichment

Description

Plots a graph showing the enrichment in protein interactions in various positions of the list of genes in input.

Usage

Arguments

string_ids	a vector of STRING identifiers
file	file where to save the graph as an image
sliceWindow	defines the interval in proteins after which to compute the enrichment, scanning the list (i.e. the resolution)
edgeWindow	size of the window that we use to compute the enrichment (i.e. the window pvalue is computed using the proteins inside this "edgeWindow")
windowExtended	ReferenceThreshold
	defines the size of a window at the beginning of the list. The enrichment will be computed always including the proteins in this window
title	title of the graph.
minVal	minimum value that the pvalue can assume in the log-scale graph. If the p-value is lower, we convert the value to this minimum value
quiet	if set to TRUE the method runs in quiet mode (turning off any output message)

Author(s)

Andrea Franceschini

plot_ppi_enrichment_graph

plot_ppi_enrichment_graph

Description

Plots a graph showing the enrichment in protein interactions in various positions of the list of genes in input.

Usage

plot_ppi_enrichment_graph(proteins, ppi_network, file, sliceWindow, edgeWindow, windowExtendedRef

Arguments

proteins	a vector of protein identifiers
ppi_network	an igraph object containing the protein-protein interactions' graph.
file	file where to save the graph as an image
sliceWindow	defines the interval in proteins after which to compute the enrichment, scanning the list (i.e. the resolution)
edgeWindow	size of the window that we use to compute the enrichment (i.e. the window pvalue is computed using the proteins inside this "edgeWindow")
windowExtended	ReferenceThreshold
	defines the size of a window at the beginning of the list. The enrichment will be computed always including the proteins in this window
title	title of the graph.
minVal	minimum value that the pvalue can assume in the log-scale graph. If the p-value is lower, we convert the value to this minimum value
quiet	if set to TRUE the method runs in quiet mode (turning off any output message)

Author(s)

Andrea Franceschini

References

Pradines JR, Farutin V, Rowley S, Dancik V. Analyzing protein lists with large networks: edgecount probabilities in random graphs with given expected degrees. J. Comput. Biol. 2005;12:113-128. Franceschini, A et al. (2013). STRING v9.1: protein-protein interaction networks, with increased coverage and integration. In:Nucleic Acids Res. 2013 Jan;41(Database issue)

post_payload post_payload

Description

Posts the input to STRING and returns an identifier that you can use to access the payload when you enter in our website.

Usage

```
## S4 method for signature 'STRINGdb'
post_payload(stringIds, colors=NULL, comments=NULL, links=NULL, iframe_urls=NULL, logo_imgF=NULL,
```

Arguments

stringIds	vector of STRING identifiers.
colors	vector containing the colors to use for a every STRING identifier (the order of the elements must match those in the string_ids vector)
comments	vector containing the comments to use for every STRING identifier (the order of the elements must match those in the string_ids vector)
links	vector containing the links to use for every STRING identifier (the order of the elements must match those in the string_ids vector)
iframe_urls	vector containing the urls of the iframes to use for every STRING identifier (the order of the elements must match those in the string_ids vector).
logo_imgF	path to a file containing the logo image to be display in the STRING website
<pre>legend_imgF</pre>	path to a file containing a legend image to be display in the STRING website

Value

identifier of the payload.

Author(s)

Andrea Franceschini

26

ppie.compLambda ppie.compLambda

Description

compute the number of expected interactions between a set of proteins.

Usage

ppie.compLambda(degrees, edgeNum)

Arguments

degrees	vector containing the degrees of the nodes of a set of proteins
edgeNum	total number of edges of the entire graph

Value

number of expected interactions

Author(s)

Andrea Franceschini

References

Pradines JR, Farutin V, Rowley S, Dancik V. Analyzing protein lists with large networks: edgecount probabilities in random graphs with given expected degrees. J. Comput. Biol. 2005;12:113-128. Franceschini, A et al. (2013). STRING v9.1: protein-protein interaction networks, with increased coverage and integration. In:Nucleic Acids Res. 2013 Jan;41(Database issue)

ppie.compLambdaL1L2 ppie.compLambdaL1L2

Description

Compute lambda L1L2

Usage

ppie.compLambdaL1L2(degreesI, degreesJ, edgeNum)

Arguments

degreesI	vector containing the degrees of the nodes present in nodeSet I
degreesJ	vector containing the degrees of the nodes present in nodeSet J
edgeNum	total number of edges of the entire graph

Details

compute the number of expected interactions between two sets of nodes

Author(s)

Andrea Franceschini

ppie.compPij ppie.compPij

Description

Compute the pvalue of protein I to interact with protein J (look at the Pradines paper referenced below)

Usage

ppie.compPij(degI, degJ, edgeNum)

Arguments

degI	degree of protein I
degJ	degree of protein J
edgeNum	total number of edges of the entire graph

Value

return the pvalue of protein I to interact with protein J (look at the Pradines paper referenced below)

Author(s)

Andrea Franceschini

References

Pradines JR, Farutin V, Rowley S, Dancik V. Analyzing protein lists with large networks: edgecount probabilities in random graphs with given expected degrees. J. Comput. Biol. 2005;12:113-128. Franceschini, A et al. (2013). STRING v9.1: protein-protein interaction networks, with increased coverage and integration. In:Nucleic Acids Res. 2013 Jan;41(Database issue)

28

ppie.getNumEdgesBetween

ppie.getNumEdgesBetween

Description

find the number of interactions between two sets of nodes

Usage

ppie.getNumEdgesBetween(graph, nodesFrom, nodesTo)

Arguments

graph	igraph object
nodesFrom	list of nodes
nodesTo	list of nodes

Value

return the number of interactions between two sets of nodes

Author(s)

Andrea Franceschini

ppi_enrichment ppi_enrichment

Description

Computes the enrichment in protein-protein interactions.

Usage

```
ppi_enrichment(hitList, ppi_network)
```

Arguments

hitList	sorted list of proteins (from the most significant to the least significant)
ppi_network	an igraph object containing the graph of the protein-protein interaction's net-
	work.

Value

enrichment	pvalue that describes the probability to get such a number of interactions by chance
lambda	expected number of interactions

Author(s)

Andrea Franceschini

References

Pradines JR, Farutin V, Rowley S, Dancik V. Analyzing protein lists with large networks: edgecount probabilities in random graphs with given expected degrees. J. Comput. Biol. 2005;12:113-128. Franceschini, A et al. (2013). STRING v9.1: protein-protein interaction networks, with increased coverage and integration. In:Nucleic Acids Res. 2013 Jan;41(Database issue)

ppi_enrichment_full ppi_enrichment_full

Description

Compute the enrichment in protein-protein interactions of a sorted list of proteins. The computation is repeated at different positions in the list.

Usage

ppi_enrichment_full(hitList, ppi_network, sliceWindow, edgeWindow, windowExtendedReferenceThreshold)

Arguments

hitList	sorted list of proteins (from the most significant to the least significant)	
ppi_network	an igraph object containing the protein-protein interactions' graph.	
sliceWindow	defines the interval in proteins after which to compute the enrichment, scanning the list (i.e. the resolution)	
edgeWindow	size of the window that we use to compute the enrichment (i.e. the window pvalue is computed using the proteins inside this "edgeWindow")	
windowExtendedReferenceThreshold		
	when we compute the "windowExtended" pvalue we are computing the pvalue that considers the following interactions: 1) the interactions inside the edgeWin- dow (as we do with the edgeWindow pvalue) 2) the interactions that connects the proteins in the edgeWindow with the proteins in another window at the be- ginning of the list (i.e. the windowExtendedReference). windowExtendedRef- erenceThrehold defines the size of this windowExtendedReference window. In this way we can compute, in a reliable way, the enrichment of a sorted list of proteins, in various positions of the list.	
growingWindowLimit		
	stop to compute the enrichment (from position 1 to position n) after growing- WindowLimit proteins in the sorted list. (this limit speeds up the computation of the 2 other types of enrichment)	
quiet	if set to TRUE the method runs in quiet mode (turning off any output message)	

Value

enrichment	vector containing the enrichments in protein-protein interactions of the input list
	of genes (the length of the vector is length(hitList)/sliceWindow).

enrichmentWindow

vector containing the enrichments in protein-protein interactions of the input list of genes (the length of the vector is length(hitList)/sliceWindow). The enrichment is computed considering only the proteins inside the sliding window

enrichmentWindowExtended

vector containing the enrichments in protein-protein interactions of the input list of genes (the length of the vector is length(hitList)/sliceWindow). Look at the description of the windowExtendedReferenceThreshold variable

Author(s)

Andrea Franceschini

References

Pradines JR, Farutin V, Rowley S, Dancik V. Analyzing protein lists with large networks: edgecount probabilities in random graphs with given expected degrees. J. Comput. Biol. 2005;12:113-128. Franceschini, A et al. (2013). STRING v9.1: protein-protein interaction networks, with increased coverage and integration. In:Nucleic Acids Res. 2013 Jan;41(Database issue)

remove_homologous_interactions

remove_homologous_interactions

Description

With this method it is possible to remove the interactions that are composed by a pair of homologous/similar proteins, having a similarity bitscore between each other higher than a threshold.

Usage

S4 method for signature 'STRINGdb'
remove_homologous_interactions(interactions_dataframe, bitscore_threshold = 60)

Arguments

interactions_dataframe

a data frame contaning the sorted interactions to be benchmarked. The data frame should have the following column names: proteinA, proteinB, score

bitscore_threshold

filter out pairs of homologous proteins, having a similarity bitscore higher than this parameter

Value

interactions data frame where the homologous pairs have been removed, from the input interactions' data frame

Author(s)

Andrea Franceschini

renameColDf renameColDf

Description

Rename a column of a data frame

Usage

renameColDf(df, colOldName, colNewName)

Arguments

df	input data frame
colOldName	column name to be changed
colNewName	new column name

Value

data frame with the column name changed

Author(s)

Andrea Franceschini

set_background set_background

Description

With this method you can specify a vector of proteins to be used as background. The network is reloaded and only the proteins that are present in the background vector are inserted in the graph. Besides, the background is taken in consideration for all the enrichment statistics.

Usage

S4 method for signature 'STRINGdb'
set_background(background_vector)

Arguments

background_vector

vector of STRING protein identifiers

Author(s)

Andrea Franceschini

32

STRINGdb-class Class "STRINGdb"

Description

The R package STRINGdb provides a convenient interface to the STRING protein-protein interactions database for the R/bioconductor users. Please look at the manual/vignette to get additional informationd and examples on how to use the package. STRING is a database of known and predicted protein-protein interactions. It contains information from numerous sources, including experimental repositories, computational prediction methods and public text collections. Each interaction is associated with a combined confidence score that integrates the various evidences. STRING is regularly updated , the latest version 9.05 contains information on 5 millions proteins from more than 1100 species. The STRING web interface is freely accessible at: http://string-db.org/

Extends

All reference classes extend and inherit methods from "envRefClass".

Fields

annotations: Object of class data.frame ~~
annotations_description: Object of class data.frame ~~
graph: Object of class igraph ~~
proteins: Object of class data.frame ~~
speciesList: Object of class data.frame ~~
species: Object of class numeric ~~
version: Object of class character ~~
input_directory: Object of class character ~~
backgroundV: Object of class vector ~~
score_threshold: Object of class numeric ~~

Methods

```
set_background(background_vector): ~~
post_payload(stringIds, colors, comments, links, iframe_urls, logo_imgF, legend_imgF):
    ~~
plot_network(string_ids, payload_id, required_score): ~~
plot_ppi_enrichment(string_ids, file, sliceWindow, edgeWindow, windowExtendedReferenceThreshold,
    ~~
map(my_data_frame, my_data_frame_id_col_names, takeFirst, removeUnmappedRows, quiet):
    ~~
load(): ~~
get_term_proteins(term_ids, string_ids, enableIEA): ~~
get_summary(string_ids): ~~
```

```
get_ppi_enrichment_full(string_ids, sliceWindow, edgeWindow, windowExtendedReferenceThreshold, g
get_ppi_enrichment(string_ids): ~~
get_proteins(): ~~
get_png(string_ids, required_score, network_flavor, file, payload_id): ~~
get_neighbors(string_ids): ~~
get_link(string_ids, required_score, network_flavor, payload_id): ~~
get_interactions(string_ids): ~~
get_homologs_besthits(string_ids, symbets, target_species_id, bitscore_threshold):
get_homologs(string_ids, target_species_id, bitscore_threshold): ~~
get_graph(): ~~
get_enrichment(string_ids, category, methodMT, iea): ~~
get_clusters(string_ids, algorithm): ~~
get_annotations_desc(): ~~
get_annotations(): ~~
load_all(): ~~
initialize(...): ~~
add_proteins_description(screen): ~~
add_diff_exp_color(screen, logFcColStr): ~~
show(): ~~
```

Author(s)

Andrea Franceschini

References

Franceschini, A (2013). STRING v9.1: protein-protein interaction networks, with increased coverage and integration. In: Nucleic Acids Res. 2013 Jan;41(Database issue):D808-15. doi: 10.1093/nar/gks1094. Epub 2012 Nov 29'.

See Also

http://stitch-db.org

Examples

showClass("STRINGdb")

Index

*Topic classes STRINGdb-class, 33 *Topic **datasets** diff_exp_example1, 6 interactions_example, 20 add_diff_exp_color, 2 add_proteins_description, 3 benchmark_ppi,4 benchmark_ppi_pathway_view, 5 coeff0fvar.5 delColDf, 6 diff_exp_example1, 6 downloadAbsentFile, 7 downloadAbsentFileSTRING, 7 envRefClass, 33 get_aliases, 8 get_annotations, 8 get_annotations_desc, 9 get_bioc_graph, 9 get_clusters, 10 get_enrichment, 10 get_graph, 11 get_homologs, 12 get_homologs_besthits, 12 get_interactions, 13 get_link, 13 get_neighbors, $14\,$ get_png, 15 get_ppi_enrichment, 15 get_ppi_enrichment_full, 16 get_proteins, 17 get_pubmed, 17 get_pubmed_interaction, 18 get_STRING_species, 18 get_subnetwork, 19 get_summary, 19 get_term_proteins, 20

load, 21 load_all, 21 map, 22 mp, 22 multi_map_df, 23 plot_network, 24 plot_ppi_enrichment, 24 plot_ppi_enrichment_graph, 25 post_payload, 26 ppi_enrichment, 29 ppi_enrichment_full, 30 ppie.compLambda, 27 ppie.compLambdaL1L2,27 ppie.compPij, 28 ppie.getNumEdgesBetween, 29 remove_homologous_interactions, 31 renameColDf, 32 set_background, 32 STRINGdb (STRINGdb-class), 33 STRINGdb-class, 33

interactions_example, 20