Package 'CorMut'

April 15, 2019

Type Package

Title Detect the correlated mutations based on selection pressure

Version 1.24.0

Date 2018-02-21

Author Zhenpeng Li

Maintainer Zhenpeng Li<zpli21@gmail.com>

Depends methods, seqinr, igraph

 Description CorMut provides functions for computing kaks for individual sites or specific amino acids and detecting correlated mutations among them. Three methods are provided for detecting correlated mutations ,including conditional selection pressure, mutual information and Jaccard index. The computation consists of two steps: First, the positive selection sites are detected; Second, the mutation correlations are computed among the positive selection sites. Note that the first step is optional. Meanwhile, CorMut facilitates the comparison of the correlated mutations between two conditions by the means of correlated mutation network. The reference sequence should be the first sequence of the sequence file, and does not allow the presence of gap.

License GPL-2

biocViews Sequencing

git_url https://git.bioconductor.org/packages/CorMut

git_branch RELEASE_3_8

git_last_commit 78e4af6

git_last_commit_date 2018-10-30

Date/Publication 2019-04-15

R topics documented:

CorMut-package .														•								2
biCkaksCodon-class																						3
biCompare-class .																						4
biCompare-methods .																						5
ckaks-class		•		•	•			•		•	•	•	•	•		•	•	•	•	•		6

CorMut-package

ckaksAA	6
ckaksCodon	7
filterSites-methods	8
JI-class	9
jiAA	10
kaksAA	11
kaksAA-class	12
kaksCodon	13
kaksCodon-class	14
MI-class	15
miAA	15
miCodon	16
plot	17
seqFormat-methods	18
	19

Index

CorMut-package

Detect the correlated mutations based on selection pressure

Description

CorMut provides functions for computing kaks for individual site or specific amino and detecting correlated mutation among them. Three methods are provided for detecting correlated mutation, including conditional selection pressure, mutual information and Jaccard index. the computation consists of two steps: First, the positive selection sites are detected; Second, the mutation correlation are computed among the positive selection sites. Note that the first step is optional. Meanwhile, CorMut facilitates the comparison of the correlated mutations between two conditions by the means of correlated mutation network.

Details

Package:	CorMut
Type:	Package
Version:	1.21.1
Date:	2018-02-21
License:	GPL-2

Author(s)

Zhenpeng Li Maintainer: Zhenpeng Li <zpli21@gmail.com>

References

1. Chen, L., Perlina, A. & Lee, C. J. Positive selection detection in 40,000 human immunodeficiency virus (HIV) type 1 sequences automatically identifies drug resistance and positive fitness mutations in HIV protease and reverse transcriptase. Journal of virology 78,3722-3732 (2004).

2. Cover, T. M., Thomas, J. A. & Wiley, J. Elements of information theory. 6, (Wiley Online Library: 1991).

biCkaksCodon-class Class "biCkaksCodon", "biCkaksAA", "biMICodon" and "biMIAA"

Description

biCkaksCodon/biCkaksAA/biMICodon/biMIAA class for representing seqFormt result of two conditions

Slots

seq_formated: Object of class "DNAStringSet". The result of seqFormt for the first condition

seq_formated02: Object of class "DNAStringSet". The result of seqFormt for the second condition

Methods

- **biCompare** signature(object = "biCkaksCodon"): Compare the correlated mutations(in the unit of codon) between two conditions using condition kaks method.
- **biCompare** signature(object = "biCkaksAA"): Compare the correlated mutations(in the unit of amino) between two conditions using condition kaks method.
- **biCompare** signature(object = "biMICodon"): Compare the correlated mutations(in the unit of codon) between two conditions using mutual information method.
- **biCompare** signature(object = "biMIAA"): Compare the correlated mutations(in the unit of amino) between two conditions using mutual information method.

See Also

biCompare,plot

Examples

```
#examplefile=system.file("extdata","PI_treatment_naive.aln",package="CorMut")
#examplefile02=system.file("extdata","PI_treatment.aln",package="CorMut")
#seq_formated=seqFormat(examplefile)
#seq_formated02=seqFormat(examplefile02)
#biexample=biCkaksAA(seq_formated,seq_formated02)
```

biCompare-class

Description

biCompare class for representing the biCompare results

Slots

- method: Object of class "character". The method to compute the correlated mutations, including ckaksCodon,ckaksAA,miCodon,miAA
- state_1: Object of class "matrix". The conditional kaks(conditional selection pressure) or mutual information among codons or amino mutations.
- statistic_1: Object of class "matrix". LOD confidence score or p value among codons or amino mutations for the first condition.
- state_2: Object of class "matrix". The conditional kaks(conditional selection pressure) or mutual information among codons or amino mutations.
- statistic_2: Object of class "matrix". LOD confidence score or p value among codons or amino mutations for the second condition.
- positiveSite01: Object of class "ANY". A vector of positive selection sites for the first condition.
- positiveSite02: Object of class "ANY". A vector of positive selection sites for the second condition.

Methods

plot signature(object = "biCompare"): plot the result of biCompare class

See Also

biCompare,plot-methods

Examples

```
#examplefile=system.file("extdata","PI_treatment_naive.aln",package="CorMut")
#examplefile02=system.file("extdata","PI_treatment.aln",package="CorMut")
#seq_formated=seqFormat(examplefile)
#seq_formated02=seqFormat(examplefile02)
#biexample=biCkaksAA(seq_formated,seq_formated02)
#result=biCompare(biexample)
```

biCompare-methods	biCompare implement biCompare methods for comparison of the cor- related mutations between two conditions by the means of correlated mutation network
	matter network

Description

Comparison of the correlated mutations between two conditions by the means of correlated mutation network, two correlated mutation network will be displayed in a plot, which represent the global mutation correlation among sites or mutations in two conditions. In the plot, blue nodes indicate the positive selection nodes in the first condition, while red nodes indicate the positive selection nodes in the second condition.

Value

A biCompare instance is returned.

Methods

- x = "biCkaksCodon" Compare the correlated mutations(in the unit of codon) between two conditions using condition kaks method.
- **x** = "**biCkaksAA**" Compare the correlated mutations(in the unit of amino) between two conditions using condition kaks method.
- **x** = "**biMICodon**" Compare the correlated mutations(in the unit of codon) between two conditions using mutual information method.
- **x** = "**biMIAA**" Compare the correlated mutations(in the unit of amino) between two conditions using mutual information method.
- **x** = "**biJIAA**" Compare the correlated mutations(in the unit of amino) between two conditions using mutual information method.

Author(s)

Zhenpeng Li

See Also

biCompare-class,plot.biCompare

Examples

```
examplefile=system.file("extdata","PI_treatment_naive.aln",package="CorMut")
examplefile02=system.file("extdata","PI_treatment.aln",package="CorMut")
seq_formated=seqFormat(examplefile)
seq_formated02=seqFormat(examplefile02)
biexample=biCkaksAA(seq_formated,seq_formated02)
#biexample=biCkaksCodon(seq_formated,seq_formated02)
#biexample=biMIAA(seq_formated,seq_formated02)
#biexample=biMICodon(seq_formated,seq_formated02)
#biexample=biJIAA(seq_formated,seq_formated02)
#biexample=biCmame(biexample)
#biexample=biexample
```

ckaks-class

Description

ckaks class for representing the ckaksCodon/ckaksAA results

Slots

ckaks: Object of class "matrix". Conditional kaks among codons or amino mutations

lod: Object of class "matrix". LOD confidence score indicates the significance of correlated mutations

Methods

See Also

filterSites,ckaksCodon,ckaksAA,plot.ckaks

Examples

```
#examplefile=system.file("extdata","PI_treatment.aln",package="CorMut")
#example=seqFormat(examplefile)
#result=ckaksAA(example)
```

ckaksAA

Compute the conditional kaks(conditional selection pressure) among amino mutations

Description

Compute the conditional kaks(conditional selection pressure) among codons, the amino mutation in a site will be treated as whole in computation.

Usage

```
ckaksAA(seq_formated, kaks = T, lod_cut = 2, setPosition = c())
```

ckaksCodon

Arguments

<pre>seq_formated</pre>	Formated alignment sequence. i.e. the result after the treatment of DataFormat-CorMut.
kaks	A logical variable to indicate whether kaks is turn on or off, if kaks is TRUE, conditional kaks will be computed only among positive seelction sites, or if kaks is FALSE, conditional kaks will be computed only among all sites of sequence.
lod_cut	The LOD confidence score cutoff, the default value is 2. If lod is larger than 2, it means the positive selection of individual site or the conditional selection pressure among sites are significant.
setPosition	The positions of sequence to compute. setPosition should be a vector of interger type.

Value

An ckaks instance will be returned. ckaks includes two slots of matrix type:ckaks and lod, which indicate the conditional kaks and LOD confidence score respectively.

Author(s)

Zhenpeng Li

References

Chen, L., Perlina, A. & Lee, C. J. Positive selection detection in 40,000 human immunodeficiency virus (HIV) type 1 sequences automatically identifies drug resistance and positive fitness mutations in HIV protease and reverse transcriptase. Journal of virology 78,3722-3732 (2004).

See Also

filterSites,plot.ckaks,ckaksCodon

Examples

```
examplefile=system.file("extdata","PI_treatment.aln",package="CorMut")
example=seqFormat(examplefile)
result=ckaksAA(example)
```

ckaksCodon	Compute the conditional kaks(conditional selection pressure) among
	codons

Description

Compute the conditional kaks(conditional selection pressure) among codons, the amino mutation in a site will be treated as whole in computation.

Usage

```
ckaksCodon(seq_formated, kaks = TRUE, lod_cut = 2, setPosition = c())
```

Arguments

<pre>seq_formated</pre>	Formated alignment sequence. i.e. the result after the treatment of DataFormat-CorMut.
kaks	A logical variable to indicate whether kaks is turn on or off, if kaks is TRUE, conditional kaks will be computed only among positive seelction sites, or if kaks is FALSE, conditional kaks will be computed only among all sites of sequences.
lod_cut	The LOD confidence score cutoff, the default value is 2. If lod is larger than 2, it means the positive selection of individual site or the conditional selection pressure among sites are significant.
setPosition	The positions of sequence to compute. setPosition should be a vector of interger type indicating the positions to compute.

Value

A object of ckaks class will be return. ckaks includes two slots of matrix:ckaks and lod, which indicate the ckaks and lod confidence score respectively.

Author(s)

Zhenpeng Li

References

Chen, L., Perlina, A. & Lee, C. J. Positive selection detection in 40,000 human immunodeficiency virus (HIV) type 1 sequences automatically identifies drug resistance and positive fitness mutations in HIV protease and reverse transcriptase. Journal of virology 78,3722-3732 (2004).

See Also

filterSites,plot.ckaks,ckaksAA

Examples

```
examplefile=system.file("extdata","PI_treatment.aln",package="CorMut")
example=seqFormat(examplefile)
result=ckaksCodon(example)
```

filterSites-methods filterSites methods

Description

filterSites implement filterSites methods for kaksCodon,kaksAA,ckaks and MI instances respectively.The functions filter the results of corresponding objects.

JI-class

Methods

- x = "kaksCodon" filterSites(x,lod_cut = 2,freq_cut=0.01): Filter the results of kaksCodon object,two parameters are provided to control the output, lod_cut can assign an cutoff for lod confidence score to filter, and freq_cut assign the cutoff frequence of mutation, thus lowfrequency mutations are ignored in the later analyses.
- x = "kaksAA" filterSites(x,lod_cut = 2,freq_cut=0.01): Filter the results of kaksAA object,two parameters are provided to control the output, lod_cut can assign an cutoff for lod confidence score to filter, and freq_cut assign the cutoff frequence of mutation, thus lowfrequency mutations are ignored in the later analyses.
- x = "MI" filterSites(x,p_cut=0.05): Filter the results of MI object,p_cut can assign an p value cutoff to filter the correlated mutations.

Author(s)

Zhenpeng Li

See Also

kaksCodon, kaksAA, ckaksCodon, ckaksAA,miCodon,miAA,plot-methods

Examples

```
examplefile=system.file("extdata","PI_treatment.aln",package="CorMut")
example=seqFormat(examplefile)
result=kaksCodon(example)
resultfilter=filterSites(result)
```

JI-class

Class "JI"

Description

JI class for representing the jiAA results

Slots

JI: Object of class "matrix". Mutual information among codons or amino mutations

p.value: Object of class "matrix". P value for the significance of correlated mutations

OR: Object of class "matrix". Odds Ratios for the correlated mutations

Methods

- filterSites signature(object = "MI"): Filter positive selection amino mutations for objects of MI class.
- plot signature(object = "MI"): Plot the influence interaction among mutations for objects of MI class.

See Also

miAA,filterSites

Examples

```
#examplefile=system.file("extdata","PI_treatment.aln",package="CorMut")
#example=seqFormat(examplefile)
#result=jiAA(example)
```

jiAA

Compute the Jaccard index among individual amino mutations

Description

Compute the Jaccard index among individual amino mutations, the amino mutations in a specific position will be considered respectively.

Usage

```
jiAA(seq_formated, kaks = TRUE, lod_cut = 2, setPosition = c(),fdr=FALSE)
```

Arguments

<pre>seq_formated</pre>	Formated multiple alignment sequence. i.e. the result after the treatment of DataFormatCorMut.
kaks	A logical variable to indicate whether kaks is turn on or off, if kaks is TRUE, conditional kaks will be computed only among positive seelction sites, or if kaks is FALSE, conditional kaks will be computed only among all sites of sequence.
lod_cut	The LOD confidence score cutoff, the default value is 2. If lod is larger than 2, it means the positive selection of individual site or the conditional selection pressure among sites are significant.
setPosition	The positions of sequence to compute. setPosition should be a vector of interger type.
fdr	Decide whether use FDR procedure to control the p value of the computa- tion.The default value is False.

Value

A object of JI class will be returned. JI class includes three slots: JI, p.value and OR, which indicate the Jaccard index, p value and odds ratios respectively.

Author(s)

Zhenpeng Li

See Also

filterSites,miAA

kaksAA

Examples

```
examplefile=system.file("extdata","PI_treatment.aln",package="CorMut")
example=seqFormat(examplefile)
result=jiAA(example)
```

kaksAA

Compute kaks for individual amino mutation

Description

Compute kaks for individual amino mutation.

Usage

kaksAA(seq_formated)

Arguments

seq_formated

Formated alignment sequence. i.e. the result after the treatment of DataFormat-CorMut.

Details

Ka/Ks ratio was used as an indicator of selective pressure acting on a protein-coding gene. A Ka/Ks ratio of 1 indicates neutral selection, i.e., the observed ratio of non-synonymous mutations versus synonymous mutations exactly matches the ratio expected under a random mutation model. Thus, amino acid changes are neither being selected for nor against. A Ka/Ks value of <1 indicates negative selection pressure. That is to say most amino acid changes are deleterious and are selected against, producing an imbalance in the observed mutations that favors synonymous mutations. In the condition of Ka/Ks>1, it indicates that amino acid changes are favored, i.e., they increase the organism's fitness. This unusual condition may reflect a change in the function of a gene or a change in environmental conditions that forces the organism to adapt. For example, highly variable viruses mutations which confer resistance to new antiviral drugs might be expected to undergo positive selection in a patient population treated with these drugs, such as HIV and HCV.

Value

A kaksAA instance will be returned.

Note

The reference sequence should be included in in the alignment as the first sequence.Before using kaksCodon, the alignment should be treated with DataFormatCorMut.

Author(s)

Zhenpeng Li

References

Chen, L., Perlina, A. & Lee, C. J. Positive selection detection in 40,000 human immunodeficiency virus (HIV) type 1 sequences automatically identifies drug resistance and positive fitness mutations in HIV protease and reverse transcriptase. Journal of virology 78, 3722-3732 (2004).

See Also

filterSites,kaksCodon

Examples

```
examplefile=system.file("extdata","PI_treatment.aln",package="CorMut")
example=seqFormat(examplefile)
result=kaksAA(example)
```

kaksAA-class Class "kaksAA"

Description

kaksAA class for representing the kaksAA results

Slots

seq_num: Object of class "list". The number of sequences

kaks: Object of class "list". kaks value

lod: Object of class "list". LOD confidence score, refer to vignette for details

q: Object of class "list". q value, refer to vignette for details

- ka: Object of class "list".ka value of kaks ratio, i.e. the samples count of the nonsynonymous mutation.
- ks: Object of class "list". ks value of kaks ratio, i.e. the samples count of the synonymous mutation.

Methods

filterSites signature(object = "kaksAA"): Filter positive selection amino mutations for objects of kaksAA class.

See Also

filterSites,kaksAA

Examples

```
#examplefile=system.file("extdata","PI_treatment.aln",package="CorMut")
#example=seqFormat(examplefile)
#result=kaksAA(example)
```

kaksCodon

Description

Compute kaks for individual codon, the different mutations in a site will be considered as whole.

Usage

```
kaksCodon(seq_formated)
```

Arguments

seq_formated Formated alignment sequence. i.e. the result after the treatment of DataFormat-CorMut.

Details

Ka/Ks ratio was used as an indicator of selective pressure acting on a protein-coding gene. A Ka/Ks ratio of 1 indicates neutral selection, i.e., the observed ratio of non-synonymous mutations versus synonymous mutations exactly matches the ratio expected under a random mutation model. Thus, amino acid changes are neither being selected for nor against. A Ka/Ks value of <1 indicates negative selection pressure. That is to say most amino acid changes are deleterious and are selected against, producing an imbalance in the observed mutations that favors synonymous mutations. In the condition of Ka/Ks>1, it indicates that amino acid changes are favored, i.e., they increase the organism's fitness. This unusual condition may reflect a change in the function of a gene or a change in environmental conditions that forces the organism to adapt. For example, highly variable viruses mutations which confer resistance to new antiviral drugs might be expected to undergo positive selection in a patient population treated with these drugs, such as HIV and HCV.

Value

A kaksCodon instance will be returned.

Note

The reference sequence should be included in in the alignment as the first sequence. Before using kaksCodon, the alignment should be treated with DataFormatCorMut.

Author(s)

Zhenpeng Li

References

Chen, L., Perlina, A. & Lee, C. J. Positive selection detection in 40,000 human immunodeficiency virus (HIV) type 1 sequences automatically identifies drug resistance and positive fitness mutations in HIV protease and reverse transcriptase. Journal of virology 78, 3722-3732 (2004).

See Also

filterSites-methods,kaksAA

Examples

```
examplefile=system.file("extdata","PI_treatment.aln",package="CorMut")
example=seqFormat(examplefile)
result=kaksCodon(example)
```

kaksCodon-class Class "kaksCodon"

Description

kaksCodon class for representing the kaksCodon results

Slots

seq_num: Object of class "list". The number of sequences

kaks: Object of class "numeric". kaks value

- lod: Object of class "numeric". LOD confidence score, refer to vignette for details
- q: Object of class "numeric". q value, refer to vignette for details
- ka: Object of class "numeric".ka value of kaks ratio, i.e. the samples count of the nonsynonymous mutation.
- ks: Object of class "numeric". ks value of kaks ratio, i.e. the samples count of the synonymous mutation.

Methods

filterSites signature(object = "kaksCodon"): Filter positive selection sites for objects of kaksCodon class.

See Also

kaksCodon,filterSites

Examples

```
#examplefile=system.file("extdata","PI_treatment.aln",package="CorMut")
#example=seqFormat(examplefile)
#result=kaksCodon(example)
```

MI-class

Description

MI class for representing the miCodon/miAA results

Slots

mi: Object of class "matrix". Mutual information among codons or amino mutations

p.value: Object of class "matrix". P value for the significance of correlated mutations

Methods

- filterSites signature(object = "MI"): Filter positive selection amino mutations for objects of MI class.
- plot signature(object = "MI"): Plot the influence interaction among mutations for objects of MI class.

See Also

miCodon,filterSites

Examples

```
#examplefile=system.file("extdata","PI_treatment.aln",package="CorMut")
#example=seqFormat(examplefile)
#result=miAA(example)
```

```
miAA
```

Compute the mutual information among individual amino mutations

Description

Compute the mutual information among individual amino mutations, the amino mutations in a specific position will be considered respectively.

Usage

```
miAA(seq_formated, kaks = TRUE, lod_cut = 2, setPosition = c(),fdr=FALSE)
```

Arguments

<pre>seq_formated</pre>	Formated multiple alignment sequence. i.e. the result after the treatment of DataFormatCorMut.
kaks	A logical variable to indicate whether kaks is turn on or off, if kaks is TRUE, conditional kaks will be computed only among positive seelction sites, or if kaks is FALSE, conditional kaks will be computed only among all sites of sequence.

lod_cut	The LOD confidence score cutoff, the default value is 2. If lod is larger than 2, it means the positive selection of individual site or the conditional selection pressure among sites are significant.
setPosition	The positions of sequence to compute. setPosition should be a vector of interger type.
fdr	Decide whether use FDR procedure to control the p value of the computa- tion. The default value is False.

Value

A object of MI class will be returned. miAA includes two slots of matrix:mi and p.value, which indicate the mutual information and p value respectively.

Author(s)

Zhenpeng Li

References

Cover, T. M., Thomas, J. A. & Wiley, J. Elements of information theory. 6, (Wiley Online Library: 1991).

See Also

filterSites,miCodon

Examples

```
examplefile=system.file("extdata","PI_treatment.aln",package="CorMut")
example=seqFormat(examplefile)
result=miAA(example)
```

miCodon

Compute the mutual information among codons

Description

Compute the mutual information among codons, the amino mutation in a site will be treated as whole in computation.

Usage

```
miCodon(seq_formated, kaks = TRUE, lod_cut = 2, setPosition = c(),fdr=FALSE)
```

Arguments

<pre>seq_formated</pre>	Formated alignment sequence. i.e. the result after the treatment of DataFormat-CorMut.
kaks	A logical variable to indicate whether kaks is turn on or off, if kaks is TRUE, conditional kaks will be computed only among positive seelction sites, or if kaks is FALSE, conditional kaks will be computed only among all sites of sequence.

lod_cut	The LOD confidence score cutoff, the default value is 2. If lod is larger than 2, it means the positive selection of individual site or the conditional selection pressure among sites are significant.
setPosition	The positions of sequence to compute. setPosition should be a vector of interger type.
fdr	Decide whether use FDR procedure to control the p value of the computa- tion. The default value is False.

Value

A object of MI class will be return. miCodon includes two slots of matrix:mi and p.value, which indicate the mutual information and p value respectively.

Author(s)

Zhenpeng Li

References

Cover, T. M., Thomas, J. A. & Wiley, J. Elements of information theory. 6, (Wiley Online Library: 1991).

See Also

filterSites,miAA

Examples

```
examplefile=system.file("extdata","PI_treatment.aln",package="CorMut")
example=seqFormat(examplefile)
result=miCodon(example)
```

plot

Plot methods for CorMut package

Description

Plot implement plot methods for ckaksCodon,ckaksAA,miCodon, miAA and biCompare objects respectively. Plot visualize the mutation correlation among sites or amino mutations.

Methods

- x = "ckaks" Plot the results of ckaks object. The paramater "layout_reset" was provided to set the layout of the network. You can refer to "layout_ function" in igraph package to get the graph layouts
- x = "MI" Plot the results of MI object. The paramater "layout_reset" was provided to set the layout of the network. You can refer to "layout_ function" in igraph package to get the graph layouts
- **x** = "**JI**" Plot the results of JI object. The paramater "layout_reset" was provided to set the layout of the network. You can refer to "layout_ function" in igraph package to get the graph layouts
- x = "biCompare" Plot the results of biCompare object. The paramater "layout_reset" was provided to set the layout of the network. You can refer to "layout_ function" in igraph package to get the graph layouts

Author(s)

Zhenpeng Li

See Also

ckaksCodon,ckaksAA,miCodon,miAA,jiAA

Examples

```
examplefile=system.file("extdata","PI_treatment.aln",package="CorMut")
example=seqFormat(examplefile)
result=ckaksAA(example)
plot(result)
```

seqFormat-methods *Process the multiple sequence alignment files*

Description

Process the multiple sequence alignment files, the results can be used for the other functional functions. Note that the reference sequence should be included as the first sequence.

Usage

```
seqFormat(x, format = c("clustal","fasta","mase","phylip","msf"))
```

Arguments

х	multiple sequence alignment files
format	a character string specifying the format of the file: "clustal", "fasta", "mase", "phylip", "msf",
	refer to read.alignment function in seqinr package for details.

Value

A vector of sequences with names is returned.

Note

To ensure an exact result, the reference sequence should be included in the alignment as the first sequence.

Author(s)

Zhenpeng Li

Examples

```
examplefile=system.file("extdata","PI_treatment.aln",package="CorMut")
example=seqFormat(examplefile)
```

Index

*Topic classes biCkaksCodon-class, 3 biCompare-class, 4 ckaks-class, 6 JI-class, 9 kaksAA-class, 12 kaksCodon-class, 14 MI-class, 15 *Topic methods filterSites-methods, 8 plot, 17 biCkaksAA (biCkaksCodon-class), 3 biCkaksAA-class (biCkaksCodon-class), 3 biCkaksCodon(biCkaksCodon-class), 3 biCkaksCodon-class, 3 biCompare, 3, 4 biCompare (biCompare-methods), 5 biCompare, biCkaksAA-method (biCompare-methods), 5 biCompare, biCkaksCodon-method (biCompare-methods), 5 biCompare, biJIAA-method (biCompare-methods), 5 biCompare, biMIAA-method (biCompare-methods), 5 biCompare, biMICodon-method (biCompare-methods), 5 biCompare-class, 4 biCompare-methods, 5 biCompare.biCkaksAA (biCompare-methods), 5 biCompare.biCkaksCodon (biCompare-methods), 5 biCompare.biJIAA (biCompare-methods), 5 biCompare.biMIAA (biCompare-methods), 5 biCompare.biMICodon (biCompare-methods), 5 biJIAA (biCkaksCodon-class), 3 biJIAA-class (biCkaksCodon-class), 3 biMIAA (biCkaksCodon-class), 3 biMIAA-class (biCkaksCodon-class), 3 biMICodon (biCkaksCodon-class), 3 biMICodon-class(biCkaksCodon-class), 3 ckaks (ckaks-class), 6 ckaks-class, 6 ckaks.CorMut(ckaks-class),6 ckaks.CorMut,ckaks-method (ckaks-class), 6 ckaksAA, 6, 6, 8, 9, 18 ckaksCodon, 6, 7, 7, 9, 18 CorMut (CorMut-package), 2 CorMut-package, 2 filterSites, 6-8, 10, 12, 14-17 filterSites (filterSites-methods), 8 filterSites, ckaks-method (filterSites-methods), 8 filterSites,JI-method (filterSites-methods), 8 filterSites,kaksAA-method (filterSites-methods), 8 filterSites,kaksCodon-method (filterSites-methods), 8 filterSites,MI-method (filterSites-methods), 8 filterSites-methods, 8 filterSites.ckaks (filterSites-methods), 8 filterSites.JI (filterSites-methods), 8 filterSites.kaksAA (filterSites-methods), 8 filterSites.kaksCodon (filterSites-methods), 8 filterSites.MI (filterSites-methods), 8 JI-class, 9 ji.CorMut, JI-method (JI-class), 9

INDEX

kaks.CorMut,kaksCodon-method (kaksCodon-class), 14 kaksAA, 9, 11, 12, 13 kaksAA-class, 12 kaksCodon, 9, 12, 13, 14 kaksCodon-class, 14 ks.CorMut (kaksAA-class), 12 ks.CorMut,kaksAA-method(kaksAA-class), 12 ks.CorMut,kaksCodon-method (kaksCodon-class), 14 lod.CorMut (ckaks-class), 6 lod.CorMut,ckaks-method(ckaks-class),6 lod.CorMut.kaksAA-method (kaksAA-class), 12 lod.CorMut,kaksCodon-method (kaksCodon-class), 14 method.CorMut (biCompare-class), 4 method.CorMut,biCompare-method (biCompare-class), 4 MI-class, 15 mi.CorMut(MI-class), 15 mi.CorMut, MI-method (MI-class), 15 miAA, 9, 10, 15, 17, 18 miCodon, 9, 15, 16, 16, 18 p.value.CorMut (MI-class), 15 p.value.CorMut,JI-method (JI-class),9 p.value.CorMut,MI-method (MI-class), 15 plot, 3, 17 plot,biCompare-method(plot), 17 plot, ckaks-method (plot), 17 plot, JI-method (plot), 17 plot, MI-method (plot), 17 plot.biCompare, 5 plot.biCompare (plot), 17 plot.ckaks, 6-8

q.CorMut,kaksCodon-method (kaksCodon-class), 14 seq_num.CorMut (kaksAA-class), 12 seq_num.CorMut,kaksAA-method (kaksAA-class), 12 seq_num.CorMut,kaksCodon-method (kaksCodon-class), 14 seqFormat (seqFormat-methods), 18 seqFormat-methods, 18 show, biCkaksAA-method (biCkaksCodon-class), 3 show.biCkaksCodon-method (biCkaksCodon-class), 3 show, biMIAA-method (biCkaksCodon-class), 3 show, biMICodon-method (biCkaksCodon-class), 3 show, ckaks-method (ckaks-class), 6 show, JI-method (JI-class), 9 show, kaksAA-method (kaksAA-class), 12 show,kaksCodon-method (kaksCodon-class), 14 show.MI-method (MI-class), 15 state_1.CorMut (biCompare-class), 4 state_1.CorMut,biCompare-method (biCompare-class), 4 state_2.CorMut (biCompare-class), 4 state_2.CorMut,biCompare-method (biCompare-class), 4 statistic_1.CorMut (biCompare-class), 4 statistic_1.CorMut,biCompare-method (biCompare-class), 4 statistic_2.CorMut (biCompare-class), 4 statistic_2.CorMut,biCompare-method

(biCompare-class), 4

20

q.CorMut,kaksAA-method(kaksAA-class), 12

q.CorMut (kaksAA-class), 12

positiveSite02.CorMut

plot.ckaks(plot), 17
plot.JI(plot), 17
plot.MI(plot), 17
positiveSite01.CorMut

(biCompare-class), 4
positiveSite01.CorMut,biCompare-method
 (biCompare-class), 4

(biCompare-class), 4
positiveSite02.CorMut,biCompare-method
 (biCompare-class), 4