Package 'BiocPkgTools'

April 14, 2019

```
Type Package
Title Collection of simple tools for learning about Bioc Packages
Version 1.0.3
Date 2019-01-18
Description Bioconductor has a rich ecosystem of metadata around
     packages, usage, and build status. This package is a simple
     collection of functions to access that metadata from R. The goal
     is to expose metadata for data mining and value-added functionality
      such as package searching, text mining, and analytics on
     packages.
Depends htmlwidgets
Imports BiocManager, tibble, stringr, rvest, rex, dplyr, xml2, readr,
     httr, htmltools, DT, tools, utils, igraph, tidyr, jsonlite, gh
VignetteBuilder knitr
Suggests BiocStyle, knitr, rmarkdown, testthat, tm, SnowballC,
     pdftools, visNetwork, biocViews
License MIT + file LICENSE
BugReports https://github.com/seandavi/BiocPkgTools/issues/new
URL https://github.com/seandavi/BiocPkgTools
Encoding UTF-8
LazyData true
RoxygenNote 6.1.0
biocViews Software, Infrastructure
git url https://git.bioconductor.org/packages/BiocPkgTools
git_branch RELEASE_3_8
git_last_commit f93fa01
git_last_commit_date 2019-01-18
Date/Publication 2019-04-14
Author Sean Davis [aut, cre],
      Shian Su [ctb],
      Lori Shepherd [ctb],
      Martin Morgan [ctb],
      Vince Carey [ctb]
Maintainer Sean Davis <seandavi@gmail.com>
```

2 biocBuildReport

R topics documented:

	get_bioc_data																
	githubURLParts	 	 														11
	inducedSubgraphBy																
	problemPage																
	subgraphByDegree	 	 	 ٠	 ٠	 •	 ٠	•	 •	 ٠	•	•	 •	٠	٠	•	13
Index																	14

Description

The online Bioconoductor build reports are great for humans to look at, but they are not easily computable. This function simply scrapes HTML and text files available from the build report online pages to generate a tidy data frame version of the build report.

Usage

```
biocBuildReport(version = as.character(BiocManager::version()))
```

Arguments

version character(1) the version number as used to access the online build report. For example, "3.6". The default is the "current version" as specified in BiocManager::version.

Value

a tbl_df object with columns pkg, version, author, commit, date, node, stage, and result.

```
latest_build = biocBuildReport()
head(latest_build)
```

biocDownloadStats 3

biocDownloadStats

get bioconductor download stats

Description

get bioconductor download stats

Usage

```
biocDownloadStats()
```

Details

Note that bioconductor package download stats are not version-specific.

Value

a data. frame of download stats for all bioconductor packages, in tidy format

Examples

```
biocDownloadStats()
```

biocExplore

Explore Bioconductor packages interactively

Description

Explore Bioconductor packages through an interactive bubble plot. Click on bubbles to bring up additional information about the package. Size and proximity to center of a bubble is based on the downloads the package has in the past month.

Usage

```
biocExplore(top = 500, ...)
```

Arguments

top maximum number of packages displayed in any biocView
... parameters passed to htmlwidgets::createWidget()

Value

bubble plot of Bioconductor packages

4 biocPkgList

biocPkgList

Get full bioc software package listing, with details

Description

The BiocViews-generated VIEWS file is available for bioconductor release and devel repositories. It contains quite a bit more information from the package DESCRIPTION files than the PACKAGES file. In particular, it contains biocViews annotations and URLs for vignettes and developer URLs.

Usage

```
biocPkgList(version = BiocManager::version(), repo = "BioCsoft")
```

Arguments

version The requested bioconductor version. Will default to use the BiocManager de-

faults (ie., version()).

repo The requested biooconductor repository. The default will be the Bioconduc-

tor software repository: BioCsoft. Available repos include: "BioCsoft", "BioCann", "BioCexp", "BioCworkflows", and "CRAN". Note that not all repos are available for all versions, particularly older versions (but who would use those,

right?).

Value

an object of class tbl_df.

```
# BiocManager::version() will retrieve the current version of
# Bioconductor (i.e "3.7")

bpkgl = biocPkgList(BiocManager::version())
bpkgl
unlist(bpkgl[1,'Depends'])

# Get a list of all packages that
# import "GEOquery"
library(dplyr)
bpkgl %>%
  filter(Package=='GEOquery') %>%
  pull(c('importsMe'))
```

BiocPkgTools 5

BiocPkgTools

BiocPkgTools: Examine and analyze Bioconductor package metadata

Description

Bioconductor has a rich ecosystem of metadata around packages, usage, and build status. This package is a simple collection of functions to access that metadata from R. The goal is to expose metadata for data mining and value-added functionality such as package searching, text mining, and analytics on packages.

For developers

The biocBuildReport function returns a computable form of the Bioconductor Build Report.

For users

The biocDownloadStats function gets Bioconductor download stats, allowing users to quickly find commonly used packages. The biocPkgList is useful for getting a complete listing of all Bioconductor packages.

Infrastructure

Bioconductor packages all have Digital Object Identifiers (DOIs). This package contains basic infrastructure for creating, updating, and de-referencing DOIs.

buildPkgDependencyDataFrame

Work with Bioconductor package dependencies

Description

Bioconductor is built using an extensive set of core capabilities and data structures. This leads to package developers depending on other packages for interoperability and functionality. This function extracts package dependency information from biocPkgList and returns a tidy data.frame that can be used for analysis and to build graph structures of package dependencies.

Usage

Arguments

```
dependencies character() vector including one or more of "Depends", "Imports", or "Suggests". Default is to include all possibilities.

... parameters passed along to biocPkgList
```

Value

```
a data.frame (also a tbl_df) of S3 class "biocDepDF" including columns "Package", "dependency", and "edgetype".
```

Note

This function requires network access.

See Also

See buildPkgDependencyIgraph, biocPkgList.

Examples

```
# performs a network call, so must be online.
library(BiocPkgTools)
depdf = buildPkgDependencyDataFrame()
head(depdf)
library(dplyr)
# filter to include only "Imports" type
# dependencies
imports_only = depdf %>% filter(edgetype=='Imports')
# top ten most imported packages
imports_only %>% select(dependency) %>%
  group_by(dependency) %>% tally() %>%
  arrange(desc(n))
# Bioconductor packages doing the largest
# amount of importing
largest_importers = imports_only %>%
  select(Package) %>%
  group_by(Package) %>% tally() %>%
  arrange(desc(n))
# not sure what these packages do. Join
# to their descriptions
biocPkgList() %>% select(Package, Description) %>%
  left_join(largest_importers) %>% arrange(desc(n)) %>%
  head()
```

buildPkgDependencyIgraph

Work with package dependencies as a graph

Description

Package dependencies represent a directed graph (though Bioconductor dependencies are not an acyclic graph). This function simply returns an igraph graph from the package dependency data frame from a call to buildPkgDependencyDataFrame or any tidy data frame with rows of (Package, dependency) pairs. Additional columns are added as igraph edge attributes (see graph_from_data_frame).

Usage

```
buildPkgDependencyIgraph(pkgDepDF)
```

Arguments

```
pkgDepDF a tidy data frame. See description for details.
```

dataciteXMLGenerate 7

Value

an igraph directed graph. See the igraph package for details of what can be done.

See Also

See buildPkgDependencyDataFrame, graph_from_data_frame, inducedSubgraphByPkgs, subgraphByDegree, igraph-es-indexing, igraph-vs-indexing

Examples

```
library(igraph)

pkg_dep_df = buildPkgDependencyDataFrame()

# at this point, filter or join to manipulate

# dependency data frame as you see fit.

g = buildPkgDependencyIgraph(pkg_dep_df)

g

# Look at nodes and edges
head(V(g)) # vertices
head(E(g)) # edges

# subset graph by attributes

head(sort(degree(g, mode='in'), decreasing=TRUE))
head(sort(degree(g, mode='out'), decreasing=TRUE))
```

 ${\tt dataciteXMLGenerate}$

Bioc datacite xml generator

Description

Bioc datacite xml generator

Usage

```
dataciteXMLGenerate(pkg)
```

Arguments

pkg

name of bioc package

Value

an xml element

generateBiocPkgDOI

Generate a DOI for a bioconductor package

Description

This function makes calls out to the EZID API (v2) described here: https://ezid.lib.purdue.edu/doc/apidoc.2.html. The function creates a new DOI for a bioc package (cannot already exist). The target URL for the DOI is the short Bioconductor package URL.

Usage

```
generateBiocPkgDOI(pkg, authors, pubyear, testing = TRUE)
```

Arguments

pkg character(1) package name

authors character vector of authors (will be "pasted" together)

pubyear integer(1) publication year

testing logical(1) If true, will use the apitest user with the password apitest. These

DOIs will expire. The same apitest:apitest combination can be used to login to the EZID website for doing things using the web interface. If false, the Bioconductor-specific user credentials should be in the correct environment vari-

ables

Details

The login information for the "real" Bioconductor account should be stored in the environment variables "EZID_USERNAME" and "EZID_PASSWORD".

The GUI is available here: https://ezid.lib.purdue.edu.

Value

The DOI as a character(1) vector.

```
## Not run:
    x = generateBiocPkgDOI('RANDOM_TEST_PACKAGE', 'Sean Davis',1972)
## End(Not run)
```

getBiocVignette 9

 ${\tt getBiocVignette}$

Download a Bioconductor vignette

Description

The actual vignette path is available using biocPkgList.

Usage

```
getBiocVignette(vignettePath, destfile = tempfile(),
  version = BiocManager::version())
```

Arguments

```
vignettePath character(1) the additional path information to get to the vignette destfile character(1) the file location to store the vignette version chacter(1) such as "3.7", defaults to user version
```

Value

character(1) the filename of the downloaded vignette

```
x = biocPkgList()
tmp = getBiocVignette(x$vignettes[[1]][1])
tmp
## Not run:
library(pdftools)
y = pdf_text(tmp)
y = paste(y,collapse=" ")
library(tm)
v = VCorpus(VectorSource(y))
library(magrittr)
v <- v %>%
    tm_map(stripWhitespace) %>%
    tm_map(content_transformer(tolower)) %>%
    tm_map(removeWords, stopwords("english")) %>%
    tm_map(stemDocument)
dtm = DocumentTermMatrix(v)
inspect(DocumentTermMatrix(v,
    list(dictionary = as.character(x$Package))))
## End(Not run)
```

10 get_bioc_data

getPackageInfo

Generate needed information to create DOI from a package directory.

Description

Generate needed information to create DOI from a package directory.

Usage

```
getPackageInfo(dir)
```

Arguments

dir

character(1) Path to package

Value

a data.frame

get_bioc_data

Get data from bioconductor

Description

Get data from bioconductor

Usage

```
get_bioc_data()
```

Value

json string containing bioconductor package details

```
bioc_data <- get_bioc_data()</pre>
```

githubURLParts 11

githubURLParts

Extract github user and repo name from github URL

Description

Extract github user and repo name from github URL

Usage

```
githubURLParts(urls)
```

Arguments

urls

a character() vector of urls.

Value

a data. frame with four columns:

- urlThe original github URL
- user_repoThe github "username/repo", combined
- userThe github username
- repoThe github repo name

Examples

```
# find github URL details for
# Bioc packages
bpkgl = biocPkgList()
urldetails = githubURLParts(bpkgl$URL)
urldetails = urldetails[!is.na(urldetails$url),]
head(urldetails)
```

inducedSubgraphByPkgs Return a minimal subgraph based on package name(s)

Description

Find the subgraph induced by including specific packages. The induced subgraph is the graph that includes the named packages and all edges connecting them. This is useful for a developer, for example, to examine her packages and their intervening dependencies.

Usage

```
inducedSubgraphByPkgs(g, pkgs, pkg_color = "red")
```

12 problemPage

Arguments

g an igraph graph, typically created by buildPkgDependencyIgraph

pkgs character() vector of packages to include. Package names not included in the

graph are ignored.

pkg_color character(1) giving color of named packages. Other packages in the graph that

fall in connecting paths will be colored as the igraph default.

Examples

```
library(igraph)
g = buildPkgDependencyIgraph(buildPkgDependencyDataFrame())
g2 = inducedSubgraphByPkgs(g, pkgs=c('GenomicFeatures',
'TCGAbiolinksGUI', 'BiocGenerics', 'org.Hs.eg.db', 'minfi', 'limma'))
g2
V(g2)
plot(g2)
```

problemPage

generate hyperlinked HTML for build reports for Bioc packages

Description

This is a quick way to get an HTML report of a developer's packages. The function is keyed to filter based on maintainer name.

Usage

```
problemPage(authorPattern = "V.*Carey", ver = "3.8",
  includeOK = FALSE)
```

Arguments

authorPattern character(1) regexp used with grep() to filter author field of package DESCRIP-

TION for listing

ver character(1) version tag for Bioconductor

includeOK logical(1) include entries from the build report that are listed as "OK". Default

FALSE will result in only those entries that are in WARNING or ERROR state.

Value

DT::datatable call; if assigned to a variable, must evaluate to get the page to appear

Author(s)

Vince Carey

```
if (interactive()) problemPage()
```

subgraphByDegree 13

subgraphByDegree	Subset graph by degree	

Description

While the inducedSubgraphByPkgs returns the subgraph with the minimal connections between named packages, this function takes a vector of package names, a degree (1 or more) and returns the subgraph(s) that are within degree of the package named.

Usage

```
subgraphByDegree(g, pkg, degree = 1, ...)
```

Arguments

g	an igraph graph, typically created by buildPkgDependencyIgraph
pkg	character(1) package name from which to measure degree.
degree	integer(1) degree, limit search for adjacent vertices to this degree.
	passed on to distances

Value

an igraph graph, with only nodes and their edges within degree of the named package

```
g = buildPkgDependencyIgraph(buildPkgDependencyDataFrame())
g2 = subgraphByDegree(g, 'GEOquery')
g2
```

Index

```
*Topic Internal
    {\tt generateBiocPkgDOI, 8}
    getPackageInfo, 10
biocBuildReport, 2, 5
biocDownloadStats, 3, 5
biocExplore, 3
biocPkgList, 4, 5, 6, 9
BiocPkgTools, 5
BiocPkgTools-package (BiocPkgTools), 5
buildPkgDependencyDataFrame, 5, 6, 7
buildPkgDependencyIgraph, 6, 6, 12, 13
dataciteXMLGenerate, 7
distances, 13
generateBiocPkgDOI, 8
get_bioc_data, 10
getBiocVignette, 9
getPackageInfo, 10
githubURLParts, 11
graph_from_data_frame, 6, 7
inducedSubgraphByPkgs, 7, 11, 13
problemPage, 12
subgraphByDegree, 7, 13
```