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1 Introduction

This vignette contains the computations that underlie the numerical code of vsn.
If you are a new user and looking for an introduction on how to use vsn, please
refer to the vignette Robust calibration and variance stabilization with vsn, which
is provided separately.

2 Setup and Notation

Consider the model
1] arsinh (f(b;) - yri + a;) = pi + ki

where uy, for k=1,...,n, and a;, b;, for i =1,...,d are real-valued parameters,
f is a function R — R (see below), and ¢, are i.i.d. Normal with mean 0 and
variance 2. yy; are the data. In applications to parray data, k indexes the features
and i the arrays and/or colour channels.

Examples for f are f(b) = band f(b) = e”. The former is the most obvious choice;
in that case we will usually need to require b; > 0. The choice f(b) = e’ assures
that the factor in front of yy; is positive for all b € R, and as it turns out, simplifies

some of the computations.
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In the following calculations, | will also use the notation

2] YEY(y7a7b):f(b)'y+a
3] h = h(y, a,b) = arsinh (f(b) -y + a) .

The probability of the data (Yxi)k=1...n, i=1...d lying in a certain volume element
of y-space (hyperrectangle with sides [yg‘l,y,fl}) is
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where f1, is the expectation value for feature k and o2 the variance.
With
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the likelihood is
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For the following, | will need the derivatives
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[11] » = iy f'(b).

Note that for f(b) = b, we have f’(b) = 1, and for f(b) = €®, f'(b) = f(b) = €.

3 Likelihood for Incremental Normalization

Here, incremental normalization means that the model parameters uq, ..., ., and
o2 are already known from a fit to a previous set of parrays, i.e. a set of reference
arrays. See Section 4 for the profile likelihood approach that is used if pq, ..., iy
and o2 are not known and need to be estimated from the same data. Versions
> 2.0 of the vsn package implement both of these approaches; in versions 1.X
only the profile likelihood approach was implemented, and it was described in the
initial publication [1].
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First, let us note that the likelihood [d is simply a product of independent terms for
different . We can optimize the parameters (a;, b;) separately foreach: =1,...,d.
From the likelihood [ we get the i-th negative log-likelihood
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This is what we want to optimize as a function of a; and b;. The optimizer benefits
from the derivatives. The derivative with respect to a; is
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and with respect to b;
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Here, | have introduced the following shorthand notation for the “intermediate

results” terms

Thi = h(Yri) — pone
1

Api = ———.
i V1+ Y2

Variables for these intermediate values are also used in the C code to organise the
computations of the gradient.

B N
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4

Profile Likelihood

If jt1,..., pn and o2 are not already known, we can plug in their maximum likeli-
hood estimates, obtained from optimizing LL for py,. .., i, and o
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into the negative log-likelihood. The result is called the negative profile log-
likelihood

21} PLL_—dlog(27r62)+—d—nZIng ZZlog1/1+

k‘ljl

Note that this no longer decomposes into a sum of terms for each j that are inde-
pendent of each other — the terms for different j are coupled through Equations EE]
and Ell. We need the following derivatives.
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3 Summary

Likelihoods, from Equations and Al

26
n oy L N (Wyri) — pwe)?
_LLizilog (270 )—i—ZT —nlog f(b; Zlog 1+Y3)
k=1 k 1
scale ; . .
residuals jacobian
nd nd
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h/—/ \,./ =
scale residuals

jacobian

The computations in the C code are organised into steps for computing the terms

“scale”, “residuals” and “jacobian".

Partial derivatives with respect to a;, from Equations [ and PX:
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Partial derivatives with respect to b;, from Equations EIJ and B4
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Note that the terms have many similarities — this is used in the implementation in
the C code.
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