
pwOmics - Pathway-based Integration of time-series

Omics Data using public database knowledge

Astrid Wachter
Medical Statistics, University Medical Center Göttingen, Germany

October 17, 2016

Contents

1 Introduction 1

2 Databases 2

3 Example dataset 6

4 Data pre-processing 7

5 Individual analysis 9
5.1 Downstream analysis . 10
5.2 Upstream analysis . 11

6 Consensus analysis 12
6.1 Intersection analysis . 13
6.2 Static consensus analysis . 14
6.3 Consensus-based dynamic analysis 15

7 Time profile clustering 16

8 Visualization 17

9 Session Information 22

1 Introduction

Characterization of biological processes can be performed in great detail
with the increased generation of omics data on different functional levels of

1

the cell. Especially interpretation of time-series omics data measured in par-
allel with different platforms is a complex but promising task, needing con-
sideration of time-independent combination of omics data and additionally
time-dependent signaling analysis. As each measurement technique shows
a certain bias and has natural limitations in identifying full signaling re-
sponses (yeger-lotem bridging 2009), such cross-platform analysis is an
up-to-date approach in order to connect biological implications on different
signaling levels. Using diverse data types is expected to provide a deeper
understanding of global biological functions and the underlying complex pro-
cesses (Kholodenko2012).
This is why computational data analysis tools for interpretation of data from
proteomics and transcriptomics measurements in parallel are needed.
pwOmics is a tool for pathway-based level-specific data comparison and
analysis of single time point or time-series omics data measured in parallel.
It provides individual analysis workflows for the different omics data sets
(see Figure 1) and in addition enables consensus analysis of omics data as
shown in the workflow overview in Figure 2.

Figure 1: pwOmics downstream and upstream analysis.

Up to this point analysis is restricted to human species. In future an ex-
pansion of the package is possible dependent on available online open access
database information.

2 Databases

As pwOmics is a package for data integration based on prior pathway and
transcription knowledge data, it is necessary to define the databases to work
with. Three different kinds of databases are necessary to do all analyses
steps:

1. Pathway databases:
The user can choose from Biocarta (nishimura biocarta 2001), Re-
actome (milacic annotating 2012; croft reactome 2014), PID (schaefer pid: 2009)

2

Figure 2: pwOmics workflow overview.

3

from the National Cancer Institute (NCI) and KEGG (kanehisa data 2014;
kanehisa kegg: 2000).

2. Protein-protein interaction (PPI) database:
STRING (franceschini string 2013).

3. Transcription factor (TF) - target gene databases:
The user can choose from ChEA (lachmann chea: 2010), Pazar (portales-casamar pazar 2009;
portales-casamar pazar: 2007) and/or decide to specify an own file
e.g. based on a commercial database.

The pathway database information is used to identify the pathways of the
differentially abundant proteins in the downstream analysis as well as up-
stream protein regulators of TFs in the upstream analysis. The PPI database
STRING (franceschini string 2013) was chosen to define the protein net
for the consensus analysis. The TF - target gene databases information is
necessary for the TF identification in pathways in the downstream analysis.
Additionally the upstream TFs of differentially expressed genes/transcripts
are identified in the upstream analysis based on this information.
In downstream analysis the pathway gene set information is used, whereas
in the upstream analysis also the pathway topology information is exploited.

The database information is downloaded internally via STRINGdb and An-
notationHub (Morgan) package. In case the author is interested also in
the metadata of the pathway database and TF - target database it can be
received by

> library(pwOmics)

> library(AnnotationHub)

> ah = AnnotationHub()

> #pathway databases

> pw = query(ah, "NIH Pathway Interaction Database")

> pw[1]

AnnotationHub with 1 record

snapshotDate(): 2016-10-11

names(): AH22329

$dataprovider: NIH Pathway Interaction Database

$species: Homo sapiens

$rdataclass: biopax

$title: BioCarta.owl.gz

$description: BioCarta BioPax file from NCI Pathway Interaction Database

4

$taxonomyid: 9606

$genome: hg19

$sourcetype: BioPax

$sourceurl: ftp://ftp1.nci.nih.gov/pub/PID/BioPAX/BioCarta.owl.gz

$sourcelastmodifieddate: 2009-09-09

$sourcesize: 338343

$tags: c("BioCarta", "BioPax", "Pathway Interaction Database")

retrieve record with 'object[["AH22329"]]'

> #TF-target databases

> chea = query(ah, "ChEA")

> chea[1]

AnnotationHub with 1 record

snapshotDate(): 2016-10-11

names(): AH22237

$dataprovider: ChEA

$species: NA

$rdataclass: data.frame

$title: chea-background.zip

$description: ChEA background file, containing transcription factor data t...

$taxonomyid: NA

$genome: NA

$sourcetype: Zip

$sourceurl: http://amp.pharm.mssm.edu/result/kea/chea-background.zip

$sourcelastmodifieddate: 2015-03-09

$sourcesize: 3655103

$tags: c("ChEA", "Transcription Factors")

retrieve record with 'object[["AH22237"]]'

> pazar = query(ah, "Pazar")

> pazar[1]

AnnotationHub with 1 record

snapshotDate(): 2016-10-11

names(): AH22238

$dataprovider: Pazar

$species: NA

$rdataclass: GRanges

$title: pazar_ABS_20120522.csv

$description: TF - Target Gene file from pazar_ABS_20120522

$taxonomyid: NA

$genome: NA

5

$sourcetype: CSV

$sourceurl: http://www.pazar.info/tftargets/pazar_ABS_20120522.csv

$sourcelastmodifieddate: 2012-06-04

$sourcesize: 120202

$tags: c("Pazar", "Transcription Factors")

retrieve record with 'object[["AH22238"]]'

In case you want to use TF - target gene information which is not part of
the mentioned databases but e.g. part of a commercial database, a user-
specified file can be used for the analysis. This file should be a ‘.txt’ file
with first column transcription factors and second column target gene sym-
bols without a header, e.g.:

GATA-4 HAMP
c-Jun IL18
NF-kappaB
TLR2
MYB LTB
FOXO1A
TGFBR1
...

The STRING PPI-information is downloaded automatically while processing
and analyzing the data: The STRINGdb package (franceschini string 2013)
is used here.

3 Example dataset

The example dataset used here for demonstration purposes is the one pre-
sented in (Waters2012), which comprises the mitogenic response of human
mammary epithelial cells to epidermal growth factor (EGF). This dataset in-
cludes whole genome time course microarray data measured with NimbleGen
whole genome 60-mer oligonucleotide arrays (Design Version 2003 10 27) at
time points 0, 1, 4, 8, 13, 18 and 24 hr after EGF stimulation. The comple-
mentary proteomics data was measured with LC-FTICR (Fourier-transform
ion cyclotron resonance-mass spectrometry coupled with advanced capillary
liquid chromatography) at time points 0.25, 1, 4, 8, 13, 18 and 24 hours
after EGF stimulation. Preprocessing of data was done as described in
(Waters2012) resulting in lists of significant genes and proteins for each
time point as log10 expression ratios relative to the time 0 hr controls.

6

4 Data pre-processing

pwOmics is a package for secondary data analysis, i.e. it needs already pre-
processed data as input for the analysis. The input required is

1. a list of all protein IDs measured,

2. a list of all gene/transcript IDs measured,

3. a list of differentially abundant proteins + log fold changes,

4. a list of differentially expressed genes/transcripts + log fold changes.

The IDs need to be gene symbols, both for protein and gene/transcript
data. In case time-series data is analyzed inputs 3. and 4. needs to be
specified for each time point. It is absolutely necessary, that all proteins
and genes/transcript in inputs 3. and 4. are part of the lists of all protein
IDs and all gene/transcript IDs, respectively.

The OmicsData object is the format used for data analysis in pwOmics pack-
age. It contains a list of four main elements:

1. OmicsD - here the omics data set, its description and the results are
stored

2. PathwayD - here the chosen pathway databases and the generated
Biopax model is stored

3. TFtargetsD - here the chosen TF-target gene databases and the com-
bined TF-target gene information is stored

4. Status - The status variable equals ‘1’ in case not all information
needed for the analysis is read in yet and ‘2’ after identification of
the first upstream/downstream signaling levels. As the enrichment
step is not necessarily part of the analysis and dependent on the path-
way database and the TF-target gene database the identification of
signaling molecules in further levels might not be successful, the sta-
tus variable is not used in the further analysis.

Thus pwOmics reads in the omics data set provided by the user to the first
element of the OmicsData object and further on stores all the results in this

7

part as well.

This is why the user has to provide the omics data set in a special format: A
list needs to be generated with a protein list named ‘P’ as first element and
a gene/transcript list named ‘G’ as second element. These lists contain as
first element a data frame with all (unique) protein IDs and gene/transcript
IDs in the first column, respectively, and as second element a list with data
frames for each time point of measurement. The data frames have two
columns with the first one containing the differentially abundant/expressed
proteins or genes/transcripts as gene symbols and the second column con-
taining the corresponding log fold changes, e.g.:

> data(OmicsExampleData)

> OmicsExampleData

Generated as in the following example:

OmicsExampleData = list(P = list(allPIDs,

list(PIDstp0.25, PIDstp1, PIDstp4, PIDstp8,

PIDstp13, PIDstp18, PIDstp24)),

G = list(allGIDs,

list(GIDstp1, GIDstp4, GIDstp8, GIDstp13,

GIDstp18, GIDstp24)))

> head(OmicsExampleData$P[[2]][[1]])

GeneSymbol X15min

1 MRPS17 0.6976049

2 RPS12 -1.0297977

3 SLC3A2 -1.2623327

4 RPL8 0.8304820

5 ACTB -2.4914461

6 ALDOA 0.8637013

In case the user only wants to analyze omics data from a single time point
just one data frame has to be specified.
The time points do not have to be the same for protein and gene/transcript
data and need to be specified when reading in the omics data set separately
via the ‘tp prots’ and ‘tp genes’ parameters of the ‘readOmics’ function.

> data_omics = readOmics(tp_prots = c(0.25, 1, 4, 8, 13, 18, 24),

+ tp_genes = c(1, 4, 8, 13, 18, 24),

8

+ OmicsExampleData,

+ PWdatabase = c("biocarta", "kegg", "nci",

+ "reactome"),

+ TFtargetdatabase = c("chea", "pazar"))

If data from a single timepoint measurement should be analyzed the user
simply assigns the experiment number ‘1’ for these parameters:

#for single time point data set:

omics = list(P = list(allPIDs, list(PIDs_1)),

G = list(allGIDs, list(GIDs_1)))

data_omics = readOmics(tp_prots = c(1),

tp_genes = c(1),

OmicsExampleData,

PWdatabase = c("biocarta", "kegg", "nci",

"reactome"),

TFtargetdatabase = c("chea", "pazar"))

Additionally the selected databases have to be specified.

The stored information can be easily accessed via the following functions:

> getOmicsTimepoints(data_omics)

> head(getOmicsallProteinIDs(data_omics))

> head(getOmicsallGeneIDs(data_omics))

> head(getOmicsDataset(data_omics, writeData = FALSE)[[1]])

5 Individual analysis

As shown in Figure 1 the analysis is based on an individual analysis of the
proteomic and the genomic/transcriptomic data. The downstream analysis
and upstream analysis are described in the following subsections.

Prior to that the database information has to be read in. In a first step the
TF- target information can be made accessible to the OmicsData object by:

data_omics = readTFdata(data_omics)

Via the ‘TF target path’ parameter the path of the user-specified file can be
given. This information can be used additionally to the selected database
content.

9

Secondly, the ‘readPWdata’ function takes the OmicsData object with the
provided information about the omics data set and the path of the prepared
‘.RData’ files from the pathway databases (see section 2) and automatically
generates the corresponding genelists of the pathway data if ‘loadgenelists
= FALSE’. In this step the automatic definition of internal differing IDs for
different pathway databases is necessary, which are stored in a new biopax
model in the OmicsData object.

data_omicsPW = readPWdata(data_omics,

loadgenelists = FALSE)

As the process of generating genelists with these IDs can take some time - es-
pecially for rather big databases such as Reactome milacic annotating 2012;
croft reactome 2014 - the genelists for the different databases are au-
tomatically stored in the working directory and can be reused in another
analysis when the corresponding path containing these files is given to the
‘readPWdata’ function as loadgenelists parameter.

data_omicsPW = readPWdata(data_omics,

loadgenelists = "Genelist_reactome.RData")

Automatically the information of the selected databases and/or the corre-
sponding user-specified file are merged. The file format (if this option is
used) should be exactly as specified in section 2.

5.1 Downstream analysis

The downstream analysis is starting with the provided proteomic data (ei-
ther single time point data or time-series data). The first step is the identi-
fication of the pathways in which the differentially abundant proteins play
a role. pwOmics performs this searching step on the basis of the provided
proteomic data set and the selected pathway database(s).

After reading in these information the user can follow the workflow for down-
stream analysis and identify the pathways in which the differentially abun-
dant proteins are present:

data_omics = identifyPWs(data_omicsPW)

In a next step pathway enrichment can be conducted. The user can specify
the multiple testing correction method as well as the significance level for
this step. In case of few identified pathways this might result in too few

10

pathways for further analysis. In this case the enrichment step should be
skipped.

data_omics = enrichPWs(data_omics, "BH", alpha = 0.05)

Following the workflow the next step is the identification of the transcription
factors in these (enriched) pathways, which is done with the information
provided by the chosen TF-target gene database. The user can choose if
only the enriched pathways or all pathways should be considered for further
analysis:

data_omics = identifyPWTFTGs(data_omics, only_enriched = FALSE)

For use of this function the working directory should contain the previously
generated genelists.

The results of the downstream analysis can be easily accessed by the follow-
ing functions:

getDS_PWs(data_omics)

getDS_TFs(data_omics)

getDS_TGs(data_omics)

#Access biopax model generated newly on basis of selected

#pathway databases:

getBiopaxModel(data_omics)

5.2 Upstream analysis

The upstream analysis is starting with the provided gene/transcript data
(either single time point data or time-series data). It first of all identifies
the upstream TFs of the differentially expressed genes/transcripts. This
step is done with the provided/selected information of TF-target gene pairs.

Given this information, the identification of upstream TFs can be done:

data_omics = identifyTFs(data_omics)

Similarly as in the downstream analysis also in the upstream analysis an
optional enrichment step can be conducted, but here on the TF level.

data_omics = enrichTFs(data_omics, "BH", alpha = 0.05)

11

Upstream of the (enriched) TFs the regulator proteins can be identified with
the following function:

data_omics = identifyRsofTFs(data_omics, only_enriched = FALSE,

noTFs_inPW = 1, order_neighbors = 10)

Again, the user can specify if only the enriched TFs or all TFs should be
considered for further analysis. The identification of upstream regulators is
done in the following way:

1. Identification of the pathways the previously identified TFs are part of.

2. Selection of pathways according to the user-specified parameter ‘noTFs inPW’:
Only those pathways are considered in further analysis with at least
this number of TFs in the pathway. Minimum number of TFs in the
pathway is 2.

3. Upstream regulators are identified for these TFs. This is done by find-
ing first for each TF the pathway neighborhood according to the user-
specified parameter ‘order neighbors’. This parameter specifies the
order of the identified pathway neighborhood. Then the intersection
of all identified neighborhoods for all TFs in a pathway is determined.
The resulting pathway node set is defined here as the set of regulator
proteins.

In case the pathways under consideration do not have pathway components
in the downloaded biopax model, this will be indicated with a warning. This
warning can be ignored by the user in regard to the following analysis steps.

The results of the upstream analysis can be accessed with the following
functions:

getUS_TFs(data_omics)

getUS_PWs(data_omics)

getUS_regulators(data_omics)

6 Consensus analysis

The consensus analysis combines the results from upstream and downstream
analysis by constituting in particular the comparative analysis of the results
of the two different data sets. The intersection analysis simply compares the

12

results of the separate upstream and downstream analysis. The static con-
sensus analysis enables setting up static consensus graphs for each time point
measured in parallel. Finally, the consensus-based dynamic analysis provides
the user with one final dynamic network obtained from the data changes over
time based on dynamic bayesian network inference. The consensus-based dy-
namic analysis is self-evidently only conductable with time-series data sets
measured for proteome and genome/transcriptome data in parallel.

6.1 Intersection analysis

The intersection analysis of pwOmics is a simple comparative analysis of
the results of upstream and downstream analysis. Thus, it enables a com-
parison of single time point data and time-series data, the latter also for
non-corresponding time points in the different data sets. The comparison is
possible on the three different functional levels considered in this package:
On the proteome level, the transcription factor level and gene/transcript
level.

getProteinIntersection(data_omics,

tp_prot = 4,

tp_genes = 4)

getTFIntersection(data_omics,

tp_prot = 4,

tp_genes = 1)

getGenesIntersection(data_omics,

tp_prot = 4,

tp_genes = 13)

These functions not only enable a comparison of the same timepoints on
the distinct levels, but for time-series data sets also for non-matching time
points:
With the time resolution of measuring omics data in most cases being pre-
defined by expected signaling changes and financial limitations the potential
in the interpretation of the results is strongly confined to the experimental
design decisions. Thus, measured signaling changes, which naturally consist
of a superposition of diverse time-scales of transcriptional and translational
processes and comprehend diverse frequency patterns (yosef impulse 2011),
are dependent on the sampling. This means for some of the signaling axes
it might be the case, that

� changes are not detected at all as their rate is too high,

� hopefully most are represented in the data and

13

� some might be so slow that their change is not considered significant
and thus are excluded from analysis.

As the corresponding signaling changes are not expected to be seen at the
same time point in proteome data and gene/transcript data it is necessary
to enable also the comparison of non-corresponding time points.
The possibility to compare such time points naturally cannot account for the
changes not captured during measurement, however, it gives the possibility
to consider also the time needed for regulatory control mechanisms in the
interpretation of the measurement results - even if this shows considerable
variations as well.
In case the user wants to compare the corresponding time points on the
three levels simultaneously he can do so by using the following function:

gettpIntersection(data_omics)

6.2 Static consensus analysis

The static consensus analysis goes one step ahead and integrates the results
gained from the comparative analysis of the corresponding time points to a
consensus net for each time point. The change of this consensus net over
time gives a first insight into the changes seen statically at the different time
points. However, the static consensus nets do not yet include information
gathered over time - as it is the case in the consensus-based dynamic analysis
(see section 6.3). This is why the static consensus analysis is also applicable
for single time point measurements.

The static consensus analysis is conducted by generation of a Steiner tree
(Kleinberg AlgorithmDesign 2006) on basis of matching proteins and
TFs identified in downstream and upstream analysis for each corresponding
time point. The underlying graph used is the protein-protein-interaction
(PPI) graph from the STRING database reduced to the connected nodes.
The matching proteins and TFs are considered as terminal nodes and are
connected via a shortest path-based approximation of the Steiner tree algo-
rithm (Takahashi Steiner 1980; Sadeghi2013) across the reduced PPI-
STRING-graph. Subsequently knowledge of TF-target gene pairs from the
chosen database is used to expand the graph with matching genes/transcripts
from both upstream and downstream analysis. In case the consensus graph
contains corresponding proteins and genes/transcripts, feedback loops are
added automically.

consensusGraphs = staticConsensusNet(data_omics)

14

6.3 Consensus-based dynamic analysis

Unlike the static consensus analysis, the consensus-based dynamic analysis
takes into consideration also the signaling changes over time by applying
dynamic bayesian network inference. The packages used for the consensus-
based dynamic analysis are longitudinal (Opgen longi 2006; rainer opgen-rhein inferring 2006)
to adjust the format of the data and the actual network inference part is
done via the ebdbNet (Rau ebdbnet 2010) package. This package includes
an iterative empirical Bayesian procedure with a Kalman filter estimating
the posterior distributions of the network parameters. The defined prior
structure of the network is used for a straightforward estimation of hyper-
parameters via an expectation maximization (EM)-like algorithm and the
dimension of the hidden states are determined via the singular value decom-
position (SVD) of a block-Hankel matrix.

The nodes included into the network inference step are nodes which are part
of the static consensus graphs from corresponding time points of the two dif-
ferent measurement types, i.e.

1. proteins identified in upstream and downstream analysis at the same
time points,

2. Steiner nodes identified via static consensus analysis,

3. TFs identified in upstream and downstream analysis at the same time
points and

4. genes/transcripts identified in upstream and downstream analysis at
the same time points.

To apply dynamic network inference a reasonable number of measurements
needs to be available. As in most cases of parallel protein and gene/transcript
measurements only very few corresponding time steps are available it is nec-
essary to artificially introduce additional time steps. This is done by gener-
ating smoothing splines applied on the log fold changes provided by the user
under the simplifying assumption of a gradual change of signaling between
the different time points.

This assumption, however, has to be applied consciously and carefully, as
there might be higher frequency signaling components superimposed (see for
a comprehensive analysis of temporal dynamics of gene expression (yosef impulse 2011)).

15

In theory a signal has to be sampled 2 times its maximal frequency in order to
be able to reconstruct it exactly from time discrete measurements (Nyquist-
Shannon sampling theorem (Shannon theorem 1949; Nyquist theorem 1928)).
This means only exact interpretation of those signaling axes are possible
that have a frequency which is smaller than half of the sampling frequency.
However, under certain preconditions on signal structure and the sampling
operator reconstruction of the original signal can be done with a lower sam-
pling rate (DBLP:journals/tit/BlumensathD09). This is an interesting
starting point for a more comprehensive dynamic analysis of the expected
signals and the sampling needed for an extensive data mining of omics data
sets measured in parallel, but exceeds the scope of this package.

The number of time points generated additionally via smoothing splines is
based on simulation results of ebdbNet analysis for median area under the
curve (AUC) values of receiver operating characteristic (ROC) curves: In
their results it was shown that a plateau at around 50 to 75 time points was
reached. Thus in pwOmics 50 time points are predicted with smoothing
splines in order to apply dynamic bayesian network inference on omics data
sets measured in parallel.

After generation of these time points a block-Hankel matrix of autocovari-
ances is constructed based on the time series abundance/expression data.
For this the user needs to provide the laghankel parameter, specifying the
maximum relevant time lag to be used in constructing the block-Hankel ma-
trix. With a singular value decomposition (see function ‘hankel’ of ebdbNet
package) the number of hidden states can be determined. Here, the user
can specify the cutoffhankel parameter to choose the cutoff to determine the
desired percent of total variance explained by the singular values. Addi-
tional parameters on convergence criteria and iterations performed can be
specified. For further details the user is referred to (Rau ebdbnet 2010).

library(ebdbNet)

library(longitudinal)

dynInferredNet = consDynamicNet(data_omics, consensusGraphs,

laghankel = 3,

cutoffhankel = 0.9)

7 Time profile clustering

An additional analysis option is clustering of co-regulation patterns over
time. It provides information about the signaling molecules with common

16

dynamic behaviour and thus allows to draw conclusions in terms of sig-
naling chronology. Time profile clustering is performed as soft clustering
based on the Mfuzz package (Mfuzz2012). The advantage of this clus-
tering method is that a protein, TF or gene/transcript can be assigned to
several clusters, thus reducing the sensitivity to noise and the information
loss hard clustering exhibits. It is implemented as fuzzy c-means algorithm
(Hathaway Pattern1986) and iteratively optimizes the objective func-
tion to minimize the variation of objects within the clusters. The user needs
to provide a ‘min.std’ threshold parameter if proteins or genes/transcripts
with a low standard deviation should be excluded. In addition the maximum
number of cluster centers which should be tested in the ‘minimum distance
between cluster centroid test’ has to by given. This number is used as initial
number to determine the data-specific maximal cluster number based on
the number of distinct data points. For more details see (Mfuzz2012) and
(schwammle simple 2010).

library(Mfuzz)

fuzzyClusters = clusterTimeProfiles(dynInferredNet,

min.std = 0,

ncenters = 12)

8 Visualization

To complement the results from the different comparisons and analyses (ac-
cessible via the ‘get...’ functions) the pwOmics package provides visualiza-
tion functions for the different analyses. The consensus graphs of the static
analysis for one or more corresponding time points can be plotted with the
following function (see Figures 3 and 4):

plotConsensusGraph(consensusGraphs, data_omics)

The consensus-based dynamic analysis result can be visualized as follows
(see Figure 5):

plotConsDynNet(dynInferredNet, sig.level = 0.65)

Here, the parameter ‘sig.level’ is the significance level used as cutoff for
plotting edges in the network and has to be specified in the range between
0 and 1. Furthermore the user can indicate if unconnected nodes should be
removed and provide additional igraph (igraph2006) layout parameters.

17

Consensus graph
 time 1

ESR1

SALL4

SPI1

VDR
MAPK14

NR3C1

EGR1

ELK1

JUND

SMAD2

YY1

STAT3

SRF

MITF

STAT6

JUNB

SP1

SMAD3

HIF1A

SMAD4

ATF3

CTNNB1

GATA2

TCF4

HTT

ARNT

RUNX2

STAT1

JUN

AR
ITGB1

FOXP3

MYC

ETS1

RELA

CREB1

FOS

EDN1

JUNB

AXUD1

BHLHB2

CTGF

CYR61

EREG

IL1A

NFKBIA

PLAU

DUSP5

PLAUR

PTGS2

DUSP1

IL6

MIG−6

TNFAIP3

TNNI2

IL8

EGR1

FOSB

consensus proteins
steiner node proteins
consensus TFs
consensus target genes

Figure 3: pwOmics static consensus graph: Time point 1 hr.

18

Consensus graph
 time 4

ESR1

SALL4

SPI1

VDR

NR3C1

EGR1

IRF1

ELK1

FOXA1

SMAD2

YY1STAT3

TP53

BACH1

MITF

STAT6

FOS

PPARD

FOXA2

SMAD3

HIF1A

FOXO3

PTK2

SMAD4

ATF3 CTNNB1E2F1

GATA2
TCF4

ARNT

RUNX2

STAT1

MAP3K7

JUN

AR

MYC

ETS1

RELA

CREB1

TGFA

KRT15

NDRG1

TM4SF1

ANGPTL4

GPR87

HS3ST2

IRF6

JUB

KRT6B

NFKB1

NP

PLEK2

RTN4

FGFR2

HMGA2

SPRY2

GLUL

ODC1
DAAM1

CEBPB

JAG2HSPA8

PCNA

FOXD1

PCDH7

ADAMTS1

LFNG

FCAR SDF2L1

BTEB1

EHD4

CDCP1

IFNGR2TNNI2

IL8

MMP1

HAS3

LYNX1

PLEKHC1

SOX4

TAGLN

HERPUD1

PB1

consensus proteins
steiner node proteins
consensus TFs
consensus target genes

Figure 4: pwOmics static consensus graph: Time point 4 hrs.

19

Dynamic consensus net

MAPK14

PTK2

IL1A

DUSP5

PTGS2

TNFAIP3

IL8

EGR1

consensus proteins
consensus genes

Figure 5: pwOmics dynamic network graph.

20

However, as the user can access the networks easily tkplot from the igraph
R package is a nice interactive graph drawing alternative. In addition plot
parameters can be easily changed as the result networks are of class ‘igraph’.

In order to plot the results from time profile clustering (see Figure 6) the
following function can be used:

plotTimeProfileClusters(fuzzyClusters)

The different colours represent the different clusters. The legend is only
shown if the number of genes and proteins is not too large. Otherwise the
user can easily access this information by having a look to the output of
the ‘clusterTimeProfiles’ function which provides information about cluster
centers, the number of data points in each cluster of the closest hard clus-
tering, cluster indices, and additional parameters explained in detail in the
‘mfuzz’ documentation. In the legend the attachments ‘ g’ and ‘ p’, respec-
tively, indicate, if the node originally derives from protein or gene/transcript
measurements.

0 5 10 15 20 25

−
2

−
1

0
1

2

Fuzzy c−means clustering
 with 3 centers

time

no
rm

al
iz

ed
 e

xp
re

ss
io

n

cluster 1
cluster 2
cluster 3

Figure 6: pwOmics time profile clusters.

21

9 Session Information

� R version 3.3.1 (2016-06-21), x86_64-pc-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C,
LC_TIME=en_US.UTF-8, LC_COLLATE=C, LC_MONETARY=en_US.UTF-8,
LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

� Base packages: base, datasets, grDevices, graphics, methods, parallel,
stats, utils

� Other packages: AnnotationHub 2.6.0, BiocGenerics 0.20.0,
pwOmics 1.6.0

� Loaded via a namespace (and not attached): AnnotationDbi 1.36.0,
Biobase 2.34.0, BiocInstaller 1.24.0, DBI 0.5-1,
GenomeInfoDb 1.10.0, GenomicRanges 1.26.0, IRanges 2.8.0,
KernSmooth 2.23-15, R6 2.2.0, RColorBrewer 1.1-2, RCurl 1.95-4.8,
RSQLite 1.0.0, Rcpp 0.12.7, S4Vectors 0.12.0, STRINGdb 1.14.0,
XML 3.98-1.4, XVector 0.14.0, biomaRt 2.30.0, bitops 1.0-6,
caTools 1.17.1, chron 2.3-47, curl 2.1, data.table 1.9.6, digest 0.6.10,
gdata 2.17.0, gplots 3.0.1, gsubfn 0.6-6, gtools 3.5.0, hash 2.2.6,
htmltools 0.3.5, httpuv 1.3.3, httr 1.2.1, igraph 1.0.1,
interactiveDisplayBase 1.12.0, magrittr 1.5, mime 0.5, plotrix 3.6-3,
plyr 1.8.4, png 0.1-7, proto 0.3-10, rBiopaxParser 2.14.0, shiny 0.14.1,
sqldf 0.4-10, stats4 3.3.1, tools 3.3.1, xtable 1.8-2, zlibbioc 1.20.0

22

	Introduction
	Databases
	Example dataset
	Data pre-processing
	Individual analysis
	Downstream analysis
	Upstream analysis

	Consensus analysis
	Intersection analysis
	Static consensus analysis
	Consensus-based dynamic analysis

	Time profile clustering
	Visualization
	Session Information

