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1 Introduction

High-throughput image-based screening (also termed high-content screening) has become a popular method in
systems biology, functional genomics and drug discovery. Data analysis of high-content screening can be divided
into two steps: image quantification and phenotypic analysis. Previously we have developed two R packages,
EBImage and imageHTS for image quantification. The current R package phenoDist is designed for measuring
the phenotypic distance between treatments (e.g., RNAi, small molecular), in order to identify phenotypes and
to group treatments into functional clusters. The package implements various methods to compute phenotypic
distance including scaling, principle component analysis, factor analysis [6], Kolmogorov-Smirnov statistics [5],
SVM (Support Vector Machine) supervised classification [2], SVM weight vector [3], and SVM classification
accuracy [8]. The package also provides functions for phenotype identification, treatment clustering and gene
enrichment analysis. In this vignette, we will demonstrate how phenoDist can be used for phenotypic distance
calculation, phenotype identification and phenotypic clustering in high-content screening data analysis.

2 Cell feature extraction with imageHTS

Before being analyzed with phenoDist, an image-based screen has to be setup as an imageHTS object and
analyzed with segmentation and cell feature extraction. A human kinome siRNA screen for HeLa cell morphology
is used as an example. Detailed description of the screen can be found in [4, 2]. The screen has been previously
analyzed; screen information and data can be accessed remotely through imageHTS at http://www.ebi.ac.

uk/huber-srv/cellmorph/kimorph/. We first initialize an imageHTS object to store the screen information.

> library('imageHTS')

> localPath <- file.path(tempdir(), 'kimorph')

> serverURL <- 'http://www.ebi.ac.uk/huber-srv/cellmorph/kimorph/'

> x <- parseImageConf('conf/imageconf.txt', localPath=localPath, serverURL=serverURL)

File "conf/imageconf.txt" read.

Number of plates= 3
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Number of replicates= 2

Number of wells= 384

Number of channels= 3

Number of spots= 1

> x <- configure(x, 'conf/description.txt', 'conf/plateconf.txt', 'conf/screenlog.txt')

> x <- annotate(x, 'conf/annotation.txt')

The cell images are then processed with segmentation and feature extraction. The following code is not run
in the vignette due to time constraints; we will later download the analysis results remotely.

> unames <- setdiff(getUnames(x), getUnames(x, content='empty'))

> segmentWells(x, uname=uname, segmentationPar='conf/segmentationpar.txt')

> extractFeatures(x, uname, 'conf/featurepar.txt')

3 Phenotypic distance calculation

Based on the cell feature data, one can design a phenotypic distance measure, to quantitatively indicate how
similar two phenotypes (when treated by RNAi for example) are. The phenotypic distance measurement can
subsequently be used to identify phenotypes based on the phenotypic distance between samples and negative
controls, and perform clustering analysis based on the phenotypic distance between samples [8]. Multiple
methods to compute phenotypic distance are implemented in this package. Here we show two examples: one by
PCA transformation and euclidean distance; the other by SVM classification accuracy.

> library('phenoDist')

> profiles <- summarizeWells(x, unames, 'conf/featurepar.txt')

> load(system.file('kimorph', 'selectedFtrs.rda', package='phenoDist'))

> pcaPDM <- PDMByWellAvg(profiles, selectedWellFtrs=selectedWellFtrs, transformMethod='PCA',

+ distMethod='euclidean', nPCA=30)

> svmAccPDM <- PDMBySvmAccuracy(x, unames, selectedCellFtrs=selectedCellFtrs, cross=5, cost=1,

+ gamma=2^-5, kernel='radial')

The above calculations are not run in the vignette due to time constraints, instead, we load a subset of the
pre-calculated svmAccPDM for demonstration purposes.

> load(system.file('kimorph', 'svmAccPDM_Pl1.rda', package='phenoDist'))

> dim(svmAccPDM_Pl1)

[1] 704 704

> svmAccPDM_Pl1[1:5,1:5]

001-01-A03 001-01-A04 001-01-A05 001-01-A06 001-01-A07

001-01-A03 NA 0.94 0.94 0.92 0.94

001-01-A04 0.94 NA 0.77 0.77 0.78

001-01-A05 0.93 0.78 NA 0.63 0.70

001-01-A06 0.91 0.78 0.64 NA 0.70

001-01-A07 0.93 0.78 0.70 0.67 NA

Rows and columns of the distance matrix are non-empty wells from the first plate of the three-plate library
with two technical replicates. Each value is the phenotypic distance measurement between cell populations
from the two corresponding wells, calculated by the SVM classification accuracy method. The distance matrix
is not completely symmetric due to random sampling in the SVM cross validation process, but the fluctuation
is negligible [8].

With the phenotypic distance matrix, we can assess the reproducibility of the two technical replicates of the
screen by comparing the distance between replicates and distance between non-replicates.

> ranking <- repDistRank(x, distMatrix=svmAccPDM_Pl1)

> summary(ranking)
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Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 1.00 5.00 34.54 30.62 621.00

Lower ranking suggests better reproducibility. When ranking equals 1, the treatment is most similar to its
technical replicates.

4 Phenotype identification

Phenotypic distance between a treatment and the negative control indicates how strong the phenotype is. With
the phenotype information, we can assess screen quality by calculating replicate correlation and separation
between positive and negative controls.

> pheno <- distToNeg(x, distMatrix=svmAccPDM_Pl1, neg='rluc')

> df <- data.frame(pheno=pheno,gene=getWellFeatures(x, uname=rownames(svmAccPDM_Pl1),

+ feature='GeneID'))

> df <- df[order(pheno, decreasing=T),]

> head(df)

pheno gene

001-02-B10 0.94875 ERBB4

001-02-O17 0.94250 AURKB

001-02-O04 0.93500 UBC

001-02-D04 0.93250 KIF23

001-02-P04 0.93000 UBC

001-02-B11 0.92500 COPB2

Shown are the five siRNA treatments with the most significant phenotypes (i.e., highest phenotypic distance
to the negative control). With imageHTS, one can view the cell images for certain siRNA treatments.

Replicate reproducibility can also be assessed by calculating correlation coefficient between replicates, and
by calculating Z’-factor, which indicates the separation between positive and negative controls [7].

> repCorr(x, pheno)

[1] 0.7709275

> ctlSeparatn(x, pheno, neg='rluc', pos='ubc', method='robust')

[1] 0.4221891

These two quality control metrics can be used to assess screen quality, or to evaluate different data analysis
methods.

5 Phenotypic clustering analysis

Treatments can be clustered based on the phenotypic distance matrix, which will help us understand their
functional relationship. Here we clusters the genes with hierarchical clustering.

> phenoCluster <- clusterDist(x, distMatrix=svmAccPDM_Pl1, clusterFun='hclust', method='ward')

The clustering can be analyzed for GO term enrichment to identify significant gene clusters with the R
package GOstats [1]. The following code is not run in the vignette due to time constraints.

> library('GOstats')

> GOEnrich <- enrichAnalysis(x, cl=cutree(phenoCluster, k=5), terms='GO', annotation='org.Hs.eg.db',

+ pvalueCutoff=0.01, testDirection='over', ontology='BP', conditional=TRUE)
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6 Session info

This document was produced using:

> toLatex(sessionInfo())

� R version 3.3.1 (2016-06-21), x86_64-pc-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Base packages: base, datasets, grDevices, graphics, grid, methods, parallel, stats, utils

� Other packages: Biobase 2.34.0, BiocGenerics 0.20.0, EBImage 4.16.0, RColorBrewer 1.1-2,
cellHTS2 2.38.0, e1071 1.6-7, genefilter 1.56.0, hwriter 1.3.2, imageHTS 1.24.0, locfit 1.5-9.1,
phenoDist 1.22.0, splots 1.40.0, vsn 3.42.0

� Loaded via a namespace (and not attached): AnnotationDbi 1.36.0, BiocInstaller 1.24.0,
Category 2.40.0, DBI 0.5-1, DEoptimR 1.0-6, GSEABase 1.36.0, IRanges 2.8.0, MASS 7.3-45,
Matrix 1.2-7.1, RBGL 1.50.0, RCurl 1.95-4.8, RSQLite 1.0.0, Rcpp 0.12.7, S4Vectors 0.12.0,
XML 3.98-1.4, abind 1.4-5, affy 1.52.0, affyio 1.44.0, annotate 1.52.0, bitops 1.0-6, class 7.3-14,
cluster 2.0.5, colorspace 1.2-7, fftwtools 0.9-7, ggplot2 2.1.0, graph 1.52.0, gtable 0.2.0, jpeg 0.1-8,
lattice 0.20-34, limma 3.30.0, munsell 0.4.3, mvtnorm 1.0-5, pcaPP 1.9-61, plyr 1.8.4, png 0.1-7,
prada 1.50.0, preprocessCore 1.36.0, robustbase 0.92-6, rrcov 1.4-3, scales 0.4.0, splines 3.3.1,
stats4 3.3.1, survival 2.39-5, tiff 0.1-5, tools 3.3.1, xtable 1.8-2, zlibbioc 1.20.0
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