
A transfer learning algorithm for spatial proteomics

Lisa M. Breckels and Laurent Gatto∗

Computational Proteomics Unit
University of Cambridge, UK

April 7, 2017

Abstract

This vignette illustrates the application of a transfer learning algorithm to assign proteins to
sub-cellular localisations. The knntlClassification algorithm combines primary experimental spatial
proteomics data (LOPIT, PCP, etc.) and an auxiliary data set (for example binary data based on
Gene Ontology terms) to improve the sub-cellular assignment given an optimal combination of
these data sources.

Keywords: Bioinformatics, organelle, spatial proteomics, machine learning, transfer learning

∗lg390@cam.ac.uk

1

mailto:lg390@cam.ac.uk

pRoloc transfer learning 2

Contents

1 Introduction 3

2 Preparing the auxiliary data 3
2.1 The Gene Ontology . 3

2.1.1 Preparing the query parameters . 4
2.1.2 Preparing the auxiliary data from the GO ontology 5
2.1.3 A note on reproducibility . 6

2.2 The Human Protein Atlas . 6
2.3 Protein-protein interactions . 9

3 Support vector machine transfer learning 11

4 Nearest neighbour transfer learning 11
4.1 Optimal weights . 11
4.2 Choosing weights . 15
4.3 Applying best theta weights . 17

5 Conclusions 17

http://bioconductor.org/packages/pRoloc

pRoloc transfer learning 3

1 Introduction

Our main data source to study protein sub-cellular localisation are high-throughput mass spectrometry-
based experiments such as LOPIT, PCP and similar designs (see [1] for an general introduction). Recent
optimised experiments result in high quality data enabling the identification of over 6000 proteins
and discriminate numerous sub-cellular and sub-organellar niches [2]. Supervised and semi-supervised
machine learning algorithms can be applied to assign thousands of proteins to annotated sub-cellular
niches [3, 4] (see also the pRoloc-tutorial vignette). These data constitute our main source for protein
localisation and are termed thereafter primary data.

There are other sources of data about sub-cellular localisation of proteins, such as the Gene Ontology
[5] (in particular the cellular compartment name space), quantitative features derived from protein
sequences (such as pseudo amino acid composition) or the Human Protein Atlas [6] to cite a few.
These data, while not optimised to a specific system at hand and, in the case of annotation feature,
not as reliable as our experimental data, constitute an invaluable, often plentiful source of auxiliary
information.

The aim of a transfer learning algorithm is to combine different sources of data to improve overall
classification. In particular, the goal is to support/complement the primary target domain (experimental
data) with auxiliary data (annotation) features without compromising the integrity of our primary data.
In this vignette, we describe the application of transfer learning algorithms for the localisation of proteins
from the pRoloc package, as described in

Breckels LM, Holden S, Wonjar D, Mulvey CM, Christoforou A, Groen A, Kohlbacker O,
Lilley KS and Gatto L (2015). “Learning from heterogeneous data sources: an application
in spatial proteomics.” bioRxiv.

Two algorithms were developed: a transfer learning algorithm based on the k-nearest neighbour clas-
sifier, coined kNN-TL hereafter, described in section 4, and one based on the support vector machine
algorithm, termed SVM-TL, described in section 3.

> library("pRoloc")

2 Preparing the auxiliary data

2.1 The Gene Ontology

The auxiliary data is prepared from the primary data’s features. All the GO terms associated to these
features are retrieved and used to create a binary matrix where a one (zero) at position (i, j) indicates
that term j has (not) been used to annotate feature i.

The GO terms are retrieved from an appropriate repository using the biomaRt package. The specific
Biomart repository and query will depend on the species under study and the type of features. The first
step is to prepare annotation parameters that will enable to perform the query. The pRoloc package

http://bioconductor.org/packages/pRoloc
http://bioconductor.org/packages/pRoloc
http://bioconductor.org/packages/biomaRt
http://bioconductor.org/packages/pRoloc

pRoloc transfer learning 4

provides a dedicated infrastructure to set up the query to the annotation resource and prepare the GO
data for subsequent analyses. This infrastructure is composed of:

1. define the annotation parameters based on the species and feature types;
2. query the resource defined in (1) to retrieve relevant terms and use the terms to prepare the

auxiliary data.

We will demonstrate these steps using a LOPIT experiment on Human Embryonic Kidney (HEK293T)
fibroblast cells [3], available and documented in the pRolocdata experiment package as andy2011.

> library("pRolocdata")

> data(andy2011)

2.1.1 Preparing the query parameters

The query parameters are stored as AnnotationParams objects that are created with the setAnnotationParams
function. The function will present a first menu with 215. Once the species has been selected, a set of
possible identifier types is displayed.

Figure 1: Selecting species (left) and feature type (right) to create an AnnotationParams instance for
the human andy2011 data.

It is also possible to pass patterns1 to match against the species ("Homo sapiens") and feature type
("UniProtKB/Swiss-Prot ID").

> ap <- setAnnotationParams(inputs =

+ c("Homo sapiens",

+ "UniProtKB/Swiss-Prot ID"))

Using species Homo sapiens genes (GRCh38.p5)

Using feature type UniProtKB/Swiss-Prot ID(s) [e.g. A0A075B6P5]

Connecting to Biomart...

> ap

1These patterns must match uniquely or an error will be thrown.

http://bioconductor.org/packages/pRoloc
http://bioconductor.org/packages/pRolocdata

pRoloc transfer learning 5

Object of class "AnnotationParams"

Using the 'ENSEMBL_MART_ENSEMBL' BioMart database

Using the 'hsapiens_gene_ensembl' dataset

Using 'uniprotswissprot' as filter

Created on Fri Apr 7 19:18:11 2017

The setAnnotationParams function automatically sets the annotation parameters globally so that the
ap object does not need to be explicitly set later on. The default parameters can be retrieved with
getAnnotationParams.

2.1.2 Preparing the auxiliary data from the GO ontology

The feature names of the andy2011 data are UniProt identifiers, as defined in the ap accession param-
eters.

> data(andy2011)

> head(featureNames(andy2011))

[1] "O00767" "P51648" "Q2TAA5" "Q9UKV5" "Q12797"

[6] "P16615"

The makeGoSet function takes an MSnSet class (from which the feature names will be extracted) or,
directly a vector of characters containing the feature names of interest to retrieve the associated GO
terms and construct an auxiliary MSnSet. By default, it downloads cellular component terms and does
not do any filtering on the terms evidence codes (see the makeGoSet manual for details). Unless passed
as argument, the default, globally set AnnotationParams are used to define the Biomart server and the
query2.

> andygoset <- makeGoSet(andy2011)

> andygoset

MSnSet (storageMode: lockedEnvironment)

assayData: 1371 features, 796 samples

element names: exprs

protocolData: none

phenoData: none

featureData

featureNames: O00767 P51648 ... O75312 (1371

total)

fvarLabels: Accession.No. Protein.Description

... UniProtKB.entry.name (10 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation:

- - - Processing information - - -

2The annotation parameters could also be passed explicitly through the params argument.

http://bioconductor.org/packages/pRoloc

pRoloc transfer learning 6

Constructed GO set using cellular_component namespace [Fri Apr 7 19:18:19 2017]

MSnbase version: 2.0.2

> exprs(andygoset)[1:7, 1:4]

GO:0016021 GO:0016020 GO:0005789 GO:0005783

O00767 1 1 1 1

P51648 1 1 1 1

Q2TAA5 1 1 1 1

Q9UKV5 1 1 1 1

Q12797 1 1 1 1

P16615 1 1 1 1

Q96SQ9 0 1 1 1

We now have a primary data set, composed of 1371 protein quantitative profiles for 8 fractions along
the density gradient and an auxiliary data set for 796 cellular compartment GO terms for the same 1371
features.

2.1.3 A note on reproducibility

The generation of the auxiliary data relies on specific Biomart server Mart instances in the Annotation-
Params class and the actual query to the server to obtain the GO terms associated with the features.
The utilisation of online servers, which undergo regular updates, does not guarantee reproducibility of
feature/term association over time. It is recommended to save and store the AnnotationParams and
auxiliary MSnSet instances. Alternatively, it is possible to use other Bioconductor infrastructure, such
as specific organism annotations and the GO.db package to use specific versioned (and thus traceable)
annotations.

2.2 The Human Protein Atlas

The feature names of our LOPIT experiment are UniProt identifiers, while the Human Protein Atlas
uses Ensembl gene identifiers. This first code chunk matches both identifier types using the Ensembl
Biomart server3.

> fvarLabels(andy2011)[1] <- "accession" ## for left_join matching

> ## convert protein accession numbers to ensembl gene identifiers

>

> library("biomaRt")

> mart <- useMart("ensembl",dataset="hsapiens_gene_ensembl")

>

> filter <- "uniprotswissprot"

> attrib <- c("uniprot_gn", "uniprotswissprot", "ensembl_gene_id")

> bm <- getBM(attributes = attrib,

3This section has been updated on the 30th November to reflect changes in Biomart.

http://bioconductor.org/packages/pRoloc
http://bioconductor.org/packages/GO.db

pRoloc transfer learning 7

+ filters = filter,

+ values = fData(andy2011)[, "accession"],

+ mart = mart)

> head(bm)

uniprot_gn uniprotswissprot ensembl_gene_id

1 A0FGR8 ENSG00000117868

2 A1L0T0 A1L0T0 ENSG00000105135

3 A2RRP1 A2RRP1 ENSG00000151779

4 A4FU01 A4FU01 ENSG00000014914

5 A6NCS6 A6NCS6 ENSG00000204128

6 A6NKG5 A6NKG5 ENSG00000254656

> ## HPA data

> library("hpar")

This is hpar version 1.16.0,

based on the Human Protein Atlas

Version: 15

Release data: 2016.04.11

Ensembl build: 78.38

See ’?hpar’ or ’vignette(’hpar’)’ for details.

> ## using old version for traceability

> setHparOptions(hpadata = "hpaSubcellularLoc14")

> hpa <- getHpa(bm$ensembl_gene_id)

> hpa$Reliability <- droplevels(hpa$Reliability)

> colnames(hpa)[1] <- "ensembl_gene_id"

>

> library("dplyr")

> hpa <- left_join(hpa, bm)

Joining, by = "ensembl gene id"

Warning in left join impl(x, y, byx, byy, suffix$x, suffix$y): joining character

vector and factor, coercing into character vector

> hpa <- hpa[!duplicated(hpa$uniprotswissprot),]

>

> ## match HPA/LOPIT

> colnames(hpa)[7] <- "accession"

> fd <- left_join(fData(andy2011), hpa)

Joining, by = "accession"

Warning in left join impl(x, y, byx, byy, suffix$x, suffix$y): joining character

vector and factor, coercing into character vector

> rownames(fd) <- featureNames(andy2011)

http://bioconductor.org/packages/pRoloc

pRoloc transfer learning 8

> fData(andy2011) <- fd

> stopifnot(validObject(andy2011))

>

> ## Let's get rid of features without any hpa data

> lopit <- andy2011[!is.na(fData(andy2011)$Main.location),]

Below, we deparse the multiple ’;’-delimited locations contained in the Human Protein sub-cellular
Atlas, create the auxiliary binary data matrix (only localisations with reliability equal to Supportive
are considered; Uncertain assignments are ignored - see http://www.proteinatlas.org/about/quality+
scoring#ifr for details) and filter proteins without any localisation data.

> ## HPA localisation

> hpalocs <- c(as.character(fData(lopit)$Main.location),

+ as.character(fData(lopit)$Other.location))

> hpalocs <- hpalocs[!is.na(hpalocs)]

> hpalocs <- unique(unlist(strsplit(hpalocs, ";")))

>

> makeHpaSet <- function(x, score2, locs = hpalocs) {
+ hpamat <- matrix(0, ncol = length(locs), nrow = nrow(x))

+ colnames(hpamat) <- locs

+ rownames(hpamat) <- featureNames(x)

+ for (i in 1:nrow(hpamat)) {
+ loc <- unlist(strsplit(as.character(fData(x)[i, "Main.location"]), ";"))

+ loc2 <- unlist(strsplit(as.character(fData(x)[i, "Other.location"]), ";"))

+ score <- score2[fData(x)[i, "Reliability"]]

+ hpamat[i, loc] <- score

+ hpamat[i, loc2] <- score

+ }
+ new("MSnSet", exprs = hpamat,

+ featureData = featureData(x))

+ }
>

> hpaset <- makeHpaSet(lopit,

+ score2 = c(Supportive = 1, Uncertain = 0))

> hpaset <- filterZeroRows(hpaset)

Removing 319 columns with only 0s.

> dim(hpaset)

[1] 668 18

> exprs(hpaset)[c(1, 6, 200), 1:3]

Endoplasmic reticulum Cytoplasm Vesicles

O00767 1 0 0

O95302 0 0 1

http://bioconductor.org/packages/pRoloc
http://www.proteinatlas.org/about/quality+scoring#ifr
http://www.proteinatlas.org/about/quality+scoring#ifr

pRoloc transfer learning 9

P06493 0 1 0

2.3 Protein-protein interactions

Protein-protein interaction data can also be used as auxiliary data input to the transfer learning algo-
rithm. Several sources can be used to do so directly from R:

• The PSICQUIC package provides an R interfaces to the HUPO Proteomics Standard Initiative
(HUPO-PSI) project, which standardises programmatic access to molecular interaction databases.
This approach enables to query great many resources in one go but, as noted in the vignettes, for
bulk interactions, it is recommended to directly download databases from individual PSICQUIC
providers.
• The STRINGdb package provides a direct interface to the STRING protein-protein interactions

database. This package can be used to generate a table as the one used below. The exact
procedure is described in the STRINGdb vignette and involves mapping the protein identifiers with
the map and retrieve the interaction partners with the get neighbors method.
• Finally, it is possible to use any third-party PPI inference results and adequately prepare these

results for transfer learning. Below, we will described this case with PPI data in a tab-delimited
format, as retrieved directly from the STRING database.

Below, we access the PPI spreadsheet file for our test data, that is distributed with the pRolocdata
package.

> ppif <- system.file("extdata/tabdelimited._gHentss2F9k.txt.gz", package = "pRolocdata")

> ppidf <- read.delim(ppif, header = TRUE, stringsAsFactors = FALSE)

> head(ppidf)

X.node1 node2 node1_string_id node2_string_id

1 NUDT5 IMPDH2 1861432 1850365

2 NOP2 RPL23 1858730 1858184

3 HSPA4 ENO1 1848476 1843405

4 RPS13 DKC1 1862013 1855055

5 RPL35A DDOST 1859718 1856225

6 RPL13A RPS6 1857955 1857216

node1_external_id node2_external_id neighborhood

1 ENSP00000419628 ENSP00000321584 0.000

2 ENSP00000382392 ENSP00000377865 0.000

3 ENSP00000302961 ENSP00000234590 0.000

4 ENSP00000435777 ENSP00000358563 0.462

5 ENSP00000393393 ENSP00000364188 0.000

6 ENSP00000375730 ENSP00000369757 0.000

fusion cooccurence homology coexpression

1 0 0 0 0.112

2 0 0 0 0.064

3 0 0 0 0.109

http://bioconductor.org/packages/pRoloc
http://bioconductor.org/packages/PSICQUIC
http://bioconductor.org/packages/STRINGdb
http://bioconductor.org/packages/pRolocdata

pRoloc transfer learning 10

4 0 0 0 0.202

5 0 0 0 0.000

6 0 0 0 0.931

experimental knowledge textmining combined_score

1 0.000 0.0 0.370 0.416

2 0.868 0.0 0.000 0.871

3 0.222 0.0 0.436 0.575

4 0.000 0.0 0.354 0.698

5 0.000 0.9 0.265 0.923

6 0.419 0.9 0.240 0.996

The file contains 18623 pairwise interactions and the STRING combined interaction score. Below, we
create a contingency matrix that uses these scores to encode and weight interactions.

> uid <- unique(c(ppidf$X.node1, ppidf$node2))

> ppim <- diag(length(uid))

> colnames(ppim) <- rownames(ppim) <- uid

>

> for (k in 1:nrow(ppidf)) {
+ i <- ppidf[[k, "X.node1"]]

+ j <- ppidf[[k, "node2"]]

+ ppim[i, j] <- ppidf[[k, "combined_score"]]

+ }
>

> ppim[1:5, 1:8]

NUDT5 NOP2 HSPA4 RPS13 RPL35A RPL13A CPS1

NUDT5 1 0 0 0 0.000 0.000 0

NOP2 0 1 0 0 0.000 0.000 0

HSPA4 0 0 1 0 0.000 0.000 0

RPS13 0 0 0 1 0.997 0.998 0

RPL35A 0 0 0 0 1.000 0.999 0

CTNNB1

NUDT5 0

NOP2 0

HSPA4 0

RPS13 0

RPL35A 0

We now have a contingency matrix reflecting a total of 19910 interactions between 1287 proteins.
Below, we only keep proteins that are also available in our spatial proteomics data, subset the PPI
and LOPIT data, create the appropriate MSnSet object, and filter out proteins without any interaction
scores.

> featureNames(andy2011) <- sub("_HUMAN", "", fData(andy2011)$UniProtKB.entry.name)

> cmn <- intersect(featureNames(andy2011), rownames(ppim))

> ppim <- ppim[cmn,]

http://bioconductor.org/packages/pRoloc

pRoloc transfer learning 11

> andy2011 <- andy2011[cmn,]

>

> ppi <- MSnSet(ppim, fData = fData(andy2011),

+ pData = data.frame(row.names = colnames(ppim)))

> ppi <- filterZeroCols(ppi)

Removing 178 columns with only 0s.

We now have two MSnSet objects containing respectively 520 primary experimental protein profiles
along a sub-cellular density gradient (andy2001) and 520 auxiliary interaction profiles (ppi).

3 Support vector machine transfer learning

The SVM-TL method descibed in [7] has not yet been incorporated in the pRoloc package. The code
implementing the method is currently available in its own repository:

https://github.com/ComputationalProteomicsUnit/lpsvm-tl-code

4 Nearest neighbour transfer learning

4.1 Optimal weights

The weighted nearest neighbours transfer learning algorithm estimates optimal weights for the different
data sources and the spatial niches described for the data at hand with the knntlOptimisation

function. For instance, for the human data modelled by the andy2011 and andygoset objects4 and the
10 annotated sub-cellular localisations (Golgi, Mitochondrion, PM, Lysosome, Cytosol, Cytosol/Nucleus,
Nucleus, Ribosome 60S, Ribosome 40S and ER), we want to know how to optimally combine primary
and auxiliary data. If we look at figure 2, that illustrates the experimental separation of the 10 spatial
classes on a principal component plot, we see that some organelles such as the mitochondrion or the
cytosol and cytosol/nucleus are well resolved, while others such as the Golgi or the ER are less so. In
this experiment, the former classes are not expected to benefit from another data source, while the
latter should benefit from additional information.

Let’s define a set of three possible weights: 0, 0.5 and 1. A weight of 1 indicates that the final results rely
exclusively on the experimental data and ignore completely the auxiliary data. A weight of 0 represents
the opposite situation, where the primary data is ignored and only the auxiliary data is considered.
A weight of 0.5 indicates that each data source will contribute equally to the final results. It is the
algorithm’s optimisation step task to identify the optimal combination of class-specific weights for a
given primary and auxiliary data pair. The optimisation process can be quite time consuming for many
weights and many sub-cellular classes, as all combinations (there are number of classesnumber of weights

possibilities; see below). One would generally defined more weights (for example 0, 0.25, 0.5, 0.75,

4We will use the sub-cellular markers defined in the markers.tl feature variable, instead of the default markers.

http://bioconductor.org/packages/pRoloc
http://bioconductor.org/packages/pRoloc
https://github.com/ComputationalProteomicsUnit/lpsvm-tl-code

pRoloc transfer learning 12

−4 −2 0 2

−
2

0
2

4
6

PC1 (40.59%)

P
C

2
(2

4.
45

%
)

●

● ●

●

●
●

●

●

●
●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●

●

●●

●

●
●●
●

●

●

●
●

●

●

●● ●

●●

●

●

●
●

●

●

●

●

● ●

●●

●●

●
●

●

●

●

●

●

●

●

●

●●
●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

● ●
●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●●
●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●
● ●

●

●
● ●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●
● ●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●● ●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Cytosol
Cytosol/Nucleus
ER
Golgi
Lysosome
Mitochondrion
Nucleus
PM
Ribosome 40S
Ribosome 60S
unknown

Figure 2: PCA plot of andy2011. The multivariate protein profiles are summarised along the two first
principal components. Proteins of unknown localisation are represented by empty grey points. Protein
markers, which are well-known residents of specific sub-cellular niches are colour-coded and form clusters
on the figure.

1 or 0, 0.33, 0.67, 1) to explore more fine-grained integration opportunities. The possible weight
combinations can be calculated with the thetas function:

• 3 classes, 3 weights

> head(thetas(3, by = 0.5))

Weigths:

(0, 0.5, 1)

[,1] [,2] [,3]

http://bioconductor.org/packages/pRoloc

pRoloc transfer learning 13

[1,] 0 0.0 0.0

[2,] 0 0.0 0.5

[3,] 0 0.0 1.0

[4,] 0 0.5 0.0

[5,] 0 0.5 0.5

[6,] 0 0.5 1.0

> dim(thetas(3, by = 0.5))

Weigths:

(0, 0.5, 1)

[1] 27 3

• 5 classes, 4 weights

> dim(thetas(5, length.out = 4))

Weigths:

(0, 0.333333333333333, 0.666666666666667, 1)

[1] 1024 5

• for the human andy2011 data, considering 4 weights, there are very many combinations:

> ## marker classes for andy2011

> m <- unique(fData(andy2011)$markers.tl)

> m <- m[m != "unknown"]

> th <- thetas(length(m), length.out=4)

Weigths:

(0, 0.333333333333333, 0.666666666666667, 1)

> dim(th)

[1] 1048576 10

The actual combination of weights to be tested can be defined in multiple ways: by passing a weights
matrix explicitly (as those generated with thetas above) through the th argument; or by defining the
increment between weights using by; or by specifying the number of weights to be used through the
length.out argument.

Considering the sub-cellular resolution for this experiment, we would anticipate that the mitochondrion,
the cytosol and the cytosol/nucleus classes would get high weights, while the ER and Golgi would be
assigned lower weights.

As we use a nearest neighbour classifier, we also need to know how many neighbours to consider
when classifying a protein of unknown localisation. The knnOptimisation function (see the pRoloc-
tutorial vignette and the functions manual page) can be run on the primary and auxiliary data sources
independently to estimate the best kP and kA values. Here, based on knnOptimisation, we use 3 and
3, for kP and kA respectively.

Finally, to assess the validity of the weight selection, it should be repeated a certain number of times
(default value is 50). As the weight optimisation can become very time consuming for a wide range
of weights and many target classes, we would recommend to start with a lower number of iterations,
pre-analyse the results, proceed with further iterations and eventually combine the optimisation results
data with the combineThetaRegRes function before proceeding with the selection of best weights.

http://bioconductor.org/packages/pRoloc

pRoloc transfer learning 14

> topt <- knntlOptimisation(andy2011, andygoset,

+ th = th,

+ k = c(3, 3),

+ fcol = "markers.tl",

+ times = 50)

The above code chunk would take too much time to be executed in the frame of this vignette. Below, we
pass a very small subset of theta matrix to minimise the computation time. The knntlOptimisation

function supports parallelised execution using various backends thanks to the BiocParallel package; an
appropriate backend will be defined automatically according to the underlying architecture and user-
defined backends can be defined through the BPPARAM argument5. Also, in the interest of time, the
weights optimisation is repeated only 5 times below.

> set.seed(1)

> i <- sample(nrow(th), 12)

> topt <- knntlOptimisation(andy2011, andygoset,

+ th = th[i,],

+ k = c(3, 3),

+ fcol = "markers.tl",

+ times = 5)

Removing 428 columns with only 0s.

Note: vector will be ordered according to classes: Cytosol Cytosol/Nucleus ER Golgi

Lysosome Mitochondrion Nucleus PM Ribosome 40S Ribosome 60S (as names are not explicitly

defined)

> topt

Object of class "ThetaRegRes"

Algorithm: theta

Theta hyper-parameters:

weights: 0 0.3333333 0.6666667 1

k: 3 3

nrow: 12

Design:

Replication: 5 x 5-fold X-validation

Partitioning: 0.2/0.8 (test/train)

Results

macro F1:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.8346 0.8511 0.8907 0.8825 0.9050 0.9310

best theta:

Cytosol Cytosol.Nucleus ER Golgi Lysosome

weight:0 2 0 2 2 2

5Large scale applications of this algorithms (fixme: add ref) were run on a cluster using an MPI backend defined with
SnowParams(256, type="MPI").

http://bioconductor.org/packages/pRoloc
http://bioconductor.org/packages/BiocParallel

pRoloc transfer learning 15

weight:0.33 0 1 2 2 0

weight:0.67 3 2 1 1 3

weight:1 0 2 0 0 0

Mitochondrion Nucleus PM Ribosome.40S

weight:0 1 0 0 0

weight:0.33 0 1 2 2

weight:0.67 2 3 3 2

weight:1 2 1 0 1

Ribosome.60S

weight:0 2

weight:0.33 2

weight:0.67 0

weight:1 1

The optimisation is performed on the labelled marker examples only. When removing unlabelled non-
marker proteins (the unknowns), some auxiliary GO columns end up containing only 0 (the GO-protein
association was only observed in non-marker proteins), which are temporarily removed.

The topt result stores all the result from the optimisation step, and in particular the observed theta
weights, which can be directly plotted as shown on figure 3. These bubble plots give the proportion of
best weights for each marker class that was observed during the optimisation phase. We see that the
mitochondrion, the cytosol and cytosol/nucleus classes predominantly are scored with height weights
(2/3 and 1), consistent with high reliability of the primary data. The Golgi and the ribosomal clusters
(and to a lesser extend the ER) favour smaller scores, indicating a substantial benefit of the auxiliary
data.

4.2 Choosing weights

A set of best weights must be chosen and applied to the classification of the unlabelled proteins (formally
annotated as unknown). These can be defined manually, based on the pattern observed in the weights
bubble plot (figure 3), or automatically extracted with the getParams method6. See ?getParams for
details and the favourPrimary function, if it is desirable to systematically favour the primary data (i.e.
high weights) when different weight combinations perform equally well.

> getParams(topt)

Cytosol Cytosol/Nucleus ER

0.6666667 0.6666667 0.3333333

Golgi Lysosome Mitochondrion

0.3333333 0.6666667 0.6666667

Nucleus PM Ribosome 40S

0.6666667 0.6666667 0.6666667

Ribosome 60S

0.3333333

6Note that the scores extracted here are based on the random subsest of weights.

http://bioconductor.org/packages/pRoloc

pRoloc transfer learning 16

Ribosome 60S

Ribosome 40S

PM

Nucleus

Mitochondrion

Lysosome

Golgi

ER

Cytosol/Nucleus

Cytosol

0 1/3 2/3 1

Classifier weight

C
la

ss

Figure 3: Results obtained from an extensive optimisation on the primary andy2011 and auxiliary
andygoset data sets, as produced by plot(topt). This figure is not the result for the previous code
chunk, where only a random subset of 10 candidate weights have been tested.

We provide the best parameters for the extensive parameter optimisation search, as provided by
getParams:

> (bw <- experimentData(andy2011)@other$knntl$thetas)

Cytosol Cytosol/Nucleus ER

0.6666667 0.6666667 0.3333333

Golgi Lysosome Mitochondrion

0.3333333 0.6666667 0.6666667

Nucleus PM Ribosome 40S

0.3333333 0.3333333 0.0000000

Ribosome 60S

0.3333333

http://bioconductor.org/packages/pRoloc

pRoloc transfer learning 17

4.3 Applying best theta weights

To apply our best weights and learn from the auxiliary data accordingly when classifying the unlabelled
proteins to one of the sub-cellular niches considered in markers.tl (as displayed on figure 2), we pass
the primary and auxiliary data sets, best weights, best k’s (and, on our case the marker’s feature variable
we want to use, default would be markers) to the knntlClassification function.

> andy2011 <- knntlClassification(andy2011, andygoset,

+ bestTheta = bw,

+ k = c(3, 3),

+ fcol = "markers.tl")

This will generate a new instance of class MSnSet, identical to the primary data, including the classi-
fication results and classifications scores of the transfer learning classification algorithm (as knntl and
knntl.scores feature variables respectively). Below, we extract the former with the getPrediction

function and plot the results of the classification.

> andy2011 <- getPredictions(andy2011, fcol = "knntl")

ans

Chromatin associated Cytosol

11 275

Cytosol/Nucleus ER

57 209

Endosome Golgi

12 66

Lysosome Mitochondrion

60 258

Nucleus PM

109 237

Ribosome 40S Ribosome 60S

18 59

Please read the pRoloc-tutorial vignette, and in particular the classification section, for more details on
how to proceed with exploration the classification results and classification scores.

5 Conclusions

This vignette describes the application of a weighted k-nearest neighbour transfer learning algorithm
and its application to the sub-cellular localisation prediction of proteins using quantitative proteomics
data as primary data and Gene Ontology-derived binary data as auxiliary data source. The algorithm
can be used with various data sources (we show how to compile binary data from the Human Protein
Atlas in section 2.2) and have successfully applied the algorithm [7] on third-party quantitative auxiliary
data.

http://bioconductor.org/packages/pRoloc

pRoloc transfer learning 18

Session information

All software and respective versions used to produce this document are listed below.

• R version 3.3.3 (2017-03-06), x86_64-pc-linux-gnu
• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils
• Other packages: AnnotationDbi 1.36.2, Biobase 2.34.0, BiocGenerics 0.20.0, BiocParallel 1.8.2,

BiocStyle 2.2.1, GO.db 3.4.0, IRanges 2.8.2, MLInterfaces 1.54.0, MSnbase 2.0.2,
ProtGenerics 1.6.0, Rcpp 0.12.10, S4Vectors 0.12.2, XML 3.98-1.6, annotate 1.52.1,
biomaRt 2.30.0, class 7.3-14, cluster 2.0.6, dplyr 0.5.0, hpar 1.16.0, knitr 1.15.1, mzR 2.8.1,
pRoloc 1.14.6, pRolocdata 1.12.0, xtable 1.8-2
• Loaded via a namespace (and not attached): BiocInstaller 1.24.0, DBI 0.6-1, DEoptimR 1.0-8,

FNN 1.1, MALDIquant 1.16.2, MASS 7.3-45, Matrix 1.2-8, MatrixModels 0.4-1,
ModelMetrics 1.1.0, R6 2.2.0, RColorBrewer 1.1-2, RCurl 1.95-4.8, RSQLite 1.1-2,
SparseM 1.76, affy 1.52.0, affyio 1.44.0, assertthat 0.1, backports 1.0.5, base64enc 0.1-3,
bitops 1.0-6, car 2.1-4, caret 6.0-73, codetools 0.2-15, colorspace 1.3-2, dendextend 1.5.2,
digest 0.6.12, diptest 0.75-7, doParallel 1.0.10, e1071 1.6-8, evaluate 0.10, flexmix 2.3-13,
foreach 1.4.3, fpc 2.1-10, gbm 2.1.3, gdata 2.17.0, genefilter 1.56.0, ggplot2 2.2.1, ggvis 0.4.3,
grid 3.3.3, gridExtra 2.2.1, gtable 0.2.0, gtools 3.5.0, highr 0.6, htmltools 0.3.5,
htmlwidgets 0.8, httpuv 1.3.3, hwriter 1.3.2, impute 1.48.0, iterators 1.0.8, jsonlite 1.3,
kernlab 0.9-25, lattice 0.20-35, lazyeval 0.2.0, limma 3.30.13, lme4 1.1-12, lpSolve 5.6.13,
magrittr 1.5, mclust 5.2.3, memoise 1.0.0, mgcv 1.8-17, mime 0.5, minqa 1.2.4, mlbench 2.1-1,
modeltools 0.2-21, munsell 0.4.3, mvtnorm 1.0-6, mzID 1.12.0, nlme 3.1-131, nloptr 1.0.4,
nnet 7.3-12, pbkrtest 0.4-7, pcaMethods 1.66.0, pls 2.6-0, plyr 1.8.4, prabclus 2.2-6,
preprocessCore 1.36.0, proxy 0.4-17, quantreg 5.29, randomForest 4.6-12, rda 1.0.2-2,
reshape2 1.4.2, rmarkdown 1.4, robustbase 0.92-7, rpart 4.1-10, rprojroot 1.2, sampling 2.8,
scales 0.4.1, sfsmisc 1.1-0, shiny 1.0.1, splines 3.3.3, stringi 1.1.3, stringr 1.2.0, survival 2.41-3,
threejs 0.2.2, tibble 1.3.0, tools 3.3.3, trimcluster 0.1-2, viridis 0.4.0, viridisLite 0.2.0,
vsn 3.42.3, whisker 0.3-2, yaml 2.1.14, zlibbioc 1.20.0

References

[1] Laurent Gatto, Juan Antonio Vizcáıno, Henning Hermjakob, Wolfgang Huber, and Kathryn S Lilley.
Organelle proteomics experimental designs and analysis. Proteomics, 2010. doi:10.1002/pmic.

201000244.

[2] A Christoforou, C M Mulvey, L M Breckels, A Geladaki, T Hurrell, P C Hayward, T Naake, L Gatto,
R Viner, A Martinez Arias, and K S Lilley. A draft map of the mouse pluripotent stem cell spatial
proteome. Nat Commun, 7:8992, 2016. doi:10.1038/ncomms9992.

http://bioconductor.org/packages/pRoloc
http://dx.doi.org/10.1002/pmic.201000244
http://dx.doi.org/10.1002/pmic.201000244
http://dx.doi.org/10.1038/ncomms9992

pRoloc transfer learning 19

[3] Lisa M Breckels, Laurent Gatto, Andy Christoforou, Arnoud J Groen, Kathryn S Lilley, and Matthew
W B Trotter. The effect of organelle discovery upon sub-cellular protein localisation. J Proteomics,
Mar 2013. doi:10.1016/j.jprot.2013.02.019.

[4] L Gatto, L M Breckels, T Burger, D J Nightingale, A J Groen, C Campbell, N Nikolovski, C M
Mulvey, A Christoforou, M Ferro, and K S Lilley. A foundation for reliable spatial proteomics data
analysis. Mol Cell Proteomics, 13(8):1937–52, Aug 2014. doi:10.1074/mcp.M113.036350.

[5] M Ashburner, C A Ball, J A Blake, D Botstein, H Butler, J M Cherry, A P Davis, K Dolinski, S S
Dwight, J T Eppig, M A Harris, D P Hill, L Issel-Tarver, A Kasarskis, S Lewis, J C Matese, J E
Richardson, M Ringwald, G M Rubin, and G Sherlock. Gene ontology: tool for the unification of
biology. the gene ontology consortium. Nat Genet, 25(1):25–9, May 2000. doi:10.1038/75556.

[6] Mathias Uhlen, Per Oksvold, Linn Fagerberg, Emma Lundberg, Kalle Jonasson, Mattias Fors-
berg, Martin Zwahlen, Caroline Kampf, Kenneth Wester, Sophia Hober, Henrik Wernerus, Lisa
Björling, and Fredrik Ponten. Towards a knowledge-based Human Protein Atlas. Nature biotech-
nology, 28(12):1248–1250, December 2010. URL: http://dx.doi.org/10.1038/nbt1210-1248, doi:
10.1038/nbt1210-1248.

[7] L M Breckels, S B Holden, D Wojnar, C M Mulvey, A Christoforou, A Groen, M W Trotter,
O Kohlbacher, K S Lilley, and L Gatto. Learning from heterogeneous data sources: An application
in spatial proteomics. PLoS Comput Biol, 12(5):e1004920, May 2016. doi:10.1371/journal.

pcbi.1004920.

http://bioconductor.org/packages/pRoloc
http://dx.doi.org/10.1016/j.jprot.2013.02.019
http://dx.doi.org/10.1074/mcp.M113.036350
http://dx.doi.org/10.1038/75556
http://dx.doi.org/10.1038/nbt1210-1248
http://dx.doi.org/10.1038/nbt1210-1248
http://dx.doi.org/10.1038/nbt1210-1248
http://dx.doi.org/10.1371/journal.pcbi.1004920
http://dx.doi.org/10.1371/journal.pcbi.1004920

pRoloc transfer learning 20

> setStockcol(paste0(getStockcol(), "80"))

> ptsze <- exp(fData(andy2011)$knntl.scores) - 1

> plot2D(andy2011, fcol = "knntl", cex = ptsze)

> setStockcol(NULL)

> addLegend(andy2011, where = "topright",

+ fcol = "markers.tl",

+ bty = "n", cex = .7)

−4 −2 0 2

−
2

0
2

4
6

PC1 (40.59%)

P
C

2
(2

4.
45

%
)

●

●

●

●

●

●

●

●

●

●

●

Cytosol
Cytosol/Nucleus
ER
Golgi
Lysosome
Mitochondrion
Nucleus
PM
Ribosome 40S
Ribosome 60S
unknown

Figure 4: PCA plot of andy2011 after transfer learning classification. The size of the points is propor-
tional to the classification scores.

http://bioconductor.org/packages/pRoloc

	1 Introduction
	2 Preparing the auxiliary data
	2.1 The Gene Ontology
	2.1.1 Preparing the query parameters
	2.1.2 Preparing the auxiliary data from the GO ontology
	2.1.3 A note on reproducibility

	2.2 The Human Protein Atlas
	2.3 Protein-protein interactions

	3 Support vector machine transfer learning
	4 Nearest neighbour transfer learning
	4.1 Optimal weights
	4.2 Choosing weights
	4.3 Applying best theta weights

	5 Conclusions

