
R/MAANOVA: An extensive R environment for the
Analysis of Microarray Experiments

Hao Wu, Hyuna Yang, Gary A. Churchill

October 17, 2016

Contents

1 Introduction 2

2 Installation 3
2.1 System requirements . 3
2.2 Obtaining R . 3
2.3 Installation - Windows(9x/NT/2000) . 3
2.4 Installation - Linux/Unix . 3

3 Data and function list 5

4 Preparing the input files 7
4.1 Preparing the data files . 7
4.2 Preparing the design file . 8
4.3 Preparing the covariate matrix . 9

5 A quick tour of the functions 10
5.1 CAMDA kidney experiment . 10
5.2 An Affymetrix experiment . 20

A Running R/maanova on computer cluster 25
A.1 System requirements . 25
A.2 System setup . 25
A.3 Install and test clusters in R . 26

B Basic Algorithms 27
B.1 ANOVA model for microarray experiment 27

B.1.1 Model . 27
B.1.2 Fixed model versus Mixed model 27

1

B.2 Hypothesis tests . 28
B.2.1 F test in matrix notation . 28
B.2.2 Building L matrix . 29
B.2.3 Four flavors of F-tests . 29

B.3 Data shuffling in permutation test . 30

C Frequently Asked Questions 31

1 Introduction

R/maanova is an extensible, interactive environment for the analysis of microarray ex-
periments. It is implemented as an add-on package for the freely available statistical
language R (www.r-project.org). MAANOVA stands for MicroArray ANalysis Of VAri-
ance. It provides a complete work flow for microarray data analysis including:

� Data quality checks - visualization and transformation

� ANOVA model fitting - both fixed and mixed effects models

� Calculating test statistics - F and Fs statistics

� Deriving p-value - using sampling and residual shuffling permutation approach

� Summarize the result - provide summary tables, graphics including volcano plot
and cluster analysis with bootstrapping

R/maanova can be applied to any microarray data but it is specially tailored for
multiple factor experimental designs. Mixed effects models are implemented to estimate
variance components and perform F and T tests for differential expressions.

2

2 Installation

2.1 System requirements

This package was developed under R 1.8.0 and updated under R 2.8.0. The programs
have been observed to work under Windows XP and Mac OS X 10.5. The memory
requirement depends on the size of the input data but a minimum of 256Mb memory is
recommended.

2.2 Obtaining R

R is available in the Comprehensive R Archive Network (CRAN). Visit
http://cran.r-project.org or a local mirror site. Source code is available for UNIX/LINUX,
and binaries are available for Windows, MacOS and many versions of Linux.

2.3 Installation - Windows(9x/NT/2000)

� Install R/maanova from Rgui

1. Start Rgui

2. Select Menu Packages, click Install package from local zip file. Choose
the file
maanova_*.tar.gz and click ’OK’.

� Install R/maanova outside Rgui

1. Unzip the maanova_*.tar.gz file into the directory $RHOME/library ($RHOME
is something like c:/Program Files/R/rw1081). Note that this should create
a directory
$RHOME/library/maanova containing the R source code and the compiled
dlls.

2. Start Rgui.

3. Type link.html.help() to get the help files for the maanova package added
to the help indices.

2.4 Installation - Linux/Unix

1. Go into the directory containing maanova_*.tar.gz.

2. Type R CMD INSTALL maanova to have the package installed in the standard lo-
cation such like /usr/lib/R/library. You will have to be the superuser to do
this. As a normal user, you can install the package in your own local directory. To
do this, type R CMD INSTALL -library=$LOCALRLIB maanova_*.tar.gz, where

3

$LOCALRLIB is something like /home/user/Rlib/. Then you will need to create a
file .Renviron in your home directory to contain the line R_LIBS=/home/user/Rlib
so that R will know to search for packages in that directory.

4

3 Data and function list

The following is a list of the available functions. For more information about the func-
tion usage use the online help by typing “?functionname” in R environment or typing
help.start() to get the html help in a web browser.

1. Sample data available with the package. Both include subset of original data, which
can be found at http://research.jax.org/faculty/churchill/software.

abf1 A 18-array Affymetrix experiment.

kidney A 6-array kidney data set from CAMDA (Critical Assessment of Microar-
ray Data Analysis).

2. File I/O

read.madata() Read microarray data from TAB delimited text file (typical input
for two-color array) or matrix type R object (such as output of exprs() from
normalization package, such as Affy, beadarray).

write.madata() Write microarray data to a TAB delimited text file.

3. Data quality check - for two-color arrays

arrayview() View the layout of the arrays

riplot() Ratio intensity plot for arrays

gridcheck() Plot grid-by-grid data comparison for arrays

dyeswapfilter() Flag the bad spots in dye swap experiment

4. Data transformation

transform.madata() Data transformation with options to use any of several meth-
ods

5. ANOVA model fitting

fitmaanova() Fit ANOVA model

resiplot() Residual plot on a given ANOVA model

6. Hypothesis testing

matest() F-test or T-test with permutation

adjPval() Calculate FDR adjusted P values given the result of matest()

7. Summarize the result

5

summarytable() Provide summary of matest(), such as P-value, adjusted P-value
and fold change

volcano() Volcano plot for summarizing F or T test results

8. Clustering

macluster() Bootstrap clustering.

consensus() Build consensus tree out of bootstrap cluster result

fom() Use figure of merit to determine the number of groups in K-means cluster

geneprofile() Plot the estimated relative expression for a given list of genes

9. Utility functions

fill.missing() Fill in missing data.

PairContrast() Make all possible pairwise contrast.

summary.madata() Summarize the data object.

subset.madata() Subsetting the data objects.

6

4 Preparing the input files

A data file and a design file should be prepared manually.

4.1 Preparing the data files

There should be only ONE data file. Most gridding software produces one file for each
slide. Thus especially when you use two-color array and have multiple files, you have to
combine these files to get one data file as a input for R/maanova.
Input data file Data file can be two kinds of type.

� matrix type R object : R/maanova can read matrix R object including the output
of exprs() from affy or beadarray package. Rowname of the matrix is used as probe
(clone) ID, and it is assumed that the data is started from the first column.

� TAB delimited text file : This can be a typical input file for two-color array.
R/maanova assumes that first colum is probe (clone) ID, and intensity data is
saved from the second column (i.e. probeid = 1, intensity = 2). Otherwise user
needs to specify the column number storing probe ID and column number from
which data starts by using probeid and intensity, respectively. When clone ID
is not provided, 1,2,. . . are used as a probe ID.

Input data file for N-day array For N-dye arrays, the N channel intensity data for
one array needs to be adjacent to each other (in consecutive columns). The order (dye1,
dye2, ...) must be consistent across all of the slides. You can put the spot flag as a
column after intensity data for each array. (Note that if you have flag, you will have
N+1 columns of data for each array. Again, this must be consistent for all arrays in
the data set.) If you have duplicated spots within one array, replicated measurements
of the same clone on the same array should appear in adjacent rows. This can be easily
done by sorting on probeid. The number of replicates must be constant for all genes. As
an example, you have four slides for a two-dye array experiment scanned by GenePix.
Then you will have four output files. Following the steps to create your data file:

1. Open your favorite spread sheet editor, e.g., MS Excel and create a new file.

2. Paste your clone ID, Gene names, Cluster ID and whatever information you want
to keep into the first several columns.

3. Open your first GenePix file in another window, copy the grid location into next
4 columns (you only need to do this once because they are all the same for four
slides).

4. Copy the two columns of foreground mean value (if you want to use it) and one
column of flag to the file in the order of Cy5, Cy3, flag.

7

5. Open your other 3 files and repeat step 4.

6. Select the whole file and sort the row according to Clone ID.

7. Save the file as tab delimited text file and you are done.

CAMDA kidney data file at http://research.jax.org/faculty/churchill/software
can provide a good example.
No missing in input The data file must be “full”, that is, all rows have to have the
same number of columns. Also data should not have any missing value. If so, you want
to either check the experiment to get the data or use fill.missing() function to fill in
the missing value.

Sometimes reading and trailing TAB in the text file can cause problems, depending
on the operating system. So the you should be careful about that. Sometimes the special
characters in gene description can cause reading problem. We don’t encourage you to
put the gene description in the data file. If you have to do that, you must be careful
(sometimes you need to remove the special characters manually).

4.2 Preparing the design file

Design file Design file can be three kinds of type.

� TAB delimited text file : should be saved at the working directory.

� data.frame R object

� matrix R object.

Size of design file The number of row in design file should be the number of array
times N (the number of dyes) (plus one for column header, if the design file is TAB
delimited text file, and header = T). The number of columns in this file depends on
the experimental design. You can specify all information related to experiment at the
designfile, but do not necessarily need to use all of them to specify your model. Among
factors in designfile, you can specify only some of them in a formula at fitmaanova().
Required fields in design file You must have an Array column in the design file
(column headers are case sensitive). For two-color (or multi-color) array, user needs two
more extra columns, Dye and Sample. Dye is reserved for the dye name, and Sample is
reserved to identify biological replicates and reference samples. Usually you should assign
each biological individual a unique sample number. Reference samples are represented
by zero(0). Reference sample are treated differently. They will always be treated as
fixed factor in the model and not involved in statistical tests.

Sample is not an required field in one-color array, however if the experiment has
technical replicate, Sample field should be included to get a valid result. Refer to Section
5.2 for an example.

8

Sample column in design file need to be continuous integer. All other columns can
be either integers or characters.
Names must not used in design file You must not have following columns in the
design file:

� Spot: reserved for spot effect

� Label: reserved for labeling effect

� covM: reserved for covariate matrix

4.3 Preparing the covariate matrix

Array specific covariate If you want to include array specific covariate, it should be
included in the design file and specified in the fitmaanova(). The covariate variable
should be an integer and the size should equal to the number of arrays.
Gene specific covariate If you have a gene specific covariate variable, you need to
prepare the covariate matrix, covM, and include it at the read.madata() and the formula
in fitmaanova(). covM can be either matrix R object or TAB delimited tex file. When
it is a delimited file, covM should have column name (if header = T) but no row name,
and the covariate variable size should equal to the size of datafile. Currently this only
works for the fixed model.
Refer to help(read.madata) and help(fitmaanova) for more information.

9

5 A quick tour of the functions

This section will go through a few demo scripts distributed with the package to help
users understand the function syntax and capabilities. The original data file can be
downloaded from:
http://research.jax.org/faculty/churchill/software

5.1 CAMDA kidney experiment

This is the kidney data from CAMDA (Critical Assessment of Microarray Data Analysis)
originally described by Pritchard et al. The web-site for CAMDA is http://www.camda.duke.edu.
It is a 24-array double reference design. Six samples are compared to a reference with
dye swapped and all arrays are duplicated. Flag for bad spots is included in the data.

Due to the limited size of vignette, data contains only first 300 genes, and you may not
reproduce the figures presented in the following sections. You can find the original data
file (in text format) at http://research.jax.org/faculty/churchill/software.
Read Data Suppose you download the data and design file, then this is how you read
the data.

R> kidney <- read.madata(datafile="kidney.txt",designfile="kidneydesign.txt",

arrayType='twoColor', metarow=1, metacol=2, col=3, row=4, probeid=5, intensity=7)

Data checking and transformation For two-color array, you need to check if the
data needs transformation. To do that you can try following data checking.

1. First load data into the workspace

R> data(kidney)

2. Then we do some data quality check

R> gridcheck(kidney.raw)

R> graphics.off()

gridcheck is used to check the hybridization and gridding quality within and cross
arrays. User should see near linear scatter plots in all grid for all arrays. This one
is not great but acceptable. The grid check plot for the first array is shown in
Figure 1. The red dots are for the spots with flags.

R> riplot(kidney.raw)

riplot stands for ratio-intensity plot. It is also called MA plot. The riplot for the
first array is shown in Figure 2.

R> arrayview(kidney.raw)

10

Figure 1: Grid check plot for the first array in kidney data

11

Figure 2: RI plot for the first array in kidney data

12

arrayview is used to view the spatial pattern of the arrays. The standardized log
ratios for all spots are shown in different colors. The arrayview for the first array
is shown in Figure 3.

Figure 3: Arrayview for the first array in kidney data

You will generate a lot of figures by doing gridcheck, riplot and arrayview. Use
graphics.off() to close all figures.

3. Transform the data using spatial-intensity joint loess.

R> kidney <- transform.madata(kidney.raw, method="rlowess")

There are several data transformation method. Which method to use depends on
the data. Read Cui et al.(2002) for detail. The transformation plot for the first
array is shown in Figure 4.

13

Figure 4: Joint lowess transformation on the first array for the kidney data

14

Model fitting To fit model, you need to specify formula, as well as random and co-

variate terms if one has. formula includes factors affecting the gene expression among
ones specified in designfile. This also can include interactions between upto two terms.
random and covariate terms should be included in formula. resiplot() shows the
residual plot after model being fitted.

R> fit.fix <- fitmaanova(kidney, formula = ~Dye+Array+Sample)

R> resiplot(kidney, fit.fix)

Test statistics To test how significantly a given term or terms affect to the gene expres-
sion level, R/maanova calculates F, Fs and Fss test statistics (Fss is for fixed model only
at this stage). You can include test statistics using test.method, in which the order is
F, Fs and Fss test statistics and 1 indicates including the corresponding test statistics.
As a default, R/maanova calculates F and Fs test statistics, and we recommend to use
Fs test statistics.

R/maanova provides permutation method to calculate the significance of each test
statistics. It implements residual shuffling and sample shuffling, and sample shuffling
is the current default. Permutation test could be very time consuming, especially for
the mixed effects models. The permutation test function can run on the Linux clusters
through the message passing interface (MPI). For the detail information regarding F
test and using computer cluster, please read appendix.

Test Sample effect in the model:

R> test.fix <- matest(kidney, fit.fix, term="Sample", n.perm=500)

FDR adjust p-value can be obtained using adjPval. It has four options; stepup

(Hochberg and Benjamini, 1990), adaptive (Benjamini and Hochberg, 2000), stepdown
(Westfall and Young, 1993) and jsFDR (Storey, 2002). jsFDR option uses qvalue package
by John Storey and the package should be installed before this option is used. FDR
adjusted P values:

R> test.fix <- adjPval(test.fix, method = 'jsFDR')

Summarize the result Each p-value or multiple testing adjusted p-value can be found
under matest() object, i.e., p-value for Fs test statistics is saved at test.fixFsPvalperm
and FDR adjusted p-value for Fs test statistics is saved at test.fixFsadjPvalperm.
summarytable() assembles fold-change, p-value and adjusted p-value (if it is available)
and the result is saved in ’summarytable.csv’ (default file name) under the working
directory. User also can save subset of result using certain threshold.

R> result = summarytable(test.fix)

R> summarytable(test.fix, method=c("Pvalperm"), test=c("F1", "Fs"),

whichTest=c("Fs.Pvalperm"), threshold=.1, outfile='shortsummarytable.csv')

15

After the F-test result is obtained, We can do volcano plot to visualize it. volcano()
function has options to choose the P-values to use and set up thresholds. We will use
tabulated P values for F and FDR adjusted permutation P values for other tests here. In
the plot, the red dots above the horizontal line represent the significant genes. Note that
the the flagged spot can be highlighted in the plot by providing highlight.flag=TRUE.

R> idx.fix <- volcano(test.fix,method=c("unadj", "fdrperm"),

highlight.flag=FALSE)

The volcano plot is shown in Figure 5. Note that the return variable of volcano

Figure 5: Volcano plot for kidney data - fixed effect model

contains the indices for significant genes.
Now we can do cluster bootstrapping and build consensus trees. Currently two cluster

methods are implemented; K-mean and hierarchical clustering. Hierarchical cluster could
be very sensitive to bootstrap if you have too many leaves on the cluster. Some small
disturbance on the data could change the whole tree structure. Suppose you have many

16

genes, say, more than 50, and you want to build a consensus tree from 100 bootstrapped
hierarchical trees. Then it is very likely that you will get a comb, that is, all leaves are
directly under root. But if you only have a few genes to cluster, it is working fine. So
we recommend to use K-means to cluster the genes and use hierarchical to cluster the
samples.

macluster is the function to do cluster bootstrapping and consensus is used to build
consensus trees (groups for K-means) from the bootstrap results.

R> cluster.kmean <- macluster(fit.fix, ,term="Sample",

idx.gene=idx.fix$idx.all,what="gene", method="kmean",

kmean.ngroups=5, n.perm=100)

R> con.kmean <- consensus(cluster.kmean, 0.7)

R> con.kmean$groupname

An expression profile plot will be generated for the consensus K-means result. The plot
is shown in Figure 6, and groupname shows the name of genes belonging to each group.

Now we can do hierarchical cluster on the samples. The consensus tree is shown in
Figure 7.

R> cluster.hc <- macluster(fit.fix, term="Sample",

idx.gene=idx.fix$idx.all,what="sample",

method="hc", n.perm=100)

R> con.hc <- consensus(cluster.hc)

17

1 2 3 4 5 6

−0
.5

0.
5

1.
5

Expression profile for group 1 (9 genes)

Sample index

E
xp

re
ss

io
n

le
ve

l

1 2 3 4 5 6

−1
.0

0.
0

1.
0

Expression profile for group 2 (10 genes)

Sample index
E

xp
re

ss
io

n
le

ve
l

1 2 3 4 5 6

−0
.5

0.
5

Expression profile for group 3 (19 genes)

Sample index

E
xp

re
ss

io
n

le
ve

l

1 2 3 4 5 6

−1
.0

0.
0

1.
0

Expression profile for group 4 (19 genes)

Sample index

E
xp

re
ss

io
n

le
ve

l

1 2 3 4 5 6

−0
.5

0.
5

Expression profile for group 5 (41 genes)

Sample index

E
xp

re
ss

io
n

le
ve

l

1 2 3 4 5 6

−1
.0

0.
0

1.
0

Not in any group (32 genes)

Sample index

E
xp

re
ss

io
n

le
ve

l

Figure 6: Expression profile plot for bootstrap K-means result, kidney data

18

0.0 0.5 1.0 1.5 2.0 2.5 3.0

H
C

 sam
ples (kidney data) − 80%

 C
onsensus tree

depth

sample1

sample2

sample3

sample4

sample5

sample6

1.00
0.84

0.89
0.84

Figure 7: 80% Consensus tree for bootstrapping hierarchical cluster on the samples,
kidney data

19

5.2 An Affymetrix experiment

In this section we consider abf1, a 18 Affymetrix array experiment. Data is from 3 mouse
strains, three individuals per strain and two arrays per individual. The experimental
design is shown in Figure 8.
Read Data To reduce the size of R/maanova package, we do not include .CEL files,

A B C

A1 A2 A3 B1 B2 B3 C1 C2 C3

Figure 8: 18-array Affymetrix experiment design

thus you can not try following code. However this is the typical example to read the data
from affy package. Suppose you have .CEL files and properly prepared TAB delimited
text file under the working directory.

R> library(affy)

R> beforeRma <- ReadAffy()

R> rmaData <- rma(beforeRma)

R> datafile <- exprs(rmaData)

R> data1 <- read.madata(datafile=datafile,designfile="design.txt")

You want to save the output of exprs() to avoid reading the .CEL file again.
Another datafile that R/maanova can read is a TAB delimited text file.

R> data <- data.frame(probeid=row.names(datafile),datafile)

R> write.table(data,"data.dat",sep="\t",row=F,quote=F)

R> data2 <- read.madata(datafile="data.dat", designfile="design.txt",

probeid=1, intensity=2)

Design File You must provide designfile information according to the order in which
affy package reads the .CEL files, and save it as a TAB delimited text file. If you
prepare designfile in advance, and want to read the .CEL file according to the order
of designfile, you need to specify them at the filename in ReadAffy(). Here is the
an example script that one can prepare designfile.

R> design.table <- data.frame(Array=row.names(pData(beforeRma)))

R> write.table(design.table,"design.txt",sep="\t",row=F,quote=F)

20

You can find ’design.txt’ file, containing ’Array’ field under the working directory. Open
your favorite spread sheet and complete the rest of information. In this example, ’Strain’
and ’Sample’ information are provided. Table 1 shows the designfile of abf1. Note
that abf1 has Sample column. Sample representing biological replicate is not a required
field in one color array, however it should be included in the designfile, when experi-
ment has technical replicates.

Table 1: Design file for abf1

Array Strain Sample
E111.CEL AJ 1
E112.CEL AJ 1
E113.CEL AJ 2
E114.CEL AJ 2
E115.CEL B6 3
E116.CEL B6 3

.

Another option to prepare designfile is making a data.frame (or matrix) R object,
and read it from R directly. This option is useful when the number of array is small.
Again, make it sure that the information is provided by the order that affy reads the
file.

R> design.table <- data.frame(Array=row.names(pData(beforeRma)));

R> Strain <- rep(c('AJ', 'B6', 'B6xAJ'), each=6)

R> Sample <- rep(c(1:9), each=2)

R> designfile <- cbind(design.table, Strain, Sample)

R> abf1 <- read.madata(datafile, designfile=designfile)

Model fitting This data has technical replicates, and thus Sample is treated as random
term. residplot() shows residual plot.

R> data(abf1)

R> fit.full.mix <- fitmaanova(abf1, formula = ~Strain+Sample,

random = ~Sample)

R> resiplot(abf1, fit.full.mix)

Test statistics To test Strain effect in the model:

R> ftest.all = matest(abf1, fit.full.mix, test.method=c(1,1),

shuffle.method="sample", term="Strain", n.perm= 100)

21

If you are interested in the pairwise comparison, you can specify the contrast matrix.
Suppose you want to compare strain 1 vs. 2 and strain 1 vs. 3. Then the corresponding
contrast matrix should have 2 rows (number of test) and three column (number of levels
of term). You may want to use PairContrast() to get all possible pairwise comparisons.

R> C = matrix(c(1,-1,0,1,0,-1), ncol=3, byrow=T)

R> C.all = PairContrast(3)

R> ftest.pair = matest(abf1, fit.full.mix, Contrast = C,

term="Strain", n.perm=100)

To derive FDR adjust p-value :

R> ftest.all = adjPval(ftest.all, method = 'jsFDR')

Summarize the result To get summary table, volcano plot and cluster :

R> summarytable(ftest.all)

R> summarytable(ftest.all, method=c("Pvalperm"), test =c("Fs"),

whichTest=c("Fs.Pvalperm"), threshold=.1, outfile='shortsummarytable.csv')

R> volcano(ftest.all)

R> idx.fix = volcano(ftest.pair)

R> cluster.kmean <- macluster(fit.full.mix, term="Strain",

idx.gene=idx.fix$comparison1$idx.Fs,what="gene", method="kmean",

kmean.ngroups=5, n.perm=100)

R> con.kmean <- consensus(cluster.kmean, 0.7)

R> con.kmean$groupname

R> cluster.hc <- macluster(fit.full.mix, term="Strain",

idx.gene=idx.fix$comparison1$idx.Fs,what="sample", method="hc", n.perm=100)

R> con.hc <- consensus(cluster.hc)

Note that ftest.pair contains two comparisons, thus volcano(ftest.pair) generates
two plots.

References

Y. Benjamin and Y. Hochberg. The control of the false discovery rate in multiple tesing
under dependency. Ann. Stat., 29:1665–8, 2001.

G.A. Churchill. Fundamentals of experimental design for cDNA microarrays. Nat Genet,
32(Suppl 2):490–5, 2002.

XQ Cui and G.A. Churchill. Statistical Tests for Differential Expression in cDNA Mi-
croarray Experiments. Genome Biology, 4:201, 2003.

22

XQ Cui, M.K. Kerr, and G.A. Churchill. Transformation for cDNA Microarray Data.
Statistical Applications in Genetics and Molecular Biology, 2(1, article 4), 2003.

XQ Cui, G. Hwang, J. Qiu, N. Blades, and G.A. Churchill. Improved Statistical Tests
for Differential Gene Expression by Shrinking Variance Components. Biostatistics, 6:
59–75, 2005.

J. Felsenstein. Confidence limits on phylogenies - An approach using the bootstrap.
Evolution, 39:783, 1985.

SAS institute Inc. SAS/STAT User’s Guide. SAS institute Inc., 1999.

M.K. Kerr and G.A. Churchill. Experimental design for gene expression microarrays.
Biostatistics, 2:183, 2001a.

M.K. Kerr and G.A. Churchill. Bootstrapping cluster analysis: Assessing the reliability
of conclusion from microarray experiments. PNAS, 98:8961, 2001b.

M.K. Kerr, M. Martin, and G.A. Churchill. Analysis of variance for gene expression
microarray data. J Computational Biology, 7:819, 2000.

M.K. Kerr, C.A. Afshari, L. Bennett, P. Bushel, J. Martinez, N. Walker, and G.A.
Churchill. Statistical analysis of a gene expression microarray experiment with repli-
cation. Statistica Sinica, 12:203, 2001.

M.K. Kerr, E.H. Leiter, L. Picard, and G.A. Churchill. Computational and Statistical
Approaches to Genomics, chapter Sources of Variation in Microarray Experiments.
Kluwer Academic Publishers, 2002.

R.C. Littell, G.A. Milliken, W.W. Stroup, and R.D. Wolfinger. SAS system for mixed
models. SAS institute Inc., 1996.

T Margush and F.R. McMorris. Consensus n-trees. Bulletin of Mathematical Biology,
43:239, 1981.

R.A. McLean, W.L. Sanders, and W.W. Stroup. A Unified Approach to Mixed Linear
Models. The American Statistician, 45:54–64, 1991.

C.C. Prichard, L. Hsu, J. Delrow, and P.S. Nelson. Project normal: defining normal
variance in mouse gene expression. PNAS, 98:13266, 2001.

S.R. Searle, G. Casella, and C.E. McCulloch. Variance Components. John Wiley and
sons, Inc., 1992.

V. Witkovsky. MATLAB algorithm mixed.m for solving Henderson’s mixed model equa-
tions. Technical Report, Inst. of Measurement Science, Slovak Academy of Science,
2001.

23

R.D. Wolfinger, G. Gibson, E.D. Wolfinger, L. Bennett, H. Hamadeh, P. Bushel, C. Ash-
fari, and R.S. Paules. Assessing gene significance from cDNA microarray expression
data via mixed models. J Comp Biol, 8:625, 2001.

Benjamin Y. and Hochberg Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J Royal Statistical Society, Series B(57):289,
1995.

Y.H. Yang, S. Dudoit, P. Luu, D.M. Lin, V. Peng, J. Ngai, and T.P. Speed. Normalization
for cDNA microarray data: a robust composite method addressing single and multiple
slide systematic variation. Nucleic Acids Research, 30:e15, 2002.

24

APPENDIX

A Running R/maanova on computer cluster

Due to the intensive computation needed by the permutation test (especially for mixed
effects models), parallel computing is implemented in R/maanova. The permutation
tests can run on multiple computer nodes at the same time and the toal computational
time will be greatly reduced.

Here I provide some tips for system and software configurations for running R/maanova
on clusters. My system is a 32-node beowulf cluster running Redhat linux 8.0 and R
1.8.0. You might encounter problems on different system following the steps.

A.1 System requirements

The computer cluster need to be Unix/Linux cluster with LAM/MPI installed. LAM/MPI
can be download from http://www.lam-mpi.org. R and R/maanova need to be installed
on all nodes (or they can be exported from a network file system).

The following R packages are required (you can obtain them from http://cran.r-

project.org:

� SNOW (Simple Network Of Workstations). Obtain this one from
http://www.stat.uiowa.edu/~luke/R/cluster/cluster.html.

� Rmpi

� serialize (this is required by Rmpi)

A.2 System setup

You might need to ask your system administrator to do this. But basically, you need
to install LAM/MPI software in your system with correct configuration. Here are some
tips for using rsh as remote shell program. If you want to use ssh, things will be slightly
different. I assume LAM/MPI has been installed on your system.

1. First thing to do is to check if you can “rsh” to other machine without being asked
for a password. If it does, add a file called “.rhosts” in your home directory. Each
line of the file should be mahine names and your user name. For a 2-node system,
that file could look like (assume my account name is hao):
node1 hao
node2 hao
Then set the mode of this file to be 644 by doing “chmod 644 .rhosts”. After
setting it up, do “rsh node1”. If it still asks for password, contact your system
administrator.

25

2. Configurate LAM to use rsh as the remote shell program by adding the following
lines in your startup script (.bashrc, .cshrc, etc.)
LAMRSH=”rsh”
export LAMRSH
(I found it’s okay if you don’t do this!)

3. Start LAM/MPI by typing ”lamboot -v”. You should see something like:
LAM 6.5.6/MPI 2 C++/ROMIO - University of Notre Dame
Executing hboot on n0 (node1 - 1 CPU)...
Executing hboot on n1 (node2 - 1 CPU)...
topology done

If you see some error messages, contact your system administrator.

A.3 Install and test clusters in R

Here are the steps to install and use clusters in R.

1. Install all required package in R.

2. Start R, load in snow by doing ”library(snow)”.

3. To test if cluster is working, do the following:

R> library(snow)

R> cl <- makeCluster(2) # to make a cluster with two nodes

R> # to see if your cluster is correct

R> clusterCall(cl, function() Sys.info()[c("nodename","machine")])

You’re supposed to see the node names and machine types like what I got here:

[[1]]

nodename machine

"node1" "i686"

[[2]]

nodename machine

"node2" "i686"

4. Check the random number generations by running

clusterCall(cl, runif, 3)

If there is correlation problem, you must install rsprng.

That’s it! Now you can start to enjoy the parallel computing.

26

B Basic Algorithms

I will briefly introduce the core algorithms implemented in R/maanova. For the details
please read related references.

B.1 ANOVA model for microarray experiment

B.1.1 Model

The ANOVA model for microarray experiment was first proposed in Kerr et al (2000).
Wolfinger et al (2001) proposed the 2-stage ANOVA model, which is the one used in
R/maanova.

Basically an ANOVA model for microarray experiment can be specified in two stages.
The first stage is the normalization model

yijkgr = µ+ Ai +Dj + ADij + rijkgr (1)

The term µ captures the overall mean. The rest of the terms capture the overall effects
due to arrays, dyes, and labeling reactions. The residual of the first stage will be used
as the inputs for the second stage.

The second stage models gene-specific effects:

rijkr = G+ AGi +DGj + V Gk + εijkr (2)

Here G captures the average effect of the gene. AG captures the array by gene variation.
DG captures the dye by gene variation. For one dye system there will be no DG effect in
the model. V G captures the effects for the experimental varieties. In the multiple factor
experiment such like Paigen’s 28-array experiment, V G should be further decoupled into
several factors.

B.1.2 Fixed model versus Mixed model

The fixed effect model assumes independence among all observations and only one source
of random variation. Although it is applicable to many microarray experiments, the
fixed effects model does not allow for multiple sources of variation nor does it account
for correlation among the observations that arise as a consequence of different layers of
variation.

The mixed model treats some of the factors in an experimental design as random
samples from a population. In other words, we assume that if the experiment were to
be repeated, the same effects would not be exactly reproduced, but that similar effects
would be drawn from a hypothetical population of effects. Therefore, we model these
factors as sources of variance. Usually Array effect (AG) should be treated as random
factor in ANOVA model. If you have biological replicates, it should be treated as random
as well.

27

B.2 Hypothesis tests

For statistical test in the fixed ANOVA model, there is only one variance term and all
factors in the model are tested against this variance. In mixed model ANOVA, there
are multiple levels of variances (biological, array, residual, etc.). The test statistics need
to be constructed based on the proper variations. I will skip the details here and the
interested reader can read Searle et al.

B.2.1 F test in matrix notation

Mathematically speaking, a Microarray ANOVA model for a gene can be expressed as
the following mixed effect linear model (without losing generality):

y = Xβ + Zu+ e (3)

Here, β and u are vectors for fixed-effects and random-effects parameters. X and Z are
design matrices. Note that fixed effects model is a special case for mixed effects model
with Z and u empty. An assumption is that u and e are normally distributed with

E

[
u
e

]
=

[
0
0

]
(4)

V ar

[
u
e

]
=

[
G 0
0 R

]
(5)

G and R are unknown variance components and are estimated using restricted maximum
liklihood (REML) method. The estimated β̂ and û are called best linear unbiased
estimator (BLUE) and best linear unbiased predictor (BLUP) respectively. Using
estimated G and R, the variance-covariance matrix of β̂ and û can be expressed as

Ĉ =

[
X ′R̂−1X X ′R̂−1Z

Z ′R̂−1X Z ′R̂−1Z + Ĝ−1

]−
(6)

where − denotes generalized inverse. After getting Ĉ, test statistics can be obtained
through the following formula. For a given hypothesis

H : L

[
β
u

]
= 0 (7)

F-statistic is:

F =

[
β̂
u

]′
L′(LĈL′)−L

[
β̂
u

]
q

(8)

Here q is the rank of L matrix.

28

Notice that for a fixed effect model where Z and u are empty, equation 8 will become

F =
(Lβ̂)′(L(X ′X)−L′)−1Lβ̂

qσ2
e

(9)

Here σ2
e is the error variance.

F approximately follows F-distribution with q numerator degrees of freedom. The
calculation of denominator degrees of freedom can be tricky and I will skip it here. If
there is not enough degree of freedom, rely on tabulated P-values can be risky and a
permutation test is recommended.

B.2.2 Building L matrix

In equation 8, L must be a matrix that Lβ is estimable. Estimability requires that the
rows of L must be the linear combinations of the rows of X. In R/maanova, the program
will automatically build L matrix for the term(s) to be tested. Normally in a mixed
effects model, only the fixed effect terms can be tested so the u portion of L contains all
0s.

Building L matrix can be difficult. If the term to be tested is orthogonal to all other
terms, L should contain all pairwise comparision for this term. That is, if the term has
N levels, L should be a (N − 1) by N matrix. If the tested term is confounded with any
other term, things will become complicated. R/maanova does the following to compute
L matrix:

1. calculate a generalized inverse of X ′X in such a way that the dependent columns
in X for the tested term are set to zero.

2. calculate (X ′X)−(X ′X). The result matrix span the same linear space as X and
it contains a lot of zeros.

3. Take the part of (X ′X)−(X ′X) corresponding to the tested term, remove the rows
with all zeros and the left part is L.

B.2.3 Four flavors of F-tests

R/maanova offers four F statistics (called F1, F2, F3 and Fs). Users have the option to
turn on or off any of them. The difference among them is the calculation of Ĉ matrix in
equation 8. Or in another word, the way to estimate the variance components R̂ and Ĝ.

Briefly speaking, F1 computes Ĉ matrix based on the variance components of a
single gene. It does not assume the common variance among the genes. F3 assumes
the common variance among the genes. The Ĉ matrix will be calculated based on the
global variance (mean variance of all genes). F2 test is a hybrid of F1 and F3. It uses a
weighted combination of global and gene-specific variance to compute the Ĉ matrix. Fs

uses the James-Stein estimator for R̂ and Ĝ and computes Ĉ matrix. For details about
four F-tests, please read Cui (2003b) and Cui (2003c).

29

B.3 Data shuffling in permutation test

Choosing proper data shuffling method is crucial to permutation test. R/maanova offers
two types of data shuffling, residual shuffling and sample shuffling.

Residual shuffling works only for fixed effects models. It is based on the assumption
of homogeneous error variance. It does the following:

1. Fit a null hypothesis ANOVA model and get the residuals

2. Shuffle residuals globally and make a new data set

3. Compute test statistics on the new data set

4. Repeat step 2 and 3 for a certain times

Residual shuffling is incorrect for mixed effect models, where you have multiple ran-
dom terms. For a mixed effects model, R/maanova will automatically choose sample
shuffling, which does the following:

1. For the given tested term, check if it is nested within any random term. If not, go
to step 4.

2. Choose the lowest random term (among the ones nesting with the tested term) as
the base for shuffling. If there is only one random term nesting with the tested
term, this random term will be the shuffle base.

3. Shuffle the sample names for the tested term in such a way that the same shuffle
base will corresponds to the same sample name.

4. If there is no nesting, shuffle the sample names for the tested term freely, keeping
all other terms unchanged. For multiple dye arrays, if Array and/or Dye effects are
included in the model, the array structure should be perserved, e.g., the sample
names on the same array should be shuffled together.

5. repeat step 3 or 4 for a certain times

Note that if the experiment size is small, the number of possible permutations will
not be sufficient. In that case, users will have to rely on the tabulated values.

30

C Frequently Asked Questions

1. Can R/maanova run on Windows XP?
R/maanova runs under R. So if there is a version of R for your operating system,
you can run R/maanova.

2. Can R/maanova handle missing data?
No. R/maanova does not tolerant missing, zero or negative intensity data. Missing
data will bring many problems. A gene with missing data will have a different
experimental design from others. That will cause problem in permutation tests.
So if you have any data missing, you must manually remove all data associated with
that gene and all its replicates. We suggest you use non-background subtracted
data as input.

3. Can R/maanova handle affymetric arrays?
Yes. The newest version of R/maanova (0.97) works for N-dye system. But the
data visualization and transformation functions are only working for 2-dye arrays
at this time. So for affymetric data, I suggest you to use some other packages (such
like affy package in BioConduction) to do the data transformation before loading
into R/maanova.

4. Can R/maanova handle unbalanced design?
Yes.

5. Can R/maanova output an ANOVA table for a model fitting?
Not at this time. We used to output an ANOVA table in the older version of
R/maanova. But as things getting complicated (with multiple factor design, mixed
effects models, etc.), it becomes more and more difficult to build an ANOVA table.
We might think about it in the future.

6. What does R/maanova do with flagged genes?
We did not do anything special to the flagged genes. They will be involved in data
transformation and analysis. We just keep the flag in there so that if some of your
significant genes were flagged, you need to put a question mark on it because the
significance could be from a scratch on the slide.

7. Why I have problems reading in data?
First of all data reading could behave differently in different operating system.
Your data file need to be simple (ANSI) text file. Sometimes special characters
(such like #, TAB, etc.) in the data file will cause problems. If you encounter
that problem, remove the columns contains a lot of special characters (usually gene
description) and try again. If you still have problem, contact the software author.

8. Why the estimated effects for a term don’t sum to zero?
When we build the design matrices we didn’t put sum to zero constraints so that

31

the estimated effects for a term will not sum to zero. But the relative values of
the estimates (which is the one we care about) will be correct.

9. Is there a graphical user interface for R/maanova?
Yes. We are developing a GUI for R/maanova using Java. It will be available in
the near future.

32

	Introduction
	Installation
	System requirements
	Obtaining R
	Installation - Windows(9x/NT/2000)
	Installation - Linux/Unix

	Data and function list
	Preparing the input files
	Preparing the data files
	Preparing the design file
	Preparing the covariate matrix

	A quick tour of the functions
	CAMDA kidney experiment
	An Affymetrix experiment

	Running R/maanova on computer cluster
	System requirements
	System setup
	Install and test clusters in R

	Basic Algorithms
	ANOVA model for microarray experiment
	Model
	Fixed model versus Mixed model

	Hypothesis tests
	F test in matrix notation
	Building L matrix
	Four flavors of F-tests

	Data shuffling in permutation test

	Frequently Asked Questions

