
lpsymphony - Integer Linear Programming in R

Vladislav Kim

October 17, 2016

Contents

1 Introduction 2

2 lpsymphony: Quick Start 2

3 Integer Linear Programming 4
3.1 Equivalent and Dual Formulations . 4
3.2 Solving the Dual Problem . 5
3.3 Methods in Integer Programming . 6

1

lpsymphony - Integer Linear Programming in R 2

1 Introduction

Package lpsymphony adapts Symphony1, an open-source mixed-integer linear programming (MILP) solver,
for use in R. This package is largely based on Rsymphony package distributed via CRAN 2. The point of
divergence, however, is the inclusion of sources for POSIX systems and DLLs for Windows, which facilitates
the installation of Symphony itself.

2 lpsymphony: Quick Start

The package exports lpsymphony solve LP() function, which provides a basic interface between the C code
of SYMPHONY and R. The user passes a vector with objective function coefficients, a constraint matrix and a
vector of applicable inequality signs (i.e. ≤, ≥, =, etc) as parameters. The function returns an optimal mixed
or pure integer solution.

A simple example of function maximization would be

max {3x1 + x2 + 3x3}

subject to

−x1 + 2x2 + x3 ≤ 4

4x2 − 3x3 ≤ 2

x1 − 3x2 + 2x3 ≤ 3

x1, x3 ∈ Z+

x2 ∈ R+

In this simple mixed-integer problem we have 2 variables that are integer-valued (x1 and x3) and a rational
variable (x3). Note that in general variables xi of MILP problem are non-negative and hence a ”+” subscript
on Z+ and R+.

To solve this maximization problem using lpsymphony include the package:

library("lpsymphony")

Define the vector of objective function coefficients. In this case (3, 1, 3):

obj <- c(3, 1, 3)

Define the constraint matrix (left-hand side coefficients):

mat <- matrix(c(-1, 0, 1, 2, 4, -3, 1, -3, 2), nrow = 3)

mat <- matrix(c(-1,2,1,0,4,-3,1,-3,2), nrow = 3)

Be careful not to mix up rows and columns! Here we create the matrix in the column-major order, i.e. reading
off the matrix entries column by column (so vertically, not horizontally). Note that the matrix in the comment

1https://projects.coin-or.org/SYMPHONY
2http://cran.r-project.org/web/packages/Rsymphony/index.html

https://projects.coin-or.org/SYMPHONY
http://cran.r-project.org/web/packages/Rsymphony/index.html

lpsymphony - Integer Linear Programming in R 3

is not the same as the problem’s constraint matrix. In fact it is its transpose. As explained in 3.1 this is the
constraint matrix of the dual problem.

Next indicate the inequality (or equality) signs:

dir <- c("<=", "<=", "<=")

Vector of right-hand side values:

rhs <- c(4, 2, 3)

This is a maximization problem, thus:

max <- TRUE

Important: indicate which variables are integer-valued and which are allowed to be rational. Possible options
are ”I” for integer, ”B” for binary, ”C” for continuous variable type.

types <- c("I", "C", "I")

To obtain the optimal solution call lpsymphony solve LP() function:

lpsymphony_solve_LP(obj, mat, dir, rhs, types = types, max = max)

$solution

[1] 5.00 2.75 3.00

##

$objval

[1] 26.75

##

$status

TM_OPTIMAL_SOLUTION_FOUND

0

Setting Lower and Upper Bounds

Another useful argument in lpsymphony is the bounds argument. The default lower and upper bounds are
zero and infinity, respectively.

To change the default bounds pass a list of upper-bound and lower-bound lists (argument bounds is a list of
lists). For instance, if you wish that all variables in the previous problem are continuous and between 1 and 5,
you can

bounds <- list(lower = list(ind = c(1,2,3), val = c(1,1,1)),

upper = list(ind = c(1,2,3), val = c(5,5,5)))

Now we need to change types to all continuous variables and pass bounds to lpsymphony solve LP:

types <- c("C", "C", "C")

lpsymphony_solve_LP(obj, mat, dir, rhs, types = types, max = max, bounds = bounds)

$solution

[1] 5.000000 2.857143 3.285714

##

lpsymphony - Integer Linear Programming in R 4

$objval

[1] 27.71429

##

$status

TM_OPTIMAL_SOLUTION_FOUND

0

It is interesting to see if there are any integer solutions in the interval [1,5] and if they could be naively retrieved
from rounding the previous solution:

types <- c("I", "I", "I")

lpsymphony_solve_LP(obj, mat, dir, rhs, types = types, max = max, bounds = bounds)

$solution

[1] 5 2 2

##

$objval

[1] 23

##

$status

TM_OPTIMAL_SOLUTION_FOUND

0

As one can see, integer solutions for x2 and x3 are not simply rounded values of the continuous case. It is
true in general that it is impossible to obtain an integer solution by simply rounding the solution up or down.

3 Integer Linear Programming

Given an objective function z = cTx, where c is a vector of objective coefficients, mixed-integer maximization
can be formulated as

max {cTx |Ax ≤ b, x ≥ 0, xi ∈ Z}

with the constraint matrix A and the right-hand-side vector b. Note that here xi are all pure integers. However,
in geneal some of xi can be rational numbers.

In a linear programming (LP) relaxation the integer requirement is loosened and variables are allowed to take
on continuous values to reach the first feasible solution or to conclude that the linear system doesn’t have
solutions. Solving an optimization problem by first treating x as floating point numbers and rounding off the
final result might produce a good estimate of integer solution. However, finding an exact solution with LP
relaxation does not produce accurate results in general.

3.1 Equivalent and Dual Formulations

Some care has to be taken in order to differentiate between an equivalent and dual formulations. An equivalent
way of stating the above maximization as a minimization problem would be to use the negative of c, vector of

lpsymphony - Integer Linear Programming in R 5

objective coefficients with constraint matrix A and RHS vector b same as above:

min {−cTx |Ax ≤ b, x ≥ 0, xi ∈ Z}

Every optimization problem can be viewed from 2 perspectives. The inversion of the objective of the problem,
not simply max ←→ min exchange and sign inversion in the objective function, leads to duality. The original
problem then is called a primal problem, while inversion of perspective gives rise to a dual problem.

A dual problem has a completely different interpretation than the primal and the following mathematical
considerations have to be made. For example, the dual of the above maximization task would be

min {bT y |AT y ≥ c, y ≥ 0, yi ∈ Z}

Note that the dual objective function is bT y with the primal right-hand side vector b acting as the (dual) vector
of objective coefficients. The dual constraint matrix is the transpose of the original (primal) constraint matrix
A and finally the dual right-hand side vector is the primal vector of objective coefficients c.

3.2 Solving the Dual Problem

Dual vector of objective coefficients is the primal RHS vector

obj_dual <- rhs # rhs fom the Quick Start example

The dual constraint matrix is the transpose of the primal A

mat_dual <- t(mat) # mat from the Quick Start example

Dual RHS vector is the primal objective vector

rhs_dual <- obj

Direction of dual signs is reversed with respect to primal

dir_dual <- c(">=", ">=", ">=")

Dual of maximization is minimization:

max_dual <- FALSE

Types can be used from the above program (in this case).

To obtain the optimal solution of the dual problem (minimization):

lpsymphony_solve_LP(obj_dual, mat_dual, dir_dual, rhs_dual, types = c("I","C","I"), max = max_dual)

$solution

[1] 2 3 5

##

$objval

[1] 29

##

$status

TM_OPTIMAL_SOLUTION_FOUND

0

lpsymphony - Integer Linear Programming in R 6

3.3 Methods in Integer Programming

The earliest approach to integer programming was Gomory’s method of cutting planes developed in 1958. The
basic principle is to solve the LP relaxation of the problem at the beginning of each iteration step and check
whether the solution is integer-valued. If the found solution is integral, the optimum is found. Otherwise,
continue by generating new inequalities that usually lead to the tightening (Fig. 1) of the relaxation and
then reoptimize. The process stops when all variables in the solution vector are integers. Fig. 1 illustrates
schematically how the candidate solution space of the LP shrinks upon addition of Gomory cuts.

Illustration of Gomory cutting plane method

P(A,b) = original space of candidate solutions

After Gomory cuts

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 1: Gomory cuts reduce the number of candidate solutions. P(A,b) is a polyhedron defined by the initial
set of constraints Ax ≤ b. The black dots indicate integers; dotted lines are Gomory cuts

Modern integer linear programming solvers, however, do not solely utilize cutting plane algorithm to solve
MILP problems. Symphony uses primarily branch and bound and branch and cut methods.

Branch and bound is a tree search algorithm that divides the initial problem into subproblems (Fig. 2) and
eliminates invalid solutions by local and global bound checking. Different variants of branch and bound exist.
Among implementation details are the following aspects: choice of the next tree node to be processed, the
way bounds are calculated, the way the tree branches out, etc.

lpsymphony - Integer Linear Programming in R 7

Problem

SP1

SP11

...
...

SP12

...
...

SP2

SP21

...
...

SP22

...
...

Figure 2: A sketch of a search tree generated by branch and bound. SP stands for subproblem

Branch and cut is a modification of branch and bound, in which cutting plane method is used to tighten LP
relaxations. With branch and cut one can generate cuts at the root of the tree (i.e. only in the beginning) or
at every iteration of branch and bound. Cut generation helps reduce the size of the tree and speeds up branch
and bound.

	1 Introduction
	2 lpsymphony: Quick Start
	3 Integer Linear Programming
	3.1 Equivalent and Dual Formulations
	3.2 Solving the Dual Problem
	3.3 Methods in Integer Programming

