
ggbio: visualization toolkits for genomic data

Tengfei Yin1

March 17, 2017

1tengfei.yin@sbgenomics.com

http://bioconductor.org/packages/ggbio

Contents

1 Getting started 3
1.1 Citation . 3
1.2 Introduction . 3

2 Case study: building your first tracks 4
2.1 Add an ideogram track . 4
2.2 Add a gene model track . 4

2.2.1 Introduction . 4
2.2.2 Make gene model from OrganismDb object . 5
2.2.3 Make gene model from TxDb object . 5
2.2.4 Make gene model from EnsDb object . 5
2.2.5 Make gene model from GRangesList object . 6

2.3 Add a reference track . 6
2.3.1 Semantic zoom . 6

2.4 Add an alignment track . 7
2.5 Add a variants track . 8
2.6 Building your tracks . 8

3 Simple navigation 9

4 Overview plots 10
4.1 how to make circular plots . 10

4.1.1 Introduction . 10
4.1.2 Buidling circular plot layer by layer . 10
4.1.3 Complex arragnment of plots . 12

4.2 How to make grandlinear plots . 12
4.2.1 Introduction . 12
4.2.2 Corrdinate genome . 13
4.2.3 Convenient plotGrandLinear function . 13
4.2.4 How to highlight some points? . 14

4.3 How to make stacked karyogram overview plots . 14
4.3.1 Introduction . 14
4.3.2 Create karyogram temlate . 14
4.3.3 Add data on karyogram layout . 15
4.3.4 Add more data using layout karyogram function . 16
4.3.5 More flexible layout of karyogram . 16

5 Link ranges to your data 17

6 Miscellaneous 18
6.1 Themes . 18

6.1.1 Plot theme . 18
6.1.2 Track theme . 19

1

ggbio:visualization toolkits for genomic data 2

7 Session Information 20

Chapter 1

Getting started

1.1 Citation

citation("ggbio")

1.2 Introduction

ggbio is a Bioconductor package building on top of ggplot2(), leveraging the rich objects defined by Bioconductor and
its statistical and computational power, it provides a flexible genomic visualization framework, extends the grammar of
graphics into genomic data, try to delivers high quality, highly customizable graphics to the users.

What it features

• autoplot function provides ready-to-use template for Bioconductor objects and different types of data.
• flexible low level components to use grammar of graphics to build you graphics layer by layer.
• layout transformation, so you could generate circular plot, grandlinear plot, stacked overview more easily.
• flexible tracks function to bind any ggplot2(), ggbio based plots.

3

http://bioconductor.org/packages/ggbio
http://bioconductor.org/packages/ggplot2
http://bioconductor.org/packages/ggplot2
http://bioconductor.org/packages/ggbio

Chapter 2

Case study: building your first tracks

In this chapter, you will learn

• how to add ideogram track.
• How to add gene model track.
• how to add track for bam files to visualize coverage and mismatch summary.
• how to add track for vcf file to visualize the variants.

2.1 Add an ideogram track

Ideogram provides functionality to construct ideogram, check the manual for more flexible methods. We build genome
hg19, hg18, mm10, mm9 inside, so you don’t have download it on the fly. When embed with tracks, ideogram show
zoomed region highlights automatically. xlim has special function here, is too changed highlighted zoomed region on
the ideogram.

library(ggbio)

p.ideo <- Ideogram(genome = "hg19")

p.ideo

library(GenomicRanges)

special highlights instead of zoomin!

p.ideo + xlim(GRanges("chr2", IRanges(1e8, 1e8+10000000)))

2.2 Add a gene model track

2.2.1 Introduction

Gene model track is one of the most frequently used track in genome browser, it is composed of genetic features CDS,
UTR, introns, exons and non-genetic region. In ggbio we support three methods to make gene model track:

• OrganismDb object: recommended, support gene symbols and other combination of columns as label.
• TxDb object: don’t support gene symbol labeling.
• GRangesList object: flexible, if you don’t have annotation package available for the first two methods, you could

prepare a data set parsed from gtf file, you can simply use it and plot it as gene model track.

4

http://bioconductor.org/packages/ggbio

ggbio:visualization toolkits for genomic data 5

2.2.2 Make gene model from OrganismDb object

OrganismDb object has a simpler API to retrieve data from different annotation resources, so we could label our transcripts
in different ways

library(ggbio)

library(Homo.sapiens)

class(Homo.sapiens)

##

data(genesymbol, package = "biovizBase")

wh <- genesymbol[c("BRCA1", "NBR1")]

wh <- range(wh, ignore.strand = TRUE)

p.txdb <- autoplot(Homo.sapiens, which = wh)

p.txdb

autoplot(Homo.sapiens, which = wh, label.color = "black", color = "brown",

fill = "brown")

To change the intron geometry, use gap.geom to control it, check out geom alignment for more control parameters.

autoplot(Homo.sapiens, which = wh, gap.geom = "chevron")

To collapse all features, use stat ’reduce’

autoplot(Homo.sapiens, which = wh, stat = "reduce")

Label could be turned off by setting it to FALSE, you could also use expression to make a flexible label combination from
column names.

columns(Homo.sapiens)

autoplot(Homo.sapiens, which = wh, columns = c("TXNAME", "GO"), names.expr = "TXNAME::GO")

2.2.3 Make gene model from TxDb object

TxDb doesn’t contain any gene symbol information, so we use tx id as default for label.

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

autoplot(txdb, which = wh)

2.2.4 Make gene model from EnsDb object

An alternative source for gene models are the EnsDb objects from the ensembldb package that provide gene annotations
provided from Ensembl. The ensembldb package provides a rich filtering system that allows to easily fetch specific
information (genes/transcripts) from an EnsDb. The EnsDb objects provide gene symbol annotations in the column
gene name. Alternatively, we could use tx id to label transcripts.

In the example below we plot the gene model of the gene PHKG2.

library(EnsDb.Hsapiens.v75)

ensdb <- EnsDb.Hsapiens.v75

autoplot(ensdb, GenenameFilter("PHKG2"))

http://bioconductor.org/packages/ensembldb
http://bioconductor.org/packages/ensembldb

ggbio:visualization toolkits for genomic data 6

Alternatively, we could specify a genomic region and fetch all transcripts overlapping that region (also partially, i.e. with
a part of an intron or an exon).

We specify "*" as strand, thus we query for genes encoded on both strands

gr <- GRanges(seqnames=16, IRanges(30768000, 30770000), strand="*")

autoplot(ensdb, GRangesFilter(gr, "overlapping"), names.expr="gene_name")

Also, we can spefify directly the gene ids and plot all transcripts of these genes (not only those overlapping with the
region)

autoplot(ensdb, GeneidFilter(c("ENSG00000196118", "ENSG00000156873")))

2.2.5 Make gene model from GRangesList object

Sometimes your gene model is not available as none of OrganismDb or TxDb object, it’s may be stored in a table, you
could simple parse it into a GRangeList object.

• each group indicate one transcripts
• names of group are shown as labels
• this object must has a column contains following key word: cds, exon, intron, and it’s not case senstitive. use type

to map this column. By default, we will try to parse ’type’ column.

Let’s make a sample GRangesList object which contains all information, and fake some labels.

library(biovizBase)

gr.txdb <- crunch(txdb, which = wh)

change column to 'model'

colnames(values(gr.txdb))[4] <- "model"

grl <- split(gr.txdb, gr.txdb$tx_id)

fake some randome names

names(grl) <- sample(LETTERS, size = length(grl), replace = TRUE)

grl

We get our example data ready, it meets all requirements, to make it a gene model track it’s pretty simple to use autoplot,
but don’t forget mapping because we changed our column names, asssume you store you model key words in column
’model’.

autoplot(grl, aes(type = model))

ggplot() + geom_alignment(grl, type = "model")

2.3 Add a reference track

To add a reference track, we need to load a BSgenome object from the annotation package. You can choose to plot the
sequence as text, rect, segment.

2.3.1 Semantic zoom

Here we introduce semantic zoom in ggbio, for some plots like reference sequence, we use pre-defined zoom level threshold
to automatically assign geom to the track, unless the geom is explicitly specified. In the example below, when your region
is too wide we show text ’zoom in to see text’, when you zoom into different level, it shows you different details. zoom

is a function we will introduce more in chapter 3 when we introduce more about navigation.

You can pass a zoom in factor into zoom function, if it’s over 1 it’s zooming out, if it’s smaller than 1 it’s zooming in.

http://bioconductor.org/packages/ggbio

ggbio:visualization toolkits for genomic data 7

library(BSgenome.Hsapiens.UCSC.hg19)

bg <- BSgenome.Hsapiens.UCSC.hg19

p.bg <- autoplot(bg, which = wh)

no geom

p.bg

segment

p.bg + zoom(1/100)

rectangle

p.bg + zoom(1/1000)

text

p.bg + zoom(1/2500)

To override a zemantic zoom threshold, you simply provide a geom explicitly.

library(BSgenome.Hsapiens.UCSC.hg19)

bg <- BSgenome.Hsapiens.UCSC.hg19

force to use geom 'segment' at this level

autoplot(bg, which = resize(wh, width = width(wh)/2000), geom = "segment")

2.4 Add an alignment track

ggbio supports visuaization of alignemnts file stored in bam, autoplot method accepts

• bam file path (indexed)
• BamFile object
• GappedAlignemnt object

It’s simple to just pass a file path to autoplot function, you can stream a chunk of region by providing ’which’ parameter.
Otherwise please use method ’estiamte’ to show overall estiamted coverage.

fl.bam <- system.file("extdata", "wg-brca1.sorted.bam", package = "biovizBase")

wh <- keepSeqlevels(wh, "chr17")

autoplot(fl.bam, which = wh)

geom ’gapped pair’ will show you alignments.

fl.bam <- system.file("extdata", "wg-brca1.sorted.bam", package = "biovizBase")

wh <- keepSeqlevels(wh, "chr17")

autoplot(fl.bam, which = resize(wh, width = width(wh)/10), geom = "gapped.pair")

To show mismatch proportion, you have to provide reference sequence, the mismatched proportion is color coded in the
bar chart.

library(BSgenome.Hsapiens.UCSC.hg19)

bg <- BSgenome.Hsapiens.UCSC.hg19

p.mis <- autoplot(fl.bam, bsgenome = bg, which = wh, stat = "mismatch")

p.mis

To view overall estimated coverage distribution, please use method ’estiamte’. ’which’ parameter also accept characters.
And there is a hidden value called ’..coverage..’ to let you do simple transformation in aes().

autoplot(fl.bam, method = "estimate")

autoplot(fl.bam, method = "estimate", which = paste0("chr", 17:18), aes(y = log(..coverage..)))

http://bioconductor.org/packages/ggbio

ggbio:visualization toolkits for genomic data 8

2.5 Add a variants track

This track is supported by semantic zoom.

To view your variants file, you could

• Import it using package VariantAnntoation as VCF object, then use autoplot

• Convert it into VRanges object and use autoplot.
• Simply provide vcf file path in autoplot().

library(VariantAnnotation)

fl.vcf <- system.file("extdata", "17-1409-CEU-brca1.vcf.bgz", package="biovizBase")

vcf <- readVcf(fl.vcf, "hg19")

vr <- as(vcf[, 1:3], "VRanges")

vr <- renameSeqlevels(vr, value = c("17" = "chr17"))

small region contains data

gr17 <- GRanges("chr17", IRanges(41234400, 41234530))

p.vr <- autoplot(vr, which = wh)

none geom

p.vr

rect geom

p.vr + xlim(gr17)

text geom

p.vr + xlim(gr17) + zoom()

You can simply overide geom

autoplot(vr, which = wh, geom = "rect", arrow = FALSE)

2.6 Building your tracks

tks <- tracks(p.ideo, mismatch = p.mis, dbSNP = p.vr, ref = p.bs, gene = p.txdb)

tks <- tracks(fl.bam, fl.vcf, bs, Homo.sapiens) ## default ideo = FALSE, turned on

tks <- tracks(fl.bam, fl.vcf, bs, Homo.sapiens, ideo = TRUE)

tks + xlim(gr17)

gr17 <- GRanges("chr17", IRanges(41234415, 41234569))

tks <- tracks(p.ideo, mismatch = p.mis, dbSNP = p.vr, ref = p.bg, gene = p.txdb,

heights = c(2, 3, 3, 1, 4)) + xlim(gr17) + theme_tracks_sunset()

tks

http://bioconductor.org/packages/VariantAnntoation

Chapter 3

Simple navigation

We try to provide a simple navigation API for your plot, so you could zoom in and zoom out, or go through view chunks
one by one.

• zoom: put a factor inside and you can zoom in or zoom out
• nextView: switch to next view
• prevView: switch to previous view

Navigation function also works for tracks plot too.

zoom in

tks + zoom()

Try following command yourself.

zoom in with scale

p.txdb + zoom(1/8)

zoom out

p.txdb + zoom(2)

next view page

p.txdb + nextView()

previous view page

p.txdb + prevView()

Don’t forget xlim accept GRanges object (single row), so you could simply prepare a GRanges to store the region of
interests and go through them one by one.

9

Chapter 4

Overview plots

Overview is a good way to show all events at the same time, give overall summary statiics for the whole genome.

In this chapter, we will introcue three different layouts that are used a lots in genomic data visualization.

4.1 how to make circular plots

4.1.1 Introduction

Circular view is a special layout in ggbio , this idea has been implemented in many different software, for example, the
Circos project. However, we keep the grammar of graphics for users, so mapping varialbes to aesthetics is very easy,
ggbio leverage the data structure defiend in Bioconductor to make this process as simple as possible.

4.1.2 Buidling circular plot layer by layer

Ok, let’s start to process some raw data to the format we want. The data used in this study is from this a paper1. In
this tutorial, We are going to

1. Visualize somatic mutation as segment.
2. Visualize inter,intro-chromosome rearrangement as links.
3. Visualize mutation score as point tracks with grid-background.
4. Add scale and ticks and labels.
5. To arrange multiple plots and legend. create multiple sample comparison.

All the raw data processed and stored in GRanges ready for use, you can simply load the sample data from biovizBase

data("CRC", package = "biovizBase")

layout circle is depreicated, because you have to set up radius and trackWidth manually with this function for creating
circular plot.

We now present the new circle function, it accepts Granges object, and users don’t have to specify radius, track
width, you just add them one by one, it will be automatically created from innter circle to outside, unless you specify
trackWidth and radius manually. To change default radius and trackWidth for all tracks, you simply put them in
ggbio function.

• rule of thumb seqlengths, seqlevels and chromosomes names should be exactly the same.
• to use circle, you have to use ggbio constructor at the beginning instead of ggplot.

1http://www.nature.com/ng/journal/v43/n10/full/ng.936.html

10

http://bioconductor.org/packages/ggbio
http://bioconductor.org/packages/ggbio
http://bioconductor.org/packages/biovizBase

ggbio:visualization toolkits for genomic data 11

You can use autoplot to create single track easily like

head(hg19sub)

autoplot(hg19sub, layout = "circle", fill = "gray70")

Hoever, the low level circle function leave you more flexibility to build circular plot one by one. Let’s start to add
tracks one by one.

Let’s use the same data to create ideogram, label and scale track, it layouts the circle by the order you created from
inside to outside.

p <- ggbio() + circle(hg19sub, geom = "ideo", fill = "gray70") +

circle(hg19sub, geom = "scale", size = 2) +

circle(hg19sub, geom = "text", aes(label = seqnames), vjust = 0, size = 3)

p

To simply override the setting, you can do it globally in ggbio function or individually circle function by specifying
parametters trackWidth and radius, you can also specify the global settin for buffer in between in ggbio like example
below.

p <- ggbio(trackWidth = 10, buffer = 0, radius = 10) + circle(hg19sub, geom = "ideo", fill = "gray70") +

circle(hg19sub, geom = "scale", size = 2) +

circle(hg19sub, geom = "text", aes(label = seqnames), vjust = 0, size = 3)

p

Then we add a ”rectangle” track to show somatic mutation, this will looks like vertical segments.

head(mut.gr)

p <- ggbio() + circle(mut.gr, geom = "rect", color = "steelblue") +

circle(hg19sub, geom = "ideo", fill = "gray70") +

circle(hg19sub, geom = "scale", size = 2) +

circle(hg19sub, geom = "text", aes(label = seqnames), vjust = 0, size = 3)

p

Next, we need to add some ”links” to show the rearrangement, of course, links can be used to map any kind of association
between two or more different locations to indicate relationships like copies or fusions. To create a suitable structure to
plot, please use another GRanges to represent the end of the links, and stored as elementMetadata for the ”start point”
GRanges. Here we named it as ”to.gr” and will be used later.

head(crc.gr)

Here in this example, we use ”intrachromosomal” to label rearrangement within the same chromosomes and use ”inter-
chromosomal” to label rearrangement in different chromosomes.

Get subset of links data for only one sample ”CRC1”

gr.crc1 <- crc.gr[values(crc.gr)$individual == "CRC-1"]

Ok, add a ”point” track with grid background for rearrangement data and map ‘y‘ to variable ”score”, map ‘size‘ to
variable ”tumreads”, rescale the size to a proper size range.

manually specify radius

p <- p + circle(gr.crc1, geom = "point", aes(y = score, size = tumreads),

color = "red", grid = TRUE, radius = 30) + scale_size(range = c(1, 2.5))

p

Finally, let’s add links and map color to rearrangement types. Remember you need to specify ‘linked.to‘ parameter to
the column that contain end point of the data.

specify radius manually

p <- p + circle(gr.crc1, geom = "link", linked.to = "to.gr", aes(color = rearrangements),

ggbio:visualization toolkits for genomic data 12

radius = 23)

p

All those code could be simply constructed by following code

p <- ggbio() +

circle(gr.crc1, geom = "link", linked.to = "to.gr", aes(color = rearrangements)) +

circle(gr.crc1, geom = "point", aes(y = score, size = tumreads),

color = "red", grid = TRUE) + scale_size(range = c(1, 2.5)) +

circle(mut.gr, geom = "rect", color = "steelblue") +

circle(hg19sub, geom = "ideo", fill = "gray70") +

circle(hg19sub, geom = "scale", size = 2) +

circle(hg19sub, geom = "text", aes(label = seqnames), vjust = 0, size = 3)

p

4.1.3 Complex arragnment of plots

In this step, we are going to make multiple sample comparison, this may require some knowledge about package grid
and gridExtra. We will introduce a more easy way to combine your graphics later after this.

We just want 9 single circular plots put together in one page, since we cannot keep too many tracks, we only keep
ideogram and links. Here is one sample.

grl <- split(crc.gr, values(crc.gr)$individual)

need "unit", load grid

library(grid)

crc.lst <- lapply(grl, function(gr.cur){
print(unique(as.character(values(gr.cur)$individual)))

cols <- RColorBrewer::brewer.pal(3, "Set2")[2:1]

names(cols) <- c("interchromosomal", "intrachromosomal")

p <- ggbio() + circle(gr.cur, geom = "link", linked.to = "to.gr",

aes(color = rearrangements)) +

circle(hg19sub, geom = "ideo",

color = "gray70", fill = "gray70") +

scale_color_manual(values = cols) +

labs(title = (unique(values(gr.cur)$individual))) +

theme(plot.margin = unit(rep(0, 4), "lines"))

})

We wrap the function in grid level to a more user-friendly high level function, called arrangeGrobByParsingLegend.
You can pass your ggplot2 graphics to this function , specify the legend you want to keep on the right, you can also
specify the column/row numbers. Here we assume all plots we have passed follows the same color scale and have the
same legend, so we only have to keep one legend on the right.

arrangeGrobByParsingLegend(crc.lst, widths = c(4, 1), legend.idx = 1, ncol = 3)

4.2 How to make grandlinear plots

4.2.1 Introduction

Let’s use a subset of PLINK output (https://github.com/stephenturner/qqman/blob/master/plink.assoc.txt.gz) as our
example test data.

https://github.com/stephenturner/qqman/blob/master/plink.assoc.txt.gz

ggbio:visualization toolkits for genomic data 13

snp <- read.table(system.file("extdata", "plink.assoc.sub.txt", package = "biovizBase"),

header = TRUE)

require(biovizBase)

gr.snp <- transformDfToGr(snp, seqnames = "CHR", start = "BP", width = 1)

head(gr.snp)

change the seqname order

require(GenomicRanges)

gr.snp <- keepSeqlevels(gr.snp, as.character(1:22))

seqlengths(gr.snp)

need to assign seqlengths

data(ideoCyto, package = "biovizBase")

seqlengths(gr.snp) <- as.numeric(seqlengths(ideoCyto$hg18)[1:22])

remove missing

gr.snp <- gr.snp[!is.na(gr.snp$P)]

transform pvalue

values(gr.snp)$pvalue <- -log10(values(gr.snp)$P)

head(gr.snp)

done

The data is ready, we need to pay attention

• if seqlengths is missing, we use data range, so the chromosome length is not accurate
• use seqlevel to control order of chromosome

4.2.2 Corrdinate genome

In autoplot, argument coord is just used to transform the data, after that, you can use it as common GRanges, all
other geom/stat works for it.

autoplot(gr.snp, geom = "point", coord = "genome", aes(y = pvalue))

However, we recommend you to use more powerful function plotGrandLinear to generate manhattan plot introduced
in next section.

4.2.3 Convenient plotGrandLinear function

For Manhattan plot, we have a function called plotGrandLinear. aes(y =) is required to indicate the y value, e.g.
p-value.

Color mapping is automatically figured out by ggbio following the rules

• if color present in aes(), like aes(color = seqnames), it will assume it’s mapping to data column called
’seqnames’.

• if color is not wrapped in aes(), then this function will recylcle them to all chromosomes.
• if color is single character representing color, then just use one arbitrary color.

Let’s test some examples for controling colors.

plotGrandLinear(gr.snp, aes(y = pvalue), color = c("#7fc97f", "#fdc086"))

Let’s add a cutoff line

plotGrandLinear(gr.snp, aes(y = pvalue), color = c("#7fc97f", "#fdc086"),

cutoff = 3, cutoff.color = "blue", cutoff.size = 0.2)

Sometimes you use color to mapping other varibles so you may need a different to separate chromosomes.

http://bioconductor.org/packages/ggbio

ggbio:visualization toolkits for genomic data 14

plotGrandLinear(gr.snp, aes(y = pvalue, color = OR), spaceline = TRUE, legend = TRUE)

4.2.4 How to highlight some points?

You can provide a highlight GRanges, and each row highlights a set of overlaped snps, and labeled by rownames or
certain columns, there is more control in the function as parameters, with prefix highlight.*, so you could control color,
label size and color, etc.

gro <- GRanges(c("1", "11"), IRanges(c(100, 2e6), width = 5e7))

names(gro) <- c("group1", "group2")

plotGrandLinear(gr.snp, aes(y = pvalue), highlight.gr = gro)

4.3 How to make stacked karyogram overview plots

4.3.1 Introduction

A karyotype is the number and appearance of chromosomes in the nucleus of a eukaryotic cell2. It’s one kind of overview
when we want to show distribution of certain events on the genome, for example, binding sites for certain protein, even
compare them across samples as example shows in this section.

GRanges and Seqinfo objects are an ideal container for storing data needed for karyogram plot. Here is the strategy we
used for generating ideogram templates.

• Althouth seqlengths is not required, it’s highly recommended for plotting karyogram. If a GRanges object contains
seqlengths, we know exactly how long each chromosome is, and will use this information to plot genome space,
particularly we plot all levels included in it, NOT JUST data space.

• If a GRanges has no seqlengths, we will issue a warning and try to estimate the chromosome lengths from data
included. This is NOT accurate most time, so please pay attention to what you are going to visualize and make
sure set seqlengths before hand.

4.3.2 Create karyogram temlate

Let’s first introduce how to use autoplot to generate karyogram graphic.

The most easy one is to just plot Seqinfo by using autoplot, if your GRanges object has seqinfo with seqlengths
information. Then you add data layer later.

data(ideoCyto, package = "biovizBase")

autoplot(seqinfo(ideoCyto$hg19), layout = "karyogram")

To show cytoband, your data need to have cytoband information, we stored some data for you, including hg19, hg18,
mm10, mm9.

turn on cytoband if it exists

biovizBase::isIdeogram(ideoCyto$hg19)

autoplot(ideoCyto$hg19, layout = "karyogram", cytoband = TRUE)

To change order or only show a subset of the karyogram, you have to manipulate seqlevels, please check out manual for
keepSeqlevels, seqlevels in GenomicRanges package for more information. Or you could read the example below.

2http://en.wikipedia.org/wiki/Karyotype

http://bioconductor.org/packages/GenomicRanges

ggbio:visualization toolkits for genomic data 15

4.3.3 Add data on karyogram layout

If you have single data set stored as GRanges to show on a karyogram layout, autoplot function is enough for you to
plot the data on it.

We use a default data in package biovizBase, which is a subset of RNA editing set in human. The data involved in
this GRanges is sparse, so we cannot simply use it to make karyogram template, otherwise, the estimated chromosome
lengths will be very rough and inaccurate. So what we need to do first is to add seglength information to this object.

data(darned_hg19_subset500, package = "biovizBase")

dn <- darned_hg19_subset500

library(GenomicRanges)

seqlengths(dn)

add seqlengths

we have seqlegnths information in another data set

seqlengths(dn) <- seqlengths(ideoCyto$hg19)[names(seqlengths(dn))]

then we change order

dn <- keepSeqlevels(dn, paste0("chr", c(1:22, "X")))

seqlengths(dn)

autoplot(dn, layout = "karyogram")

Then we take one step further, the power of ggplot2 or ggbio is the flexible multivariate data mapping ability in graphics,
make data exploration much more convenient. In the following example, we are trying to map a categorical variable
’exReg’ to color, this variable is included in the data, and have three levels, ’3’ indicate 3’ utr, ’5’ means 5’ utr and ’C’
means coding region. We have some missing values indicated as NA, in default, it’s going to be shown in gray color,
and keep in mind, since the basic geom(geometric object) is rectangle, and genome space is very large, so change both
color/fill color of the rectangle to specify both border and filled color is necessary to get the data shown as different
color, otherwise if the region is too small, border color is going to override the fill color.

since default is geom rectangle, even though it's looks like segment

we still use both fill/color to map colors

autoplot(dn, layout = "karyogram", aes(color = exReg, fill = exReg))

Or you can set the missing value to particular color yo u want (NA values is not shown on the legend).

since default is geom rectangle, even though it's looks like segment

we still use both fill/color to map colors

autoplot(dn, layout = "karyogram", aes(color = exReg, fill = exReg), alpha = 0.5) +

scale_color_discrete(na.value = "brown")

Well, sometimes we have too many values, we want to separate them by groups and show them at diffent height, below
is a hack for that purpose and in next section, we will introduce a more flexible and general way to add data layer by
layer.

Template chromosome y limits is [0, 10], that’s why this hack works

let's remove the NA value

dn.nona <- dn[!is.na(dn$exReg)]

compute levels based on categories

dn.nona$levels <- as.numeric(factor(dn.nona$exReg))

do a trcik show them at different height

p.ylim <- autoplot(dn.nona, layout = "karyogram", aes(color = exReg, fill = exReg,

ymin = (levels - 1) * 10/3,

ymax = levels * 10 /3))

http://bioconductor.org/packages/ggplot2
http://bioconductor.org/packages/ggbio

ggbio:visualization toolkits for genomic data 16

4.3.4 Add more data using layout karyogram function

In this section, a lower level function layout karyogram is going to be introduced. This is convenient API for constructing
karyogram plot and adding more data layer by layer. Function ggplot is just to create blank object to add layer on.

You need to pay attention to

• when you add plots layer by layer, seqnames of different data must be the same to make sure the data are mapped
to the same chromosome. For example, if you name chromosome following schema like chr1 and use just number
1 to name other data, they will be treated as different chromosomes.

• cannot use the same aesthetics mapping multiple time for different data. For example, if you have used aes(color
=), for one data, you cannot use aes(color =) anymore for mapping variables from other add-on data, this is
currently not allowed in ggplot2 , even though you expect multiple color legend shows up, this is going to confuse
people which is which. HOWEVER, color or fill without aes() wrap around, is allowed for any track, it’s set
single arbitrary color.

• Default rectangle y range is [0, 10], so when you add on more data layer by layer on existing graphics, you can use
ylim to control how to normalize your data and plot it relative to chromosome space. For example, with default,
chromosome space is plotted between y [0, 10], if you use ylim = c(10 , 20), you will stack data right above
each chromosomes and with equal width. For geom like ’point’, which you need to specify ’y’ value in aes(), we
will add 5% margin on top and at bottom of that track.

Many times we overlay different datas sets, so let’s break down the previous samples into 4 groups and treat them as
different data and build them layer by layer, assign the color by hand. You could use ylim to control where they are
ploted.

prepare the data

dn3 <- dn.nona[dn.nona$exReg == '3']

dn5 <- dn.nona[dn.nona$exReg == '5']

dnC <- dn.nona[dn.nona$exReg == 'C']

dn.na <- dn[is.na(dn$exReg)]

now we have 4 different data sets

autoplot(seqinfo(dn3), layout = "karyogram") +

layout_karyogram(data = dn3, geom = "rect", ylim = c(0, 10/3), color = "#7fc97f") +

layout_karyogram(data = dn5, geom = "rect", ylim = c(10/3, 10/3*2), color = "#beaed4") +

layout_karyogram(data = dnC, geom = "rect", ylim = c(10/3*2, 10), color = "#fdc086") +

layout_karyogram(data = dn.na, geom = "rect", ylim = c(10, 10/3*4), color = "brown")

What’s more, you could even chagne the geom for those data

dn$pvalue <- runif(length(dn)) * 10

p <- autoplot(seqinfo(dn)) + layout_karyogram(dn, aes(x = start, y = pvalue),

geom = "point", color = "#fdc086")

p

4.3.5 More flexible layout of karyogram

p.ylim + facet_wrap(~seqnames)

http://bioconductor.org/packages/ggplot2

Chapter 5

Link ranges to your data

Plot GRanges object structure and linked to a even spaced paralell coordinates plot which represting the data in ele-
menteMetadata.

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

library(ggbio)

data(genesymbol, package = "biovizBase")

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

model <- exonsBy(txdb, by = "tx")

model17 <- subsetByOverlaps(model, genesymbol["RBM17"])

exons <- exons(txdb)

exon17 <- subsetByOverlaps(exons, genesymbol["RBM17"])

reduce to make sure there is no overlap

just for example

exon.new <- reduce(exon17)

suppose

values(exon.new)$sample1 <- rnorm(length(exon.new), 10, 3)

values(exon.new)$sample2 <- rnorm(length(exon.new), 10, 10)

values(exon.new)$score <- rnorm(length(exon.new))

values(exon.new)$significant <- sample(c(TRUE,FALSE), size = length(exon.new),replace = TRUE)

data ready

exon.new

Make the plots, you can pass a list of annotation tracks too.

p17 <- autoplot(txdb, genesymbol["RBM17"])

plotRangesLinkedToData(exon.new, stat.y = c("sample1", "sample2"), annotation = list(p17))

For more information, check the manual.

17

Chapter 6

Miscellaneous

Every plot object produced by ggplot2 is essentially a ggplot2 object, so you could use all the tricks you know with
ggplot2 on ggbio plots too, including scales, colors, themes, etc.

6.1 Themes

In ggbio, we developed some more themes to make things easier.

6.1.1 Plot theme

Plot level themes are like any other themes defined in ggplot2 , simply apply it to a plot.

p.txdb

p.txdb + theme_alignment()

p.txdb + theme_clear()

p.txdb + theme_null()

When you have multiple chromosomes encoded in seqnames, you could use theme genome to make a ’fake’ linear view
of genome coordinates quickly by applying this theme, because it’s not equal to chromosome lengths, it’s simply

library(GenomicRanges)

set.seed(1)

N <- 100

gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"),

size = N, replace = TRUE),

IRanges(start = sample(1:300, size = N, replace = TRUE),

width = sample(70:75, size = N,replace = TRUE)),

strand = sample(c("+", "-"), size = N, replace = TRUE),

value = rnorm(N, 10, 3), score = rnorm(N, 100, 30),

sample = sample(c("Normal", "Tumor"),

size = N, replace = TRUE),

pair = sample(letters, size = N,

replace = TRUE))

seqlengths(gr) <- c(400, 1000, 500)

autoplot(gr)

autoplot(gr) + theme_genome()

18

http://bioconductor.org/packages/ggplot2
http://bioconductor.org/packages/ggplot2
http://bioconductor.org/packages/ggplot2
http://bioconductor.org/packages/ggbio
http://bioconductor.org/packages/ggbio
http://bioconductor.org/packages/ggplot2

ggbio:visualization toolkits for genomic data 19

6.1.2 Track theme

Track level themes are more complex, it controls whole looking of the tracks, it’s essentially a theme object with some
attributes controlling the tracks appearance.

See how we make a template, you could customize in the same way

theme_tracks_sunset

The attributes you could control is basically passed to tracks() constructor, including

label.bg.color character
label.bg.fill character

label.text.color character
label.text.cex numeric

label.text.angle numeric
track.plot.color characterORNULL
track.bg.color characterORNULL

label.width unit

Table 6.1: tracks attributes

Chapter 7

Session Information

sessionInfo()

20

	1 Getting started
	1.1 Citation
	1.2 Introduction

	2 Case study: building your first tracks
	2.1 Add an ideogram track
	2.2 Add a gene model track
	2.2.1 Introduction
	2.2.2 Make gene model from OrganismDb object
	2.2.3 Make gene model from TxDb object
	2.2.4 Make gene model from EnsDb object
	2.2.5 Make gene model from GRangesList object

	2.3 Add a reference track
	2.3.1 Semantic zoom

	2.4 Add an alignment track
	2.5 Add a variants track
	2.6 Building your tracks

	3 Simple navigation
	4 Overview plots
	4.1 how to make circular plots
	4.1.1 Introduction
	4.1.2 Buidling circular plot layer by layer
	4.1.3 Complex arragnment of plots

	4.2 How to make grandlinear plots
	4.2.1 Introduction
	4.2.2 Corrdinate genome
	4.2.3 Convenient plotGrandLinear function
	4.2.4 How to highlight some points?

	4.3 How to make stacked karyogram overview plots
	4.3.1 Introduction
	4.3.2 Create karyogram temlate
	4.3.3 Add data on karyogram layout
	4.3.4 Add more data using layout_karyogram function
	4.3.5 More flexible layout of karyogram

	5 Link ranges to your data
	6 Miscellaneous
	6.1 Themes
	6.1.1 Plot theme
	6.1.2 Track theme

	7 Session Information

