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This tutorial gives you some of the technical background underlying genphen
that should enable you to understand and use this tool.

1 genphen quantifies genotype-phenotype associa-
tions

Genome wide association studies (GWAS) have become an important tool
to understand the association between genotypes and phenotypes. With
GWAS we try to answer questions such as “what are the genotypes in the
human genome which predispose to a disease?” or “what are the genotypes
in certain strains of mice which allow them to be more resistant against
a specific virus?”. The are countless applications of genotype-phenotype



association studies, whereby the genotype can either be a set of single nu-
cleotide polymorphisms (SNPs) found in nucleotide sequences, or a set of
single amino acid polymorphisms (SAAPs) found at sites in specific pro-
tein sequence. The phenotype can be any measured quantity related to the
individuals or sequences in which the polymorphic genotypes were found.

To conduct GWAS frequentist statistical methods are typically used, relying
on P values to report the strength of the association between the genotypes
and the phenotypes. This often leads to massive multiple hypothesis prob-
lems, typically answered with stringent P value correction methods, which
are used to curb the false positives but have the effect of introducing many
false negatives. More sophisticated statistical learning approaches such as
random forest (RF) and support vector machines (SVM) alleviate the P
value problem and are able to capture the most complex relationships be-
tween the genotypes and phenotypes but have the drawback of poor inter-
pretability. Bayesian inference on the other hand, provides a solution to
both the P value issue and the interpretabilitiy of the statistical learning
approaches, but comes at a substantially higher computational cost.

Here we introduce genphen, a tool for GWAS which implements both statis-
tical learning techniques such as RF and SVM as well as Bayesian inference
using hierarchical models, to quantify the association between genotypes
and continuous phenotypes. Additionally, genphen implements a set of vi-
sualization procedures which allow the user to inspect the vast results of the
main association analyses and pinpoint the significant genotype-phenotype
associations.

2 Conducting GWAS with genphen

2.1 Input

Two data types are necessary to perform a genetic association study, namely
the genotype data and the phenotype data. As an example of genotype data
imagine a set 1000 SNPs obtained for 10 different strains of laboratory mice
taken from the Mouse Hapmap Project. The phenotype, on the other hand
can be an experimental continuous measurement made for each of the 10
different mouse strains (e.g. height, body weight, temperature, immune
response, etc.) (see SNP-Phenotype example in Fig [Lal).

Another example of a genotype data can be a multiple sequence alignment
(MSA) of 100 protein homologs (e.g. 120 aligned protein sequences of differ-
ent organisms with 154 protein sites, some of which may contain amino acid
polymorphisms). The phenotype can once again be continuous measure-
ment made for each of the 120 organisms. Similar to the previous example,



in this case too we can use genphen to estimate the association between the
polymorphic protein sites and a given phenotype of the organisms.

More specifically, we can think of the genotype data as a character matrix
with dimensions NxM, whereby the M columns represent different SNPs
or SAAPs, and the N rows represent different individuals or sequences for
which we have measures some phenotype. On the other hand, we can think
of the phenotype as a numerical vector of length N, where each phenotype
corresponds to a particular individual.

2.2 Methods

The T-test is a popular method which is often used to quantify the asso-
ciation between the genotypes and phenotypes. Given a SNP like the one
shown in Fig. the T-test checks whether there exists a significant dif-
ference between the two states (alleles) of the SNP w.r.t. the phenotype,
whereby the strength of the association is summarized with a P value. gen-
phen implements three statistical methods which perform similar tasks, but
are superior to the T-test. These methods can be used through the following
three interfaces:

e runGenphenRf - RF-based analysis
e runGenphenSvm - SVM-based analysis

e runGenphenBayes - Bayesian inference based analysis

2.2.1 runGenphenRf and runGenphenSvm

The procedures runGenphenRf and runGenphenSvm perform similar tasks
using different statistical learning techniques, namely RF and SVM. The
following metrics are estimated using each of them:

Classification accuracy(CA) This metric is used to quantify the strength
of the association between each specific genotype and the phenotype. Both
of the procedures generate classification models between the phenotype (a
numerical predictor) and a specific genotype (a categorical response). If
there exists a strong association between the genotype and the phenotype,
one should be able to build an accurate classification model be (CA = 1,
for a perfect classifier). To obtain a robust C'A we applied cross-validation,
where a subset of the genotype-phenotype data is selected at random for
training the classifier, followed by testing based on the remaining data. The



final C'A is the mean accuracy of resulting from this procedure. The follow-
ing confusion matrix represents the result of one cross-validation step and
is the data based on which C'A is computed:

Real
allele; | allelesy
. alleleq a b
Predicted alleles c 1

Table 1: Confusion matrix resulting from a classification analysis

The CA of the cross-validation step ¢ is then estimated as:

a+d

c4y= —2%
a+b+c+d

The final C'A for N cross-validation steps is then estimated as:
N
CA=+ Z; CA;

In addition to estimating C'A, one can also compute the 95% highest density
interval (95% HDI) from the distribution of the individual C'As obtained
throughout the cross-validation. In order to obtain reliable HDIs, the user
should run these procedures with at least a hundred cross-validation steps
(parameter nboots > 100). Those genotypes for which a C'A is close to 1,
coupled with a narrow CI, have the most significant association with the
phenotype.

The metric CA has two advantages over the P values. First, it is more
intuitive that a P value as a CA = 0.9 means that on average, one is able
to correctly predict 90% of the states of the genotype from the phenotypes.
Second, we do not run into multiple hypothesis problems and therefore there
is no need for a P value correction. One drawback of C'A is that it is difficult
to find a “perfect” cuttoff to separate the strong associations from the weak
ones.

Cohen’s x statistics Often we are interested in comparing the observed
C A with classification accuracy which is expected simply by chance (CA¢gp).
This is in particular useful when the genetic states of the genotype are
not evenly represented, i.e. allele A of a given SNP may be represented
in 80% of the individuals, while the other allele T may be represented in
only 20% of the individuals. Such uneven composition of the genotype can
affect the classification analysis, resulting in high C'As simply because the



classifier only predicts the dominant label. Cohen’s & statistics can be used
to estimate how much stronger the observed C'A is, compared to C'Acyy,. To
compute the k statistics, the confusion matrix shown before in Table [1] is
used:

_ CA—CAey
T 1= CAw,
a+b a+c c+d b+d

CAexp =

a+btct+d atbtct+d a+tbtct+d atbtc+d

The « statistics is a quality metric, which is to be used together with C A.
Cohen defines the following meaningful x intervals: [k<0]: “no agreement”,
[0.0-0.2]: “slight agreement”, [0.2-0.4]: “fair agreement” , [0.4-0.6]: “moderate
agreement”; [0.6-0.8]: “substantial agreement” and [0.8-1.0]: “almost perfect
agreement”. Similarly to the estimation of C'A, the final Cohen’s « is also
estimated by averaging the individual xs computed for each step of the
cross-validation. Here too, highest density intervals are estimated.

Cohen’s effect size (d) Using the package effsize, we compute the Co-
hen’s d for each genotype-phenotype pair. High Cohen’s d estimations indi-
cate that there is a large difference in the measured phenotype between the
two genetic states of the specific genotype. Cohen (1992) defines thresholds
which define the magnitude of the effects as: |d|<0.2 “negligible”, |d|<0.5
“small”, |d|<0.8 “medium”, otherwise “large”. genphen computes both the
Cohen’s d statistics and the corresponding 95% confidence intervals. The
Cohen’s d is computed as follows:

d— H1 — K2
\/(nlfl)*olJr(ngfl)*ag

ni+ng—2

where p1, po and o1, o2 represent the mean and the standard deviations of
the phenotypes in the two genetic states of the genotype, while ny and no
represent the sample sizes of the two genetic states of the genotype.

Both runGenphenRf and runGenphenSvm estimate the three metrics C A,
k and d with their corresponding highest density intervals, and with that
provide an alternative approach for GWAS.

2.2.2 runGenphenBayes

The procedure runGenphenBayes employes Bayesian inference to quantify
the association between genotypes and phenotypes. It performs Bayesian



T-test (Kruschke, 2014), using hierarchical models. The results of this pro-
cedure are the most probable estimates (posterior estimates) for the parame-
ters pq and pe which represent the mean phenotypes in each group of a given
genotype, as well as the standard deviations o; and 9. While the classical
T-test has to adhere to two assumptions, namely: 1) the phenotypes should
be normally distributed in each group and 2) the variances in the two groups
should be equal; the Bayesian hierarchical models have been designed such
that both of these assumptions are relaxed. Using the posterior estimates
for 1 and po for a given genotype-phenotype combination, one can esti-
mate the contrast up — p2 and the so-called highest density interval (HDI)
to evaluate whether there exists a significant phenotypic effect between the
two groups which excludes the null-effect.

Using runGenphenBayes and analysing genotype-phenotype association based
on the Bayesian effect size p1 — ps and the corresponding HDI has multiple
advantages:

e the effect size is easy to interpret
e it helps avoid the multiple hypothesis problem

e the HDI of the effect size provides a convenient filtering technique with
which the associations can be classified as either reliable (the HDI
excludes the null-effect) or unreliable (the HDI spans the null-effect)

e the Bayesian hierarchical models relax the assumptions of the classical
T-test, and employ prior which model more accurately the observed
data

The only disadvantage of applying this method genome-wide is its compu-
tational complexity.

2.3 Case studies
2.3.1 SNP-phenotype association with genphen

This example is intended to guide the user through the previously described
genphen methodology. In particular, we present a situation in which the
association is to be computed between SNPs and phenotypes. We use a
simple example shown in Fig[lalto explain the genphen procedures runGen-
phenRf/runGenphenSvm and runGenphenBayes.

e Input:

— genotype: a SNP column vector of 14 elements, where the two
alleles A and T are contained with 5 and 9 elements, respectively.
The 14 elements of this vector represent 14 mouse species.



— phenotype: a vector of 14 elements, where each element repre-
sents the measured immune response of a specific mouse.

— Hint: we can inspect the given genotype-phenotype pair using
the procedure plotSpecificGenotype whose results are shown

in Fig.

e Goal: can we quantify the association between the genotype and the
phenotype vectors using genphen?

e Methods: we use the procedures runGenphenRf/runGenphenSvm and
runGenphenBayes to compute the association.
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Figure 1: a, genotype-phenotype data pair. The genotype is a SNP with two
genetic states (alleles A and T), found in 14 individuals. b, boxplot showing
the phenotypic distribution of the genotype as a function of the two alleles.

runGenphenSvm and runGenphenRf

genotype <_ C(IIA”, HAII, "AII, "TII’ "TII’ "TH’ "T", ”T"’ IIT",

IITII
>

"TII’ "AII’ "AII)

phenotype <- c(6.14, 3.95, 6.19, 8.02, 8.07, 7.32, 7.28,
7.10, 7.10, 8.26, 8.38, 7.48, 5.22, 5.60)

> library(genphen)

>

+ IITH ,
>

+

>

+

+

result <- runGenphenSvm(genotype = genotype,

phenotype = phenotype,
cv.fold = 0.66,



+ cv.steps = 1000,
+ hdi.level = 0.95)

site g1 g2 count.l count.2 d CA K t.test.pvalue
1 A T 5 9 -3.339  0.960 0.918 0.003

Table 2: Results of the runGenphenSvm procedure (HDIs have been left
out)

In Fig. we notice that the two states of the genotype are associated with
divergent distributions of the phenotype. Hence, we can expect a significant
association between the SNP and the phenotype. This is confirmed by the
results of the procedure runGenphenSvm, which yield C'A close to 1 (CA =
0.960), high Cohen’s x (kx = 0.918) and a substantial Cohen’s effect size
(d = —3.339). Similar results can be obtained with the alternative statistical
method (RF).

site g1 g2 count.l count.2 mu.l mu.2 effect effect.0.95.HDI

1 A T 9 9 5460 7.662 -2.202 (-3.771,-0.757)

Table 3: Results of the runGenphenBayes procedure

runGenphenBayes The results of runGenphenBayes confirm the previ-
ous claims about the association between the SNP and the phenotype. The
state A is associatied with a mean phenotype of 5.460, while T is associated
with 7.662. The Bayesian effect size therefore equals to -2.202 with 95% HDI
of (-3.771, -0.757), which excludes the null-effect. The HDI criterion is an
intuitive quality measure which can be used to filter out poor association.
In contrast to this, the filtering is not as intuitive based on C A and & in the
case of the statistical learning procedures.

2.3.2 SAAP-phenotype association with genphen

This example is intended to guide the user through the previously described
genphen methodology, this time when the association is to be computed
between a SAAP and a phenotype.

e Input:



— genotype: a SAAP column vector of 120 elements, where the four
amino acid states are present H, Q, N and K with the following
counts 62, 55, 2 and 1, respectively. This genotype vector is
a single site taken from the protein sequence of 120 organisms,
therefore each amino acid state corresponds to a specific organ-
ism.

— phenotype: a vector of 120 numerical elements (artificially gen-
erated).

— Hint: we can first inspect the genotype-phenotype pair using the
procedure plotSpecificGenotype whose results are shown in Fig

2l

e Goal: can we quantify the association between the genotype and the
phenotype vectors using genphen?

e Method: we can use the genphen method runGenphen to compute the
association. This procedure will first need to decompose the genotype-
phenotype pair into the 6 possible amino acid substitution pairs, namely
(H, Q), (H, K), (H, N), (Q, K), (Q, N) and (K, N), and then compute
the association between substitution pair and the phenotype just as it
was presented in the previous example.

N
1
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Figure 2: Boxplot showing the phenotypic distribution as a function of four
amino acids (H, Q, N, K) at a given SAAP of 120 amino acids in total.

runGenphenSvm and runGenphenRf



> library(genphen)

> data(genotype.saap)

> data(phenotype.saap)

> genotype <- genotype.saap[, 82]
> phenotype <- phenotype.saap

> result <- runGenphenSvm(genotype = genotype,

+ phenotype = phenotype,
+ cv.fold = 0.66,

+ cv.steps = 1000,

+ hdi.level = 0.95)

site g1 g2 count.l count.2 d CA K t.test.pvalue
1 H Q 62 55 2.381 0.879  0.755 0
1 H K 62 1 NA NA NA NA
1 H N 62 2 2.339 0.974 -0.0001 0.221
1 Q K 55 1 NA NA NA NA
1 Q N 55 2 -0.102 0.973 0 0.934
1 K N 1 2 NA NA NA NA

Table 4: Results of the runGenphenSvm procedure (HDIs have been left
out)

For each SAAP (amino acid substitution), runGenphenSvm and runGen-
phenRf estimates the previously defined metrics w.r.t. the phenotype. One
can then use the C' A, Cohen’s xk and Cohen’s effect size d, to find the most
significant associations. The SAAP involving the amino acid (H, Q) stands
out in this example not only due to its high C A, x and d, but also because
these estimates are based on substantial data of 62 + 55 data points. If
only a single data point is available for a given genetic state of a SAAP (e.g.
amino acid state K), then NA (not available) estimates are returned.

runGenphenBayes

> result <- runGenphenBayes (genotype = genotype,

+ phenotype = phenotype,
+ chain.nr = 4,

+ mcmc.iter = 10000,

+ model = '"tdist",

+ hdi.levels = 0.95)
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site g1 g2 count.l count.2 mu.l mu.2 effect effect.0.95.HDI
1 H Q 62 55 2.285 -0.514 2.798  (2.355, 3.219)
1 H K 62 1 NA NA NA (NA, NA)
1 H N 62 2 2.286 -0.575 2.861 (-6.145, 12.663)
1 Q K 55 1 NA NA NA (NA, NA)
1 Q N 55 2 -0.513 -0.604 0.091 (-8.121, 8.140)
1 K N 1 2 NA NA NA (NA, NA)

Table 5: Results of the runGenphenBayes procedure

The results of runGenphenBayes once again confirm the previous claims
about the association between the different SAAPs and the phenotype. The
amino acid state H is associatied with a mean phenotype of 2.285, while Q
is associated with -0.514. The Bayesian effect size therefore equals to 2.798
with 95% HDI of (2.355, 3.219), which excludes the null-effect. None of the
other associations satisfies this criterion.

2.4 Visualization
The tool genphen implements visualization procedures which help the user
evaluate its results. Here we introduce the following four procedures:

e plotSpecificGenotype

e plotGenphenRfSvm

e plotGenphenBayes

e plotManhattan

plotSpecificGenotype The results of the procedure plotGenphenResults
are shown in Fig 3. With it, one can plot the phenotype as a function of a
specific genotype, in which the user might be interested (e.g. specific SNP).

plotGenphenRfSvm The results generated either by runGenphenRf and
runGenphenSvm can be inspected via this procedure. With it one visualizes
the quantified genotype-phenotype associations with respect to their C'A
and d measures.

plotGenphenBayes The results generated by plotGenphenBayes can be
inspected via this procedure. With it one visualizes the quantified genotype-
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phenotype associations with respect to their Bayesian effect sizes u; — po
and the corresponding HDIs.

plotManhattan The -logl0 transformed P values estimated via the two-
sample T-test for each genotype-phenotype association can be inspected via
this procedure using via a Manhattan plot.

All four plotting procedures are applied in the following section

3 Complete worked example

3.1 Workflow 1

1. Loading data

> library(genphen)

> data(genotype.saap)

> # One can also use a multiple sequence alignment as a genotype input (in the
> # form of either a DNAMultipleAlignment or AAMultipleAlignment objects of the
> # Biostring package).

> data(phenotype.saap)

2. Running genphen algorithm using random forests (RF) and linear sup-
port vector machines (LSVM):

> # if DNAMultipleAlignment is loaded you cannot subset
> # with genotype.snp[, 1:10]
> genphen.rf <- runGenphenRf (genotype = genotype.saapl[, 1:10],
+ phenotype = phenotype.saap,
cv.fold = 0.66,
cv.steps = 100,
hdi.level = 0.99,
ntree = 1000)
genphen.svm <- runGenphenSvm(genotype = genotype.saapl[, 1:10],
phenotype = phenotype.saap,
cv.fold = 0.66,
cv.steps = 100,
hdi.level = 0.99)

+ + + + VvV + + + +

3. Filtering out association which could not be quantified by genphen,
due to lack of data:

> genphen.rf <- genphen.rf[complete.cases(genphen.rf), ]
> genphen.svm <- genphen.svm[complete.cases(genphen.svm), ]

12



4. Plotting results
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Figure 3: Effect site - classification accuracy plot
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Figure 4: Effect site - classification accuracy plot
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5. Running the genphen algorithm using Bayesian inference:
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Figure 5: Manhattan plot

> # if DNAMultipleAlignment is loaded you cannot subset
> # with genotype.snp[, 1:10]
> genphen.bayes <- runGenphenBayes (genotype = genotype.saapl[, 1:10],
phenotype = phenotype.saap,

+

+ + + +

chain.nr = 4,

mcmc.iter = 1000,
model = "tdist",

hdi.levels =

c(0.90, 0.95, 0.99))

6. Filtering out association which could not be quantified by genphen,
due to lack of data:

> genphen.bayes <- genphen.bayes[complete.cases(genphen.bayes), ]

7. Plotting results
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8. Visual inspection of the association between a specific genotypes and
the phenotypes:
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Figure 8: Specific genotype-phenotype plot
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