flagme: Fragment-level analysis of
GC-MS-based metabolomics data

Mark Robinson
mrobinson@wehi.edu.au
Riccardo Romoli
riccardo.romoli@unifi.it

October 17, 2016

1 Introduction

This document gives a brief introduction to the flagme package, which is designed to process, visualise and sta-
tistically analyze sets of GC-MS samples. The ideas discussed here were originally designed with GC-MS-based
metabolomics in mind, but indeed some of the methods and visualizations could be useful for LC-MS data sets.
The fragment-level analysis though, takes advantage of the rich fragmentation patterns observed from electron
interaction (EI) ionization.

There are many aspects of data processing for GC-MS data. Generally, algorithms are run separately on each
sample to detect features, or peaks (e.g. AMDIS). Due to retention time shifts from run-to-run, an alignment
algorithm is employed to allow the matching of the same feature across multiple samples. Alternatively, if known
standards are introduced to the samples, retention indices can be computed for each peak and used for alignment.
After peaks are matched across all samples, further processing steps are employed to create a matrix of abundances,
leading into detecting differences in abundance.

Many of these data processing steps are prone to errors and they often tend to be black boxes. But, with effective
exploratory data analysis, many of the pitfalls can be avoided and any problems can be fixed before proceeding to
the downstream statistical analysis. The package provides various visualizations to ensure the methods applied are
not black boxes.

The flagme package gives a complete suite of methods to go through all common stages of data processing. In
addition, R is especially well suited to the downstream data analysis tasks since it is very rich in analysis tools and
has excellent visualization capabilities. In addition, it is freely available (www.r-project.org), extensible and there
is a growing community of users and developers. For routine analyses, graphical user interfaces could be designed.

2 Reading and visualizing GC-MS data

To run these examples, you must have the gcspikelite package installed. This data package contains several
GC-MS samples from a spike-in experiment we designed to interrogate data processing methods. So, first, we load
the packages:

To load the data and corresponding peak detection results, we simply create vectors of the file-names and create
a peakDataset object. Note that we can speed up the import time by setting the retention time range to a subset
of the elution, as below:

> gcmsPath <- paste(find.package("gcspikelite"), "data", sep="/")
> data(targets)
> cdfFiles <- paste(gcmsPath, targets$FileName, sep="/")



> eluFiles <- gsub("CDF", "ELU", cdfFiles)
> pd <- peaksDataset(cdfFiles, mz=seq(50,550), rtrange=c(7.5,8.5))

Reading /home/biocbuild/bbs-3.4-bioc/R/library/gcspikelite/data/0709_468.CDF
Reading /home/biocbuild/bbs-3.4-bioc/R/library/gcspikelite/data/0709_474.CDF
Reading /home/biocbuild/bbs-3.4-bioc/R/library/gcspikelite/data/0709_475.CDF
Reading /home/biocbuild/bbs-3.4-bioc/R/library/gcspikelite/data/0709_485.CDF
Reading /home/biocbuild/bbs-3.4-bioc/R/library/gcspikelite/data/0709_493.CDF
Reading /home/biocbuild/bbs-3.4-bioc/R/library/gcspikelite/data/0709_496.CDF
Reading /home/biocbuild/bbs-3.4-bioc/R/library/gcspikelite/data/0709_470.CDF
Reading /home/biocbuild/bbs-3.4-bioc/R/library/gcspikelite/data/0709_471.CDF
Reading /home/biocbuild/bbs-3.4-bioc/R/library/gcspikelite/data/0709_479.CDF

> pd <- addAMDISPeaks(pd, eluFiles)

Reading retention time range: 7.500133 8.499917

Reading /home/biocbuild/bbs-3.4-bioc/R/library/gcspikelite/data/0709_468.ELU ... Done.
Reading /home/biocbuild/bbs-3.4-bioc/R/library/gcspikelite/data/0709_474.ELU ... Done.
Reading /home/biocbuild/bbs-3.4-bioc/R/1library/gcspikelite/data/0709_475.ELU ... Done.
Reading /home/biocbuild/bbs-3.4-bioc/R/library/gcspikelite/data/0709_485.ELU ... Done.
Reading /home/biocbuild/bbs-3.4-bioc/R/library/gcspikelite/data/0709_493.ELU ... Done.
Reading /home/biocbuild/bbs-3.4-bioc/R/library/gcspikelite/data/0709_496.ELU ... Done.
Reading /home/biocbuild/bbs-3.4-bioc/R/library/gcspikelite/data/0709_470.ELU ... Done.
Reading /home/biocbuild/bbs-3.4-bioc/R/library/gcspikelite/data/0709_471.ELU ... Done.
Reading /home/biocbuild/bbs-3.4-bioc/R/library/gcspikelite/data/0709_479.ELU ... Done.
> pd

An object of class "peaksDataset"

9 samples: 0709_468 0709_474 0709_475 0709_485 0709_493 0709_496 0709_470 0709_471 0709_479
501 m/z bins - range: ( 50 550 )

scans: 175 175 175 175 175 174 175 175 175

peaks: 24 23 26 20 27 24 24 25 21

Here, we have added peaks from AMDIS, a well known and mature algorithm for deconvolution of GC-MS data.
For GC-TOF-MS data, we have implemented a parser for the ChromaTOF output (see the analogous addChromaTOF-
Peaks function). The addXCMSPeaks allows to use all the XCMS peak-picking algorithms; using this approach it
is also possible to elaborate the raw data file from within R instead of using an external software. In particular
the function reads the raw data using XCMS, group each extracted ion according to their retention time using
CAMERA and attaches them to an already created peaksDataset object:

> pd.2 <- peaksDataset(cdfFiles[1:3], mz=seq(50,550), rtrange=c(7.5,8.5))

Reading /home/biocbuild/bbs-3.4-bioc/R/library/gcspikelite/data/0709_468.CDF
Reading /home/biocbuild/bbs-3.4-bioc/R/library/gcspikelite/data/0709_474.CDF
Reading /home/biocbuild/bbs-3.4-bioc/R/library/gcspikelite/data/0709_475.CDF

> pd.2 <- addXCMSPeaks(cdfFiles[1:3], pd.2, peakPicking=c('mF'),
+ snthresh=3, fwhm=4, step=1, steps=2, mzdiff=0.5)

Start grouping after retention time.
Created 34 pseudospectra.
Generating peak matrix!



Run isotope peak annotation
% finished: 10 20 50 60 70 80 90 100
Found isotopes: 8

Start grouping after retention time.

Created 32 pseudospectra.

Generating peak matrix!

Run isotope peak annotation

% finished: 10 20 30 50 60 70 80 90 100
Found isotopes: 9

Start grouping after retention time.

Created 38 pseudospectra.

Generating peak matrix!

Run isotope peak annotation

% finished: 10 20 30 50 60 70 80 90 100
Found isotopes: 9

> pd.2

An object of class "peaksDataset"

3 samples: 0709_468 0709_474 0709_475
501 m/z bins - range: ( 50 550 )
scans: 175 175 175

peaks: 11 10 9

The possibility to work using computer cluster will be added in the future.
Regardless of platform and peak detection algorithm, a useful visualization of a set of samples is the set of total
ion currents (TIC), or extracted ion currents (XICs). To view TICs, you can call:

> plot(pd, rtrange=c(7.5,8.5), plotPeaks=TRUE, plotPeakLabels=TRUE,
+ max.near=8, how.near=0.5, col=rep(c("blue","red","black"), each=3))
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Note here the little hashes represent the detected peaks and are labelled with an integer index. One of the main
challenges is to match these peak detections across several samples, given that the appear at slightly different times
in different runs.

For XICs, you need to give the indices (of pd@mz, the grid of mass-to-charge values) that you want to plot
through the mzind argument. This could be a single ion (e.g. mzind=24) or could be a range of indices if multiple
ions are of interest (e.g. mzind=c(24,25,98,99)).

There are several other features within the plot command on peaksDataset objects that can be useful. See
?plot (and select the flagme version) for full details.

Another useful visualization, at least for individual samples, is a 2D heatmap of intensity. Such plots can be

enlightening, especially when peak detection results are overlaid. For example (with detected fragment peaks from
AMDIS shown in white):

>r <-1

> plotImage(pd, run=r, rtrange=c(7.5,8.5), main="")

> v <- which(pd@peaksdata[[r]] > O, arr.ind=TRUE) # find detected peaks

> abline(v=pd@peaksrt[[r]])

> points(pd@peaksrt[[r]][v[,2]], pd@mz[v[,1]], pch=19, cex=.6, col="white")



m/z
80 100 120 140 160 180

60

7.6 7.8 8.0 8.2 8.4

retention time

3 Pairwise alignment with dynamic programming algorithm

One of the first challenges of GC-MS data is the matching of detected peaks (i.e. metabolites) across several samples.
Although gas chromatography is quite robust, there can be some drift in the elution time of the same analyte from
run to run. We have devised a strategy, based on dynamic programming, that takes into account both the similarity
in spectrum (at the apex of the called peak) and the similarity in retention time, without requiring the identity
of each peak; this matching uses the data alone. If each sample gives a ‘peak list’ of the detected peaks (such as
that from AMDIS that we have attached to our peaksDataset object), the challenge is to introduce gaps into these
lists such that they are best aligned. From this a matrix of retention times or a matrix of peak abundances can be
extracted for further statistical analysis, visualization and interpretation. For this matching, we created a procedure
analogous to a multiple sequence alignment.

To highlight the dynamic programming-based alignment strategy, we first illustrate a pairwise alignment of two
peak lists. This example also illustrates the selection of parameters necessary for the alignment. From the data read
in previously, let us consider the alignment of two samples, denoted 0709_468 and 0709_474. First, a similarity
matrix for two samples is calculated. This is calculated based on a scoring function and takes into account the
similarity in retention time and in the similarity of the apex spectra, according to:
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where i is the index of the peak in the first sample and j is the index of the peak in the second sample, x; and y; are

the spectra vectors and ¢; and ¢; are their respective retention times. As you can see, there are two components to
the similarity: spectra similarity (left term) and similarity in retention time (right term). Of course, other metrics
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for spectra similarity are feasible. Ask the author if you want to see other metrices implemented. We have some
non-optimized code for a few alternative metrics.

The peak alignment algorithm, much like sequence alignments, requires a gap parameter to be set, here a number
between 0 and 1. A high gap penalty discourages gaps when matching the two lists of peaks and a low gap penalty
allows gaps at a very low cost. We find that a gap penalty in the middle range (0.4-0.6) works well for GC-MS peak
matching. Another parameter, D, modulates the impact of the difference in retention time penalty. A large value
for D essentially eliminates the effect. Generally, we set this parameter to be a bit larger than the average width of
a peak, allowing a little flexibility for retention time shifts between samples. Keep in mind the D parameter should
be set on the scale (i.e. seconds or minutes) of the peaksrt slot of the peaksDataset object. The next example
shows the effect of the gap and D penalty on the matching of a small ranges of peaks.

> Ds <- ¢(0.1, 10, 0.1, 0.1)

> gaps <- ¢(0.5, 0.5, 0.1, 0.9)

> par (mfrow=c(2,2), mai=c(0.8466,0.4806,0.4806,0.1486))
> for(i in 1:4)1

+ pa <- peaksAlignment (pd@peaksdatal[[1]], pd@peaksdatal[[2]],

+ pd@peaksrt[[1]], pd@peaksrt[[2]], D=Ds[i],
+ gap=gaps[i])

+ plot(pa, xlim=c(0, 17), ylim=c(0, 16), matchCol="yellow",

+ main=paste("D=", Ds[i], " gap=", gaps[i], sep=""))

+ }

[peaksAlignment] Comparing 24 peaks to 23 peaks -- gap= 0.5 D= 0.1
[peaksAlignment] 21 matched. Similarity= 0.2308905
[peaksAlignment] Comparing 24 peaks to 23 peaks -- gap= 0.5 D= 10
[peaksAlignment] 21 matched. Similarity= 0.2180835
[peaksAlignment] Comparing 24 peaks to 23 peaks -- gap= 0.1 D= 0.1
[peaksAlignment] 15 matched. Similarity= 0.01170268
[peaksAlignment] Comparing 24 peaks to 23 peaks -- gap= 0.9 D= 0.1
[peaksAlignment] 22 matched. Similarity= 0.2785359
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You might ask: is the flagme package useful without peak detection results? Possibly. There have been some
developments in alignment (generally on LC-MS proteomics experiments) without peak/feature detection, such
as Prince et al. 2006, where a very similar dynamic programming is used for a pairwise alignment. We have
experimented with alignments without using the peaks, but do not have any convincing results. It does introduce a
new set of challenges in terms of highlighting differentially abundant metabolites. However, in the peaksAlignment
routine above (and those mentioned below), you can set usePeaks=FALSE in order to do scan-based alignments
instead of peak-based alignments. In addition, the flagme package may be useful simply for its bare-bones dynamic
programming algorithm.

3.1 Normalizing retention time score to drift estimates

In what is mentioned above for pairwise alignments, we are penalizing for differences in retention times that are
non-zero. But, as you can see from the TICs, some differences in retention time are consistent. For example, all
of the peaks from sample 0709_485 elute at later times than peaks from sample 0709_496. We should be able to
estimate this drift and normalize the time penalty to that estimate, instead of penalizing to zero. That is, we should
replace t; —t; with ¢; —¢; — czij where ciij is the expected drift between peak i of the first sample and peak j of the
second sample.



More details coming soon.

3.2 Imputing location of undetected peaks

One goal of the alignment leading into downstream data analyses is the generation of a table of abundances for each
metabolite across all samples. As you can see from the TICs above, there are some low intensity peaks that fall
below detection in some but not all samples. Our view is that instead of inserting arbitrary low constants (such as 0
or half the detection limit) or imputing the intensities post-hoc or having missing data in the data matrices, it is best
to return to the area of the where the peak should be and give some kind of abundance. The alignments themselves
are rich in information with respect to the location of undetected peaks. We feel this is a more conservative and
statistically valid approach than introducing arbitrary values.
More details coming soon.

4 Multiple alignment of several experimental groups

Next, we discuss the multiple alignment of peaks across many samples. With replicates, we typically do an alignment
within replicates, then combine these together into a summarized form. This cuts down on the computational cost.
For example, consider 2 sets of samples, each with 5 replicates. Aligning first within replicates requires 10+10+1
total alignments whereas an all-pairwise alignment requires 45 pairwise alignments. In addition, this allows some
flexibility in setting different gap and distance penalty parameters for the within alignment and between alignment.
An example follows.

> print (targets)

FileName Group

1 0709_468.CDF  mmA

2 0709_474.CDF  mmA

3 0709_475.CDF  mmA

4 0709_485.CDF mmC

5 0709_493.CDF  mmC

6 0709_496.CDF  mmC

7 0709_470.CDF  mmD

8 0709_471.CDF  mmD

9 0709_479.CDF  mmD

> ma <- multipleAlignment (pd, group=targets$Group, wn.gap=0.5, wn.D=.05,
+ bw.gap=.6, bw.D=0.05, usePeaks=TRUE,
+ filterMin=2, df=50, verbose=FALSE)

> ma

An object of class "multipleAlignment"
3 groups: 3 3 3 samples, respectively.
21 merged peaks

If you set verbose=TRUE, many nitty-gritty details of the alignment procedure are given. Next, we can take the
alignment results and overlay it onto the TICs, allowing a visual inspection.

> plot(pd, rtrange=c(7.5,8.5), runs=ma@betweenAlignment@runs,

+ mind=ma@betweenAlignment@ind, plotPeaks=TRUE,
+ plotPeakLabels=TRUE, max.near=8, how.near=.5,
+ col=rep(c("blue", "red", "black"), each=3))
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5 Correlation Alignment algorithm

Another approach, represented by the correlationAlignment function, is to use a modified form of the Pearson
correlation algorithm. After the correlation between two samples is calculated, a penalization coefficient, based on
the retention time differences, is applied to the result. It is also possible to set a retention time range in which
the penalization is 0, this because in gas chromatography we can have a little deviation in the retention time of
the metabolite so, based on the experimental data, we can choose the retention time window for the penalization
coefficient being applied.

> mp <- correlationAlignment (object=pd.2, thr=0.85, D=20, penality=0.2,
+ normalize=TRUE, minFilter=1)
> mp

An object of class correlationAlignment
Aligned Samples:3
Aligned Peaks:9

where thr represent correlation threshold from 0 (min) to 1 (max); D represent the retention time window in seconds;
penality represent the penality inflicted to a match between two peaks when the retention time difference exceed
the parameter D; normalize is about the peak normalization-to-100 before the correlation is calculated; minFilter
give the opportunity to exclude from the resulting correlation matrix each feature that in represented in our samples
less time than this value. The value of minFilter must be smaller than the number of samples.

The correlation-based peak alignment for multiple GC-MS peak lists uses a center-star technique to the alignment
of the peaks. The combination of the D and penality parameters allow the users to force the algorithm to match
the peaks close to the reference. The thr parameter control the matching factor.



5.1 Gathering results

The alignment results can be extracted from the multipleAlignment object as:

> ma@betweenAlignment@runs
[11 546213789
> ma@betweenAlignment@ind

(,11 [,2] [,3]1 [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1 1 1 1 1 1 1 1 1
[2,] NA NA NA 2 2 2 NA NA NA
[3,] 3 2 2 3 3 3 3 3 2
(4,1 4 3 3 4 4 4 4 4 3
[5,] 6 4 5 5 6 5 6 6 4
(6,] 7 5 6 7 8 6 7 7 5
[7,] 9 7 7 8 9 7 NA NA NA
[8,] 10 8 8 9 10 8 9 9 8
[9,] NA NA NA 11 12 9 NA NA NA
(10,1 13 9 9 12 14 10 10 12 11
[11,] 15 11 10 13 15 11 11 13 12
[12,] 18 12 13 NA NA NA 13 15 13
[13,] NA NA NA NA NA ©NA 14 16 14
[14,] 20 13 15 15 17 15 16 17 15
[15,1 21 14 16 17 18 16 17 18 16
[16,] NA NA NA 18 19 17 18 19 17
[17,] 23 16 19 19 20 19 19 20 18
[18,] 24 17 21 NA NA NA NA NA NA
[19,] 25 18 22 21 22 22 NA NA NA
[20,1] 26 19 23 22 23 24 23 24 20
[21,1] 27 20 24 23 24 26 24 25 21

This table would suggest that matched peak 8 (see numbers below the TICs in the figure above) corresponds to
detected peaks 9, 12, 11 inruns 4, 5, 6 and so on, same as shown in the above plot.

In addition, you can gather a list of all the merged peaks with the gatherInfo function, giving elements for
the retention times, the detected fragment ions and their intensities. The example below also shows the how to
construct a table of retention times of the matched peaks (No attempt is made here to adjust retention times onto
a common scale. Instead, the peaks are matched to each other on their original scale). For example:

> outlList <- gatherInfo(pd,ma)
> outList[[8]]

$rt
mmC.5 mmC.4 mmC. 6 mmA . 2 mmA.1 mmA .3 mmD .7 mmD . 8
7.809283 7.825483 7.802867 7.799283 7.800000 7.803050 7.811567 7.816033
mmD. 9
7.822517

$mz
[1] 56 58 69 73 74 75 77 110 134 147 184 228 229 281

$data

10



mmC.5 mmC.4 mmC.6 mmA.2 mmA.1 mmA.3 mmD.7 mmD.8 mmD.9
[1,] 3840 2731 2544 1697 1263 1437 2669 3028 2563
[2,] 14731 14105 14167 13902 8982 11768 13300 13784 14439
[3,] 6196 6228 5271 5373 3953 4426 5802 6230 6154
[4,] 47480 24064 34816 15176 13949 18072 26624 30088 22712
[6,] 4982 2895 3965 2315 1619 3094 3272 3220 2546
[6,] 26312 22352 23472 20744 16033 20272 23064 21888 22024
[7,] 6372 4619 3575 2375 1615 1910 3883 4707 3119
[8,] 5068 3062 2551 552 411 570 1937 2809 2072
[9,] 5299 2714 2766 176 263 415 2311 3431 2247
[10,] 22064 11447 20160 13162 11084 16504 14499 12684 11305

[11,] 6664 3159 3503 0 255 0 2828 4457 2419
[12,] 16075 6703 7660 0 0 0 6645 10229 5183
[13,] 8357 3080 4097 0 153 0 3123 5018 2492

[14,] 15915 4195 11465 6110 5653 9659 10519 7392 4722

> rtmat <- matrix(unlist(lapply(outList,.subset,"rt"), use.names=FALSE),

+ nr=length(outList), byrow=TRUE)

> colnames (rtmat) <- names(outList[[1]]$rt); rownames(rtmat) <- 1:nrow(rtmat)
> round(rtmat, 3)

mmC.5 mmC.4 mmC.6

:
d
:

mmD.7 mmD.8 mmD.9

1 7.512 7.534 7.506 7.531 7.526 7.540 7.520 7.519 7.531
2 NA NA NA 7.559 7.549 7.557 NA NA NA
3 7.558 7.580 7.551 7.576 7.566 7.574 7.560 7.565 7.577
4 7.575 7.597 7.569 7.588 7.583 7.592 7.577 7.582 7.594
5 7.615 7.614 7.614 7.616 7.617 7.614 7.617 7.610 7.617
6 7.695 7.717 7.694 7.714 7.709 7.649 7.703 7.702 7.714
7 7.804 7.803 7.711 7.736 7.783 7.712 NA NA NA
8 7.809 7.825 7.803 7.799 7.800 7.803 7.812 7.816 7.823
9 NA NA NA 7.942 7.880 7.826 NA NA NA
10 7.958 7.946 7.951 7.976 7.966 7.975 7.966 7.965 7.977
11 7.986 8.008 7.980 7.999 7.994 7.997 7.989 7.993 8.000
12 8.061 8.077 8.060 NA NA NA 8.069 8.068 8.080
13 NA NA NA NA NA NA 8.086 8.085 8.091
14 8.204 8.111 8.111 8.114 8.109 8.112 8.109 8.108 8.114
15 8.244 8.254 8.237 8.251 8.246 8.249 8.246 8.245 8.251
16 NA NA NA 8.285 8.263 8.283 8.280 8.262 8.263
17 8.324 8.334 8.323 8.337 8.332 8.335 8.326 8.330 8.337
18 8.352 8.363 8.352 NA NA NA NA NA NA
19 8.392 8.403 8.386 8.399 8.394 8.403 NA NA NA
20 8.432 8.437 8.432 8.434 8.434 8.437 8.435 8.433 8.440
21 8.461 8.477 8.460 8.474 8.469 8.472 8.469 8.468 8.474

6 Future improvements and extension

There are many procedures that we have implemented in our investigation of GC-MS data, but have not made part
of the package just yet. Some of the most useful procedures will be released, such as:

1. Parsers for other peak detection algorithms (e.g. XCMS, MzMine) and parsers for other alignment procedures
(e.g. SpectConnect) and perhaps retention indices procedures.

11



7

More convenient access to the alignment information and abundance table.
Statistical analysis of differential metabolite abundance.

Fragment-level analysis, an alternative method to summarize abundance across all detected fragments of a
metabolite peak.
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This vignette was built with/at ...

> sessionInfo()

R version 3.3.1 (2016-06-21)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.1 LTS

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[6] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] parallel stats graphics grDevices utils datasets methods
[8] base

other attached packages:

[1] flagme_1.30.0 CAMERA_1.30.0 xcms_1.50.0
[4] Biobase_2.34.0 ProtGenerics_1.6.0 BiocGenerics_0.20.0
[7] mzR_2.8.0 Rcpp_0.12.7 gcspikelite_1.11.0

loaded via a namespace (and not attached):

[1]
[4]
[7]
[10]

RColorBrewer_1.1-2 plyr_1.8.4 bitops_1.0-6
tools_3.3.1 rpart_4.1-10 gtable_0.2.0
lattice_0.20-34 Matrix_1.2-7.1 graph_1.52.0
igraph_1.0.1 SparseM_1.72 gridExtra_2.2.1
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[13]
[16]
[19]
[22]
[25]
[28]
[31]
[34]
[37]
[40]
[43]

cluster_2.0.5
S4Vectors_0.12.0
grid_3.3.1
RBGL_1.50.0
RANN_2.5
latticeExtra_0.6-28
ggplot2_2.1.0
scales_0.4.0
splines_3.3.1
KernSmooth_2.23-15
chron_2.3-47

> date()

(1]

caTools_1.17.1
stats4_3.3.1
nnet_7.3-12
survival_2.39-5
foreign_0.8-67
Formula_1.2-1
gplots_3.0.1
codetools_0.2-15

MassSpecWavelet_1.40.0

acepack_1.3-3.3

"Mon Oct 17 18:24:47 2016"
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gtools_3.5.0
multtest_2.30.0
data.table_1.9.6
BiocParallel_1.8.0
gdata_2.17.0
magrittr_1.5
Hmisc_3.17-4
MASS_7.3-45
colorspace_1.2-7
munsell_0.4.3



