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Introduction

Di�usion maps are spectral method for non-linear dimension reduction introduced by Coifman et al.
(2005). Di�usion maps are based on a distance metric (di�usion distance) which is conceptually rele-
vant to how di�erentiating cells follow noisy di�usion-like dynamics, moving from a pluripotent state
towards more di�erentiated states.

TheRpackagedestiny implements the formulationof di�usionmapspresented inHaghverdi et al. (2015)
which is especially suited for analyzing single-cell gene expression data from time-course experiments. It
implicitly arranges cells along their developmental path, with bifurcations where di�erentiation events
occur.

In particular we follow Haghverdi et al. (2015) and present an implementation of di�usion maps in R
that is less a�ected by sampling density heterogeneities and thus capable of identifying both abun-
dant and rare cell populations. In addition, destiny implements complex noise models reflecting zero-
inflation/censoring due to drop-out events in single-cell qPCRdata and allows formissing values. Finally,
we further improve on the implementation fromHaghverdi et al. (2015), and implement a nearest neigh-
bour approximation capable of handling very large data sets of up to 300.000 cells.

For those familiar with R, and data preprocessing, we recommend the section Plotting.

All code in this vignette is accessible via edit(vignette('destiny'))
3Current Address: The European Bioinformatics Institute (EMBL-EBI), WellcomeGenomeCampus, CB10 1SD, Hinxton, Cam-

bridge, UK
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1 Preprocessing of single qPCR data

As an example, we present in the following the preprocessing of data from Guo et al. (2010). This dataset
was produced by the Biomark RT-qPCR system and contains Ct values for 48 genes of 442mouse embry-
onic stem cells at 7 di�erent developmental time points, from the zygote to blastocyst.

Starting at the totipotent 1-cell stage, cells transition smoothly in the transcriptional landscape towards
either the trophoectoderm lineage or the inner cell mass. Subsequently, cells transition from the inner
cell mass either towards the endoderm or epiblast lineage. This smooth transition from one develop-
mental state to another, including two bifurcation events, is reflected in the expression profiles of the
cells and can be visualized using destiny.

Import

Downloading the table S4 from the publication website will give you a spreadsheet “mmc4.xls”, from
which the data can be loaded:

In [2]: library(xlsx)
raw_ct <- read.xlsx('mmc4.xls', sheetName = 'Sheet1')

raw_ct[1:9, 1:9] #preview of a few rows and columns
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Cell Actb Ahcy Aqp3 Atp12a Bmp4 Cdx2 Creb312 Cebpa
1C 1 14.01 19.28 23.89 28 28 21.28 20.84 28.00
1C 2 13.68 18.56 28.00 28 28 23.43 20.93 28.00
1C 3 13.42 18.19 26.18 28 28 22.87 19.61 28.00
1C 4 13.69 18.59 28.00 28 28 23.28 20.72 28.00
1C 5 13.47 18.60 24.20 28 28 24.19 21.75 23.69
1C 6 12.86 17.37 25.53 28 28 21.87 21.27 28.00
1C 7 12.95 17.37 23.93 28 28 22.74 21.12 28.00
1C 8 12.77 18.40 23.68 28 28 24.14 19.80 28.00
1C 9 13.29 18.26 28.00 28 28 21.91 21.18 28.00

The value 28 is the assumed background expression of 28 cycle times.

In order to easily clean and normalize the data without mangling the annotations, we convert the
data.frame into a Bioconductor ExpressionSet using the as.ExpressionSet function from
the destiny package, and assign it to the name ct:

In [3]: library(destiny)
library(Biobase)

ct <- as.ExpressionSet(raw_ct)
ct

ExpressionSet (storageMode: lockedEnvironment)
assayData: 48 features, 442 samples
element names: exprs

protocolData: none
phenoData

sampleNames: 1 2 ... 442 (442 total)
varLabels: Cell
varMetadata: labelDescription

featureData: none
experimentData: use 'experimentData(object)'
Annotation:

TheadvantageofExpressionSetoverdata.frame is that tasks likenormalizing theexpressionsare
both faster and do not accidentally destroy annotations by applying “normalization” to columns that are
not expressions. Theapproachof handling a separate expressionmatrixandannotationdata.frame
requires you to be careful when adding or removing samples on both variables, whileExpressionSet
does it internally for you.

The object internally stores an expression matrix of features× samples, retrievable using exprs(ct),
and an annotation data.frame of samples × annotations as phenoData(ct). Annotations can be
accessed directly via ct$column and ct[['column']]. Note that the expression matrix is trans-
posed compared to the usual samples× features data.frame.
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Data cleaning

We remove all cells that have a value bigger than the background expression, indicating data points not
available (NA). Alsowe remove cells from the 1 cell stage embryos, since theywere treated systematically
di�erent (Guo et al. (2010)).

For this, we add an annotation column containing the embryonic cell stage for each sample by extracting
the number of cells from the “Cell” annotation column:

In [4]: num_cells <- gsub('^(\\d+)C.*$', '\\1', ct$Cell)
ct$num_cells <- as.integer(num_cells)

We then use the new annotation column to create two filters:

In [5]: # cells from 2+ cell embryos
have_duplications <- ct$num_cells > 1
# cells with values ≤ 28
normal_vals <- apply(exprs(ct), 2, function(smp) all(smp <= 28))

Wecanuse thecombinationofboth filters toexcludebothnon-dividedcells andsuchcontainingCtvalues
higher than the baseline, and store the result as cleaned.ct:

In [6]: cleaned_ct <- ct[, have_duplications & normal_vals]

Normalization

Finallywe followGuoet al. (2010) andnormalize each cell using the endogenous controls Actb andGapdh
by subtracting their average expression for each cell. Note that it is not clear how to normalise sc-qPCR
data as the expression of housekeeping genes is also stochastic. Consequently, if such housekeeping
normalisation is performed, it is crucial to take the mean of several genes.

In [7]: housekeepers <- c('Actb', 'Gapdh') # houskeeper gene names

normalizations <- colMeans(exprs(cleaned_ct)[housekeepers, ])

guo_norm <- cleaned_ct
exprs(guo_norm) <- exprs(guo_norm) - normalizations

The resulting ExpressionSet contains the normalized Ct values of all cells retained a�er cleaning.

2 Plotting

Thedatanecessary to createadi�usionmapwithourpackage is aa cell×genematrixordata.frame,
or alternatively an ExpressionSet (which has a gene×cell exprs matrix). In order to create
a DiffusionMap object, you just need to supply one of those formats as first parameter to the
DiffusionMap function. In the case of a data.frame, each floating point column is interpreted as
expression levels, and columns of di�erent type (e.g. factor, character or integer) are assumed
to be annotations and ignored. Note that single-cell RNA-seq count data should be transformed using a
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variance-stabilizing transformation (e.g. log or rlog); the Ct scale for qPCR data is logarithmic already (an
increase in 1 Ct corresponds to a doubling of transcripts).

In order to create a di�usionmap to plot, you have to call DiffusionMap, optionally with parameters.
If the number of cells is small enough (< ~1000), you do not need to specify approximations like k (for k
nearest neighbors).

If you started reading here, execute data(guo.norm) to load the dataset that was created in the pre-
vious section.

In [8]: library(destiny)
#data(guo_norm)
dm <- DiffusionMap(guo_norm)

Simply calling plot on the resulting object difwill visualize the di�usion components:

In [9]: plot(dm)
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The di�usion map nicely illustrates a branching during the first days of embryonic development.

The annotation column containing the cell stage can be used to annotate our di�usion map. Using the
annotation as col parameter will automatically color the map using the current R color palette. Use
palette(colors) to configure it globally or plot(..., pal = colors) for one plot.

In [10]: palette(cube_helix(6)) # configure color palette

plot(dm, pch = 20, # pch for prettier points
col_by = 'num_cells', # or “col” with a vector or one color
legend_main = 'Cell stage')
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Three branches appear in themap, with a bifurcation occurring the 16 cell stage and the 32 cell stage. The
di�usionmap is able to arrange cells according to their expressionprofile: Cells that divided themost and
the least appear at the tips of the di�erent branches.

In order to display a 2D plot we supply a vector containing two di�usion component numbers (here 1 &
2) as second argument.

In [11]: plot(dm, 1:2, pch = 20, col_by = 'num_cells',
legend_main = 'Cell stage')

DC1

D
C

2

2

4

8

16

32

64

Cell stage

6



Alternative visualizations

Di�usion maps consist of eigenvectors called Di�usion Components (DCs) and corresponding eigenval-
ues. Per default, the first 20 are returned.

You are also able to use packages for interative plots like rgl in a similar fashion, by directly subsetting
the DCs using eigenvectors(dif):

In [12]: library(rgl)
plot3d(eigenvectors(dm)[, 1:3],

col = log2(guo_norm$num_cells),
type = 's', radius = .01)

view3d(theta = 10, phi = 30, zoom = .8)
# now use your mouse to rotate the plot in the window
rgl.close()

For the popularggplot2 package, there is built in support in the formof afortify.DiffusionMap
method, which allows to use Di�usionMap objects as data parameter in the ggplot and qplot func-
tions:

In [13]: library(ggplot2)
qplot(DC1, DC2, data = dm, colour = factor(num_cells)) +

scale_color_cube_helix()
# or alternatively:
#ggplot(dif, aes(DC1, DC2, colour = factor(num.cells))) + ...
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As aesthetics, all di�usion components, gene expressions, and annotations are available. If you plan to
make many plots, create a data.frame first by using as.data.frame(dif) or fortify(dif),
assign it to a variable name, and use it for plotting.

3 Parameter selection

The most important parameter for the visualization, dims, is described in the following section. An im-
portant parameter in v1, σ, is explained in its own vignette “Global Sigma”.

Other parameters are explained at the end of this section.

Dimensions dims

Di�usionmaps consist of the eigenvectors (which we refer to as di�usion components) and correspond-
ing eigenvalues of the di�usion distance matrix. The latter indicate the di�usion components’ impor-
tance, i.e. how well the eigenvectors approximate the data. The eigenvectors are decreasingly meaning-
ful.

In [14]: plot(eigenvalues(dm), ylim = 0:1, pch = 20,
xlab = 'Diffusion component (DC)', ylab = 'Eigenvalue')

8



5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Diffusion component (DC)

Ei
ge

nv
al

ue

The later DCs o�en become noisy and less useful:

In [16]: par(mfrow = c(1, 2), mar = c(2,2,2,2), pch = 20)

plot(dm, 3:4, col_by = 'num_cells', draw_legend = FALSE)
plot(dm, 19:20, col_by = 'num_cells', draw_legend = FALSE)
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Other parameters

If the automatic exclusion of categorical and integral features for data frames is not enough, you can also
supply a vector of variable names or indices to use with the vars parameter. If you find that calculation
time or usedmemory is too large, the parameter k allows you to decrease the quality/runtime+memory
ratio by limiting the number of transitions calculated and stored. It is typically not needed if youhave less
than fewthousandcells. Then.eigsparameter specifies thenumberofdi�usioncomponents returned.
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For more information, consult help(DiffusionMap).

4 Missing and uncertain values

destiny is particularly well suited for gene expression data due to its ability to cope with missing and
uncertain data.

Censored values

Platforms such as RT-qPCR cannot detect expression values below a certain threshold. To copewith this,
destiny allows to censor specific values. In the case of Guo et al. (2010), only up to 28 qPCR cycles were
counted. All transcripts that would needmore than 28 cycles are grouped together under this value. This
is illustrated by gene Aqp3:

In [18]: hist(exprs(cleaned_ct)['Aqp3', ], breaks = 20,
xlab = 'Ct of Aqp3', main = 'Histogram of Aqp3 Ct',
col = palette()[[4]], border = 'white')
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For our censoring noise model we need to identify the limit of detection (LoD). While most researchers
use a global LoD of 28, reflecting the overall sensitivity of the qPCRmachine, di�erent strategies to quan-
titatively establish this gene-dependent LoD exist. For example, dilution series of bulk data can be used
to establish an LoD such that a qPCR reaction will be detected with a specified probability if the Ct value
is below the LoD. Here, we use such dilution series provided by Guo et al. and first determine a gene-wise
LoD as the largest Ct value smaller than 28. We then follow the manual Application Guidance: Single-
Cell Data Analysis of the popular Biomarks system and determine a global LoD as the median over the
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gene-wise LoDs. We use the dilution series from table S7 (mmc6.xls). If you have problems with the
speed of read.xlsx, consider storing your data in tab separated value format and usingread.delim
or read.ExpressionSet.

In [19]: dilutions <- read.xlsx('mmc6.xls', 1L)
dilutions$Cell <- NULL # remove annotation column

get_lod <- function(gene) gene[[max(which(gene != 28))]]

lods <- apply(dilutions, 2, get_lod)
lod <- ceiling(median(lods))
lod

25

This LoDof 25 and themaximumnumber of cycles the platform canperform (40), defines the uncertainty
range that denotes the possible range of censored values in the censoring model. Using the mean of the
normalization vector, we can adjust the uncertainty range and censoring value to be more similar to the
other values in order to improve distance measures between data points:

In [20]: lod_norm <- ceiling(median(lods) - mean(normalizations))
max_cycles_norm <- ceiling(40 - mean(normalizations))

list(lod_norm = lod_norm, max_cycles_norm = max_cycles_norm)

$lod_norm 10

$max_cycles_norm 25

We then also need to set the normalized values that should be censored – namely all data points were no
expression was detected a�er the LoD – to this special value, because the values at the cycle threshold
were changed due to normalization.

In [21]: guo <- guo_norm
exprs(guo)[exprs(cleaned_ct) >= 28] <- lod_norm

This version of the dataset is avaliable as data(guo) from the destiny package.

Nowwe call the the DiffusionMap function using the censoring model:

In [22]: thresh_dm <- DiffusionMap(guo,
censor_val = lod_norm,
censor_range = c(lod_norm,

max_cycles_norm),
verbose = FALSE)

plot(thresh_dm, 1:2, col_by = 'num_cells', pch = 20,
legend_main = 'Cell stage')
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Compared to the di�usion map created without censoring model, this map looks more homogeneous
since it contains more data points.

Missing values

Gene expression experiments may fail to produce some data points, conventionally denoted
as “not available” (NA). By calling DiffusionMap(..., missings = c(total.minimum,
total.maximum)), you can specify the parameters for the missing value model.

As in the data from Guo et al. (2010) no missing values occurred, we illustrate the capacity of destiny to
handle missing values by artificially treating ct values of 999 (i. e. data points were no expression was
detected a�er 40 cycles) as missing. This is purely for illustrative purposes and in practice these values
should be treated as censored as illustrated in the previous section.

In [23]: # remove rows with divisionless cells
ct_w_missing <- ct[, ct$num_cells > 1L]
# and replace values larger than the baseline
exprs(ct_w_missing)[exprs(ct_w_missing) > 28] <- NA

We then perform normalization on this version of the data:

In [24]: housekeep <- colMeans(exprs(ct_w_missing)[housekeepers, ],
na.rm = TRUE)

w_missing <- ct_w_missing
exprs(w_missing) <- exprs(w_missing) - housekeep

exprs(w_missing)[is.na(exprs(ct_w_missing))] <- lod_norm
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Finally, we create a di�usion map with both missing value model and the censoring model from before:

In [25]: dif_w_missing <- DiffusionMap(w_missing,
censor_val = lod_norm,
censor_range = c(lod_norm,

max_cycles_norm),
missing_range = c(1, 40),
verbose = FALSE)

plot(dif_w_missing, 1:2, col_by = 'num_cells', pch = 20,
legend_main = 'Cell stage')
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This result looks very similar to our previous di�usion map since only six additional data points have
beenadded. However if yourplatformcreatesmoremissing values, includingmissing valueswill bemore
useful.

5 Prediction

Inorder toproject cells intoanexistingdi�usionmap, for example tocompare twoexperimentsmeasured
by the sameplatformor toaddnewdata toanexistingmap,we implementeddm.predict. It calculates
the transition probabilities between datapoints in old and new data and projects cells into the di�usion
map using the existing di�usion components.

As anexampleweassume thatwe createdadi�usionmap fromoneexperiment on64 cell stage embryos:

In [26]: ct64 <- guo[, guo$num_cells == 64]
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dm64 <- DiffusionMap(ct64)

Let us compare the expressions from the 32 cell state embryos to the existingmap. Weusedm.predict
to create thedi�usion components for the newcells using the existing di�usion components from theold
data:

In [27]: ct32 <- guo[, guo$num_cells == 32]
pred32 <- dm_predict(dm64, ct32)

By providing the more and col.more parameters of the plot function, we show the first two DCs for
both old and new data:

In [28]: par(mar = c(2,2,1,5), pch = 20)
plot(dm64, 1:2, col = palette()[[6]],

new_dcs = pred32, col_new = palette()[[4]])
colorlegend(c(32L, 64L), palette()[c(4,6)])
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Clearly, the 32 and 64 cell state embryos occupy similar regions in the map, while the cells from the 64
cell state are developed further.

6 Troubleshooting

There are several properties of data that can yield subpar results. This section explains a few strategies
of dealing with them:

read.xlsx is slow: Using read.xlsx2 and manually converting the text columns into numbers af-
twerwards could be a solution, but using tab separated values (TSV) or comma separated values (CSV) is
more portable and robust than Microso� Excel.
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Preprocessing: if there is a strongdependencyof thevarianceon themean in yourdata (as for scRNA-Seq
count data), use a variance stabilizing transformation such as the square root or a (regularized) logarithm
before running destiny.

Outliers: If a Di�usion Component strongly separates some outliers from the remaining cells such that
there is a much greater distance between them than within the rest of the cells (i. e. almost two discrete
values), consider removing those outliers and recalculating the map, or simply select di�erent Di�usion
Components. It may also a be a good idea to check whether the outliers are also present in a PCA plot to
make sure they are not biologically relevant.

Large datasets: If memory is not su�icient and no machine with more RAM is available, the k parame-
ter could be decreased. In addition (particularly for >500,000 cells), you can also downsample the data
(possibly in a density dependent fashion).

“Large-p-small-n” data: E.g. for scRNA-Seq, it is may be necessary to first perform a Principal Compo-
nent Analysis (PCA) on the data (e.g. using prcomp or princomp) and to calculate the Di�usion Com-
ponents from the Principal Components (typically using the top 50 components yields good results).
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