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1 About

The bigmelon package for lllumina methylation data provides a fast and convenient way to apply a variety of
different normalisation methods to your data, such as those previously described by Pidsley et al. [1] and im-
plemented in the package wateRmelon. Bigmelon extends the capability of wateRmelon to higher dimensional
data, allowing much larger data sets containing many more arrays to be processed, while also providing a con-
venient way to store this data for future access. This has been achieved by adapting methods from the gdsfmt
package, originally designed for handling SNP data, which through efficient memory use and management is
able to overcome some of the memory overheads associated with handling big data in R.

2 Installation

bigmelon works with existing Bioconductor packages and therefore has a number of dependencies. The in-
stall.packages() should install the required packages automatically, but should this not succeed for any reason,
the following commands can be used to install these manually:

> source('http://bioconductor.org/biocLite.R')
> biocLite('wateRmelon', 'gdsfmt')

Install the latest package from a local copy (located in the current working directory of your R session):

> install.packages('bigmelon_0.99.11.tar.gz', repos = NULL, type = 'source')

3 Using Bigmelon

> library(bigmelon)

3.1 Loading Data

There are multiple methods that can be used to load in data into a gds object. These can either be from
GenomeStudio final report text files or from raw binary (.IDAT) files.
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3.1.1 IDAT Files

IDAT files are the raw intensities obtained from DNA methylation microarrays and are split into two files per
sample (one Red Channel and one Green Channel). These are typically read into R using minfi or methylumi.
In bigmelon IDAT files can be read in using the iadd or iadd2 functions. These functions pass to methylu-
mIDATepic (wateRmelon) to read in the data - although it should be noted that the full annotation of features
are not included when reading from idats.

iadd and iadd2 function differently. iadd will take a vector of barcodes, iadd2 will accept a directory pathway
and extract all IDAT files within the specified path.

iadd?2 also has the functionality to read IDAT files in chunks. This is useful if you are attempting to read in a
lot of data at once and do not have sufficient memory on your workstation to support this. This method is
recommended if you are using a workstation bounded by memory limitations.

> # read in an IDAT file with barcode 'sentrixid_rnncnn'
> gfile <- iadd('sentrixid_rnncnn', gds = 'melon.gds')
> gfile <- iadd2('Data/IDATLocations/dataset', gds = 'melon.gds', chunksize = 100)

3.1.2 ExpressionSet Objects

You may have been given a MethylumiSet, RGChannelSet or MethylSet instead of idats. These can be passed
to es2gds to convert the data into a gds.class

Henceforth we will convert the ExpressionSet data object 'melon’ packaged within wateRmelon to demonstrate
further down stream analysis.

> data(melon)
> gfile <- es2gds(melon, 'melon.gds')

3.1.3 Text Files

To read in text files, the methyLumiR function from methylumi can be used. If using this method, we suggest
saving the unnormalised, uncorrected version of the data. We also recommend keeping the barcode names
(SentrixID_RnnCnn) as the column headers or in a separate dataframe. Alternatively you can use the function
finalreport2gds that will output a .gds object.

> library(methylumi)

> # read Illumina methylation data into a MethyLumiSet object

> melon <- methyLumiR('finalreport.txt')

> # read Illumina methylation final report into a gds.class object.
> gfile <- finalreport2gds('finalreport.txt', gds='melon.gds')

Assuming you have used methyLumiR you would then need to convert the resultant object to a Genomic
Data Structure (GDS) data file. This can also be achieved using the function es2gds which can convert
MethyLumiSet objects (from methylumi, RGChannelSet and MethylSet objects (from minfi) as described
above.
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> # convert a MethyLumiSet object to a gds.class object
> gfile <- es2gds(melon, 'melon.gds')

3.2 Opening and Closing gds files

Now that you have created a .gds file you can continue working on it within the same R session. Or close the
file for later use, or to share with others.

The functions openfn.gds and closefn.gds are used.

> # Closing File

> closefn.gds(gfile)

> # Opening File

> gfile <- openfn.gds('melon.gds')

Recommended: See ?Popenfn.gds

3.3 Exploring the gds.class

The resulting gds.class may be different to any other data-structure you have previously used. Simply, it
resembles an S4 object but instead of slots there are nodes with a gdsn.class class. To access these, specialized
functions need to be used as common R functionality (@ and $) are not yet existent for these objects.

When printing the gds.object we are given an almost directory-like output.
> print(gfile)

File: /tmp/RtmpyZSwVy/Rbuild32965b3c56c/bigmelon/vignettes/melon.gds (1.4M)
+ [ ]

| --+ description *

| -——+ betas { Float64 3363x12, 315.3K }

|--+ pvals { Float64 3363x12, 315.3K }

|--+ methylated { Int32 3363x12, 157.6K }

| -—+ unmethylated { Int32 3363x12, 157.6K }
|--+ fData [ data.frame ] *

| |--+ TargetID { Str8 3363, 39.8K }

| |--+ ProbeID_A { Str8 3363, 29.6K }

| |--+ ProbeID_B { Str8 3363, 29.6K }

| |--+ ILMNID { Str8 3363, 39.8K }

| |--+ NAME { Str8 3363, 39.8K }

| |--+ ADDRESSA_ID { Str8 3363, 29.6K }

| |--+ ALLELEA_PROBESEQ { Str8 3363, 167.5K }
| |--+ ADDRESSB_ID { Str8 3363, 8.1K }

| |--+ ALLELEB_PROBESEQ { Str8 3363, 33.3K }
| |--+ INFINIUM_DESIGN_TYPE { Str8 3363, 9.3K }
| |--+ NEXT_BASE { Str8 3363, 3.9K }

| |--+ COLOR_CHANNEL { Str8 3363, 5.1K }

| |--+ FORWARD_SEQUENCE { Str8 3363, 402.7K }
| |--+ GENOME_BUILD { Str8 3363, 9.7K }
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| |--+ CHR { Str8 3363, 7.5K }

| |--+ MAPINFO { Str8 3363, 29.7K }

| |--+ SOURCESEQ { Str8 3363, 164.3K }

| |--+ CHROMOSOME_36 { Str8 3363, 7.5K }

| |--+ COORDINATE_36 { Str8 3363, 29.7K }

| [--+ STRAND { Str8 3363, 6.5K }

| |--+ PROBE_SNPS { Str8 3363, 8.3K }

| |--+ PROBE_SNPS_10 { Str8 3363, 4.8K }

| |--+ RANDOM_LOCI { Str8 3363, 3.3K }

| |--+ METHYL27_L0OCI { Str8 3363, 3.8K }

| |-—-+ UCSC_REFGENE_NAME { Str8 3363, 27.8K }
| |--+ UCSC_REFGENE_ACCESSION { Str8 3363, 46.5K }
| |--+ UCSC_REFGENE_GROUP { Str8 3363, 27.0K }
| |--+ UCSC_CPG_ISLANDS_NAME { Str8 3363, 38.1K }
| |--+ RELATION_TO_UCSC_CPG_ISLAND { Str8 3363, 13.3K }
| |--+ PHANTOM { Str8 3363, 6.9K }

| |--+ DMR { Str8 3363, 3.8K 1}

| |--+ ENHANCER { Str8 3363, 5.0K }

| |--+ HMM_ISLAND { Str8 3363, 25.8K }

| |-—+ REGULATORY_FEATURE_NAME { Str8 3363, 18.6K }
| |--+ REGULATORY_FEATURE_GROUP { Str8 3363, 20.1K }
| |-—+ DHS { Str8 3363, 4.4K }

| |--+ Index { Str8 3363, 18.0K }

| \-—+ X38 { Str8 3363, 3.3K }

|--+ pData [ data.frame ] *

| |-—+ sampleID { Str8 12, 216B }

| |--+ label { Str8 12, 216B }

| \-—+ sex { Str8 12, 24B }

|--+ QCmethylated { Int32 835x12, 39.1K }

| --+ QCunmethylated { Int32 835x12, 39.1K }

|--+ QCrownames { Str8 835, 10.1K }

|--+ history [ data.frame ] *

| |--+ submitted { Str8 4, 80B }

| |--+ finished { Str8 4, 80B }

| \-—-+ command { Str8 4, 118B }

\--+ paths { Str8 2, 30B }

From this output we can see some useful information about our object such as the file name, total object size
and the name, size and type of each node within the gds object.

Typically a bigmelon gds file is comprised of some common nodes these being: betas, methylated, unmethylated,
pvals, fData, pData, and History. If you are familiar with the MethyLumiSet this will be immediately familiar
to you. If not a brief description is as follows

betas: The ratio between Methylated and Unmethylated intensities - most commonly used for analysis
methylated: The methylated intensities

unmethylated: The unmethylated intensities

pvals: The detection P values of the array

NBeads(not shown): The total beadcount (per feature) on the array.
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e fData: The feature data, which contains all relavent biological information to CpG probes within the
micro-array (rows).

e pData: The pheno data, which contains information relevant to biological samples (columns).

e history: Brief description of operations applied to the file.

To access the data represented in the object we need to use the function index.gdsn
> index.gdsn(gfile, 'betas')

+ betas { Float64 3363x12, 315.3K }
> class(index.gdsn(gfile, 'betas'))
[1] "gdsn.class"

> # Access nodes with additional nodes inside

> index.gdsn(gfile, 'fData/TargetID')
+ fData/TargetID { Str8 3363, 39.8K }

Alternatively, there are some accessors written for the common object names see 7’bigmelon-accessors’.
Majority of these accessors will pass to index.gdsn but if the object is small enough the accessor may read
the object into memory without further indexing.

> betas(gfile)
+ betas { Float64 3363x12, 315.3K }
> class(betas(gfile))

[1] "gdsn.class"

If the directory-tree output is hard to interpret or you wish to list all available nodes the function 1s.gdsn
allows you to view the contents of a gds file in a vector.

> 1s.gdsn(gfile)

[1] "description" "betas" "pvals" "methylated" "unmethylated"
[6] "fData" "pData" "QCmethylated" "QCunmethylated" "QCrownames"
[11] "history" "paths"

> # Look into nodes with additional nodes
> 1ls.gdsn(index.gdsn(gfile, 'fData'))

[1] "TargetID" "ProbeID_A"
[3] "ProbeID_B" "ILMNID"
[5] "NAME" "ADDRESSA_ID"
[7] "ALLELEA_PROBESEQ" "ADDRESSB_ID"
[9] "ALLELEB_PROBESEQ" "INFINTUM_DESIGN_TYPE"
[11] "NEXT_BASE" "COLOR_CHANNEL"
[13] "FORWARD_SEQUENCE" "GENOME_BUILD"
[15] "CHR" "MAPINFO"
[17] "SOURCESEQ" "CHROMOSOME_36"
[19] "COORDINATE_36" "STRAND"
[21] "PROBE_SNPS" "PROBE_SNPS_10"

[23]

"RANDOM_LOCT"

"METHYL27_LOCI"
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[25] "UCSC_REFGENE_NAME" "UCSC_REFGENE_ACCESSION"
[27] "UCSC_REFGENE_GROUP" "UCSC_CPG_ISLANDS_NAME"
[29] "RELATION_TO_UCSC_CPG_ISLAND" "PHANTOM"

[31] "DMR" "ENHANCER"

[33] "HMM_ISLAND" "REGULATORY_FEATURE_NAME"
[35] "REGULATORY_FEATURE_GRQUP" "DHS"

[37] "Index" "X38"

3.4 Exploring the gdsn.class

You may ask the question - 'How do | access that juicy data?’. To do this, the functions read.gdsn and
readex.gdsn are used. read.gdsn will load the entire object represented in a gdsn.class object into memory.
While readex.gdsn allows you to specify a subset to load into memory.

> # Call a gdsn.class node
> anode <- betas(gfile)
> anode

+ betas { Float64 3363x12, 315.3K }
> class(anode)
[1] "gdsn.class"

> # All data
> dat <- read.gdsn(anode)
> dim(dat)

[1] 3363 12
> head(dat)

[,1] (,2] (,3] (,4] (,5] [,6] (,7] [,8] (.91 [,10]

[1,] 0.67233 0.71083 0.67504 0.69099 0.75096 0.70100 0.69015 0.70555 0.73616 0.69577

[2,] 0.57508 0.37251 0.65755 0.48510 0.60844 0.57751 0.55881 0.58700 0.56206 0.51776

[3,] 0.75909 0.77251 0.78121 0.78238 0.83259 0.77071 0.67976 0.81480 0.79522 0.77952

[4,] 0.39772 0.52589 0.30660 0.43188 0.36626 0.51246 0.43329 0.29387 0.50085 0.49857

[5,] 0.70793 0.75873 0.75429 0.76494 0.77341 0.76085 0.75011 0.70859 0.76726 0.71562

[6,] 0.43090 0.44909 0.51544 0.50341 0.48614 0.48561 0.46985 0.40216 0.44669 0.51309
[,11] [,12]

[1,] 0.71457 0.71944

[2,] 0.50770 0.54396

[3,] 0.70430 0.71377

[4,] 0.48607 0.36159

[5,] 0.70947 0.75575

[6,] 0.55050 0.54047

> # Subset!

> datsub <- readex.gdsn(anode, sel = list(1:5, 1:3))
> dim(datsub)

[1] 5 3
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> datsub

[,1] [,2] [,3]
[1,] 0.67233 0.71083 0.67504
[2,] 0.57508 0.37251 0.65755
[3,]1 0.75909 0.77251 0.78121
[4,] 0.39772 0.52589 0.30660
[5,] 0.70793 0.75873 0.75429

You may immediately notice that the rownames and column names of the matrix are missing. This is an
unfortunate side-effect of using read.gdsn because such information is not stored within the specified gds
node. However within bigmelon we have written a wrapper-function for read.gdsn (and readex.gdsn) to
load data into R. This is achieved using > [>. The purpose of this is to enable similar indexing operations that
most will be familiar with.

> # Re-using node from previous example
> anode

+ betas { Float64 3363x12, 315.3K }

> datsub <- anode[1:5,1:3]
> dim(datsub)

[1] 5 3
> datsub

6057825008_R01C01 6057825008_R01C02 6057825008_R02C01
cg00000029 0.67233 0.71083 0.67504
cg00000108 0.57508 0.37251 0.65755
cg00000109 0.75909 0.77251 0.78121
cg00000165 0.39772 0.52589 0.30660
cg00000236 0.70793 0.75873 0.75429

> # Additionally, the row and col names can be turned off
> anode[1:5, 1:3, name = FALSE]

[,1] [,2] [,3]
[1,] 0.67233 0.71083 0.67504
[2,] 0.57508 0.37251 0.65755
[3,] 0.75909 0.77251 0.78121
[4,] 0.39772 0.52589 0.30660
[5,] 0.70793 0.75873 0.75429

There are a few more tricks that are possible in bigmelon that we will briefly explore here.

> # Logical Indexing
> anode[1:5,c(TRUE,FALSE,FALSE)]

6057825008_R01C01 6057825008_R02C02 6057825008_R04C01 6057825008_R0O5C02
cg00000029 0.67233 0.69099 0.69015 0.69577
cg00000108 0.57508 0.48510 0.55881 0.51776
cg00000109 0.75909 0.78238 0.67976 0.77952
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cg00000165 0.39772 0.43188 0.43329 0.49857
cg00000236 0.70793 0.76494 0.75011 0.71562

> # Ordering calls
> anode[c(5,9,1,500,345), c(8,4,1,3)]

6057825008_R04C02 6057825008_R02C02 6057825008_R01C01 6057825008_R02C01

cg00000236 0.70859 0.76494 0.70793 0.75429
cg00000363 0.10832 0.12452 0.11314 0.12508
cg00000029 0.70555 0.69099 0.67233 0.67504
cg00020649 0.03407 0.03478 0.02913 0.03470
cg00014272 0.07078 0.07480 0.06852 0.06607

> # Indexing by characters (and drop functionality)
> anode[c('cg00000029', 'cg00000236'), '6057825008_R02C01', drop = FALSE]

6057825008_R02C01
cg00000029 0.67504
cg00000236 0.75429

> # Loading entire data (no indexing)
> dat <- anode[ , ]
> dim(dat)

[1] 3363 12
Additionally it is possible to call a gds node from a gds.class within the ’ [’ indexing.
> gfile[1:5, 1:3, node = 'betas', name = TRUE]

6057825008_R01C01 6057825008_R01C02 6057825008_R02C01

cg00000029 0.67233 0.71083 0.67504
cg00000108 0.57508 0.37251 0.65755
cg00000109 0.75909 0.77251 0.78121
cg00000165 0.39772 0.52589 0.30660
cg00000236 0.70793 0.75873 0.75429

> gfile[1:5, 1:3, node = 'methylated', name = TRUE]
6057825008_R01C01 6057825008_R01C02 6057825008_R02C01

cg00000029 2926 2940 2715
cg00000108 4301 2060 5075
cg00000109 1503 1630 1821
cg00000165 943 1381 910
cg00000236 2322 2607 2898

As a brief side note, the row and column names are still stored within the gds data file. Located at the bottom
of each gds data file will be a node labelled as "paths”. This contains a string to where the row and column
names are stored. These are determined by default upon the creation of the gds data file but in events where
they are incorrect they can be corrected with the redirect.gds.

> read.gdsn(index.gdsn(gfile, "paths"))

[1] "fData/TargetID" "pData/sampleID"
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> head(read.gdsn(index.gdsn(gfile, "fData/TargetID")))
[1] "cg00000029" "cg00000108" "cgO0000109" "cgO0000165" "cg00000236" "cg00000289"
> head(read.gdsn(index.gdsn(gfile, "pData/sampleID")))

[1] "6057825008_R0O1CO1" "6057825008_R01C02" "6057825008_R02CO1" "6057825008_R02C0O2"
[5] "6057825008_R0O3CO1" "6057825008_R0O3C02"

4 Preprocessing

4.1 Quality Control

Prior to data analysis, you may find it is necessary to perform some quality control and normalization. Within
bigmelon, we have some functions can assist with the QC but you can use whatever functions you like.
Typical workflows involve visualizing raw intensities:

> rawmet <- methylated(gfile)[,]
> rawume <- unmethylated(gfile)[,]

> boxplot (log(rawmet), las=2, cex.axis=0.8)
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> boxplot(log(rawume), las=2, cex.axis
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Alternatively it is possible to used some highly specialized functions available within bigmelon.

> rawbet <- betas(gfile)[,]

> outlyx(rawbet, p

6057825008_R01C01
6057825008_R01C02
6057825008_R02C01
6057825008_R02C02
6057825008_R03C01
6057825008_R03C02
6057825008_R04C01
6057825008_R04C02
6057825008_R05C01
6057825008_R05C02
6057825008_R06C01
6057825008_R06C02

lot =

iqr
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

TRUE)

mv
FALSE
FALSE

TRUE
FALSE
FALSE
FALSE
FALSE

TRUE
FALSE
FALSE
FALSE
FALSE

outliers
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

11
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If the data is too large to load into memory, one can use the bigmelon method which determines outliers with

a small subset of data.

> outlyx(gfile, plot = TRUE, perc = 0.01)

iqr mv outliers
6057825008_R01C01 FALSE FALSE
6057825008_R01C02 FALSE FALSE
6057825008_R02C01 FALSE FALSE
6057825008_R02C02 FALSE FALSE
6057825008_R03C01 FALSE FALSE
6057825008_R03C02 FALSE TRUE
6057825008_R04C01 FALSE FALSE
6057825008_R04C02 FALSE FALSE
6057825008_R05C01 FALSE FALSE
6057825008_R05C02 FALSE FALSE
6057825008_R06C01 FALSE FALSE
6057825008_R06C02 FALSE FALSE

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
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Filtering probes/features by detection p-values also provides another straightforward approach for removing
both failed samples and probes. The pfilter function discards samples with more than 1 % of probes above
.05 detection p-value threshold, and probes with any samples with beadcount under 3 or more than 1% above
the p-value threshold.

n.b. This will perform irreversible subsetting procedures onto the gds file and will not work if the gds gfile is
in read mode.

> pfilter(gfile)

NBeads missing, using betas instead...

0 samples having 1 % of sites with a detection p-value greater than 0.05 were removed
Samples removed:

72 sites were remove as beadcount <3 in 5 % of samples

40 sites having 1 % of samples with a detection p-value greater than 0.05 were removed

It is at this point worth mentioning that we do not need to assign our results from these functions since the
data is not stored with memory.



The bigmelon Package 14

4.2 Backing Up/Storing Raw data

Before performing any function that will noticeably change the data, you may want to create a physical back-up
of the gds file so you do not have to retrace your steps incase you lose progress. The backup.gdsn function
serves as an easy way to copy a node you may be interested in to your gds file incase you need it for later.

> backup.gdsn(gds = NULL, node = index.gdsn(gfile, 'betas'))
> 1s.gdsn(index.gdsn(gfile, 'backup'))

[1] "betas"
Alternatively you can create a new gdsfile to store the copy or use the copyto.gdsn.

> f <- createfn.gds('melon2.gds')
> backup.gdsn(gds = f, node = index.gdsn(gfile, 'betas'))
> f

File: /tmp/RtmpyZSwVy/Rbuild32965b3c56c/bigmelon/vignettes/melon2.gds (305.0K)
+ L1
\--+ backup [ ]

\--+ betas { Float64 3252x12, 304.9K }

> copyto.gdsn(node = f, source = index.gdsn(gfile, 'betas'), name = 'betacopy')
> f

File: /tmp/RtmpyZSwVy/Rbuild32965b3cb56c/bigmelon/vignettes/melon2.gds (610.0K)
+ [ ]

|-+ backup [ ]

|  \--+ betas { Float64 3252x12, 304.9K }

\--+ betacopy { Float64 3252x12, 304.9K }

> copyto.gdsn(node = gfile, source = index.gdsn(gfile, 'betas'), name='betacopy')
> # Close File
> closefn.gds(f)

4.3 Normalization

Within bigmelon there are numerous normalisation methods that can be used. The method dasen will work
well for most data sets. n.b. This will perform irreversible procedures on the data. And will replace raw
intensities with the normalised ones. This will not work if gds file is in read mode.

> dasen(gfile)

> # Alternatively it is possible to store normalized betas to a separate node
> # If you want to keep the raw data

> dasen(gfile, node="normbeta")

> index.gdsn(gfile, "normbeta")

+

normbeta { Float64 3252x12, 304.9K }

Due to how the normalisation process is broken down within bigmelon there is only ever a small amount
of memory required throughout data analysis. For example when attempting to process 4000 EPIC ar-
ray samples (>850,000 features), totalling around 28Gb of data. Simple quantile normalisation procedures
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quickly use up all available memory to attempt such feat. Whereas within bigmelon, the same analy-
ses uses considerably less memory and (in this circumstance) provide a 1000 fold decrease in memory use.
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o limma::normalizeQuantiles
3 o bigmelon::gn.gdsn
I I I I I
0 1000 2000 3000 4000
Time (Seconds)
5 Analysis

While we cannot recommend any advice about how to perform your statistical analysis we will demonstrate
how to make the most out of the bigmelon package. Within gdsfmt there are many functions written that are
specialized for gds files. Notably the apply.gdsn function is particularly useful as it will perform functions
upon specified margins efficiently instead of loading the entire object into R to perform analysis.

> # Example of apply.gdsn

> apply.gdsn(betas(gfile), margin = 2, as.is='double', FUN = function(x,y){
+ mean(x, na.rm=y)

+ }, y = TRUE)

[1] 0.4291725 0.4293673 0.4280593 0.4287714 0.4295415 0.4297671 0.4273242 0.4281040
[9] 0.4284095 0.4298338 0.4285670 0.4297393
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You can define your own functions to supply as an argument to FUN. Please do explore apply.gdsn as it is
extremely versatile and it can additionally store outputs straight the a gds node if needed.

There will ofcourse be some analyses that may not be amenable to high dimensional data but if analysis can
be broken down into column/row wise operations then it is possible.

Currently, all available methods within wateRmelon with the exception of seabi, swan, tost, fuks and BMIQ
have been optimised for memory usage.

6 Back-Porting

Should you find it necessary to convert your gds object back into memory (perhaps for some specialised
analyses) you can use the functions gds2mlumi and gds2mset which will build a MethyLumiSet object and
MethylSet object in your enviroment.

> gds2mlumi(gfile)

Object Information:
MethyLumiSet (storageMode: lockedEnvironment)
assayData: 3252 features, 12 samples
element names: betas, methylated, pvals, unmethylated
protocolData: none
phenoData
sampleNames: 6057825008_R01C01 6057825008_R01C02 ... 6057825008_R06C02 (12
total)
varLabels: sampleID label sex
varMetadata: labelDescription

featureData
featureNames: 1 2 ... 3252 (3252 total)
fvarLabels: TargetID ProbeID_A ... X38 (38 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'
Annotation:
Major Operation History:

submitted finished
2012-10-17 14:23:16 2012-10-17 14:23:20
2012-10-17 17:11:19 2012-10-17 17:11:20
2012-10-17 17:11:48 2012-10-17 17:11:48
2016-10-17 20:28:31 2016-10-17 20:28:31
2016-10-17 20:28:32 2016-10-17 20:28:32
2016-10-17 20:28:32 2016-10-17 20:28:32
2016-10-17 20:28:32 2016-10-17 20:28:34
2016-10-17 20:28:34 2016-10-17 20:28:37
2016-10-17 20:28:37 2016-10-17 20:28:37

© 00 N O 0> W N =

command

methylumiR(filename = "fr2.txt")
Subset of 46 samples.

3 Subset of 12 samples.

N =
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4 MethylumiSet converted to gds (bigmelon)
5 pfilter applied (bigmelon)
6 Subset of 3252 rows and 12 samples
7 Normalized with dasen method (wateRmelon)
8 Normalized with dasen method (wateRmelon)
9 Converted to methylumi with gds2mlumi (bigmelon)

> gdsZmset(gfile, anno="450k")

MethylSet (storageMode: lockedEnvironment)
assayData: 3252 features, 12 samples
element names: Meth, Unmeth
An object of class 'AnnotatedDataFrame': none
Annotation
array: IlluminaHumanMethylation450k
annotation: ilmn12.hgl9
Preprocessing
Method: Converted from gdsfmt to MethylSet (bigmelon)
minfi version: 1.20.0
Manifest version: NA

7 Finishing an R session

As this workflow is in its infancy there are some issues that have yet to be ironed out. Notably there have been
observed instances of data-loss when connection to a gds file has been interrupted without proper closure using
closefn.gds. As such it is imperative that once you are ready to exit R, you must close the connection to
the gds file and then exit R.

> # Closing the connection
> closefn.gds(gfile)

8 Session Info

> sessionInfo()

R version 3.3.1 (2016-06-21)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.1 LTS

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8
[4] LC_COLLATE=C LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats4 parallel stats graphics grDevices utils datasets methods
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[9] base

other attached packages:

[1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]

bigmelon_1.0.0
gdsfmt_1.10.0
wateRmelon_1.18.0
illuminaio_0.16.0
I1luminaHumanMethylation450kanno.ilmn12.hgl19_0.6.0
ROC_1.50.0

lumi_2.26.0
methylumi_2.20.0
minfi_1.20.0
bumphunter_1.14.0
locfit_1.5-9.1
iterators_1.0.8
foreach_1.4.3
Biostrings_2.42.0
XVector_0.14.0
SummarizedExperiment_1.4.0
FDb.InfiniumMethylation.hgl9_2.2.0
org.Hs.eg.db_3.4.0
TxDb.Hsapiens.UCSC.hgl9.knownGene_3.2.2
GenomicFeatures_1.26.0
AnnotationDbi_1.36.0
GenomicRanges_1.26.0
GenomeInfoDb_1.10.0
IRanges_2.8.0
S4Vectors_0.12.0
ggplot2_2.1.0
reshape2_1.4.1
scales_0.4.0
matrixStats_0.51.0
limma_3.30.0
Biobase_2.34.0
BiocGenerics_0.20.0

loaded via a namespace (and not attached):

(1]

(4]

(7]
[10]
[13]
[16]
[19]
[22]
[25]
[28]
[31]

httr_1.2.1 norimix_1.2-2 splines_3.3.1
affy_1.52.0 doRNG_1.6 Rsamtools_1.26.0
RSQLite_1.0.0 lattice_0.20-34 quadprog_1.5-5
chron_2.3-47 digest_0.6.10 RColorBrewer_1.1-2
colorspace_1.2-7 preprocessCore_1.36.0 Matrix_1.2-7.1
plyr_1.8.4 GEOquery_2.40.0 siggenes_1.48.0
XML_3.98-1.4 biomaRt_2.30.0 genefilter_1.56.0
zlibbioc_1.20.0 xtable_1.8-2 affyio_1.44.0
BiocParallel_1.8.0 nleqslv_3.0.3 openssl_0.9.4
annotate_1.52.0 mgcv_1.8-15 beanplot_1.2
pkgmaker_0.22 crayon_1.3.2 survival_2.39-5

18
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[34]
[37]
[40]
[43]
[46]
[49]
[562]
[55]
[58]

magrittr_1.5
MASS_7.3-45
registry_0.3
stringr_1.1.0
base64_2.0
bitops_1.0-6
multtest_2.30.0
R6_2.2.0
KernSmooth_2.23-15

9 References

mclust_5.2
BiocInstaller_1.24.0
data.table_1.9.6
munsell_0.4.3

grid_3.3.1

gtable_0.2.0

DBI_0.5-1
GenomicAlignments_1.10.0
stringi_1.1.2
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nlme_3.1-128
tools_3.3.1
BiocStyle_2.2.0
rngtools_1.2.4
RCurl_1.95-4.8
codetools_0.2-15
reshape_0.8.5
rtracklayer_1.34.0
Rcpp_0.12.7
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