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1 Introduction

A common task in the analysis of genomic data is the derivation of gene expression signatures that distinguish between
phenotypes (disease outcomes, molecular subtypes, etc.). However, in their paper "Most random gene expression signa-
tures are significantly associated with breast cancer outcome” [1], Venet, Dumont, and Detour point out that while a
gene signature may distinguish between two classes of phenotype, their ultimate uniqueness and utility may be limited.
They show that while a specialized feature selection process may appear to determine a unique set of predictor genes,
the resultant signature may not perform better than one made up of random genes, or genes selected at random from all
differentially expressed genes. This suggests that the genes in the derived signature may not be particularly informative
as to underlying biological mechanisms. They further show that gene sets that comprise published signatures for a wide
variety of phenotypic classes may perform just as well at predicting arbitrary phenotypes; famously, they show that a gene
signature that distinguishes postprandial laughter performs as well at predicting the outcome of breast cancers as well as
a widely-cited signature [2].

The SigCheck package was developed in order to make it easy to check a gene signature against random and known
signatures, and assess the unique ability of that signature to distinguish phenotypical classes. It additionally provides the
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ability to check a signature’s performance against permuted data as a reality check that it is detecting a genuine signal
in the original data. This vignette shows the process of performing the checks.

2 Example dataset: NKI Breast Cancer Data and the van’t Veer Signature

In order to use SigCheck, you must provide a) some data (an expression matrix), b) some metadata (feature names,
survival data, class identifiers), and c) a gene signature (a subset of the features). For this vignette, we will use the
NKI Breast Cancer dataset breastCancerNKI and the associated van't Veer signature that predicts the likelihood that a
patient will develop a distant metastases [2].

The dataset can be loaded as follows:

> library(breastCancerNKI)
> data(nki)
> nki

ExpressionSet (storageMode: lockedEnvironment)

assayData: 24481 features, 337 samples
element names: exprs

protocolData: none

phenoData
sampleNames: NKI_4 NKI_6 ... NKI_404 (337 total)
varLabels: samplename dataset ... e.os (21 total)
varMetadata: labelDescription
featureData
featureNames: Contig45645_RC Contig44916_RC ... Contigl5167_RC (24481 total)
fvarLabels: probe EntrezGene.ID ... Description (10 total)

fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation: rosetta

As can be seen, the nki data is encapsulated in an ExpressionSet object. At its core, it contains an expression matrix
consisting of 24,481 features (microarray probes mapped to genes) and 337 samples (derived from tumor tissue taken
from breast cancer patients). Included is phenotypical (clinical) metadata regarding the patients, including age of the
patient, tumor grade, expression status of the ER, PR, and HER2 biomarkers, presence of a BRCA mutation, etc:

> varLabels (nki)

[1] "samplename" "dataset" "series" "id" "filename"
[6] "size" "age" "er" "grade" "pgr"
[11] "her2" "brca.mutation" "e.dmfs" "t.dmfs" "node"
[16] "t.rfs" "e.rfs" "treatment" "tissue" "t.os"
[21] "e.os"

The signatures derived by [2] and [3] are used to predict the Distant Metastasis-Free Survival (DMFS) time. This is
presented as a continuous measure indicating the time until the occurrence of a distant metastasis:

> nki$t.dmfs

[1] 4747 4075 3703 3215 3760 2120 2870 2983 3007 2873 1898 3227 2546 1894 2281 4160 4322
[18] 4646 4424 3734 3789 3692 2675 2686 4024 2486 2482 1997 2150 1891 398 375 1792 1715
[35] 839 410 1691 1787 979 295 748 978 724 1106 785 807 777 1347 843 NA NA
[52] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 1201
[69] 1809 672 701 929 325 1167 792 464 364 4537 3117 1937 1911 3643 3688 5412 5209
[86] 2427 2830 2308 1703 3192 2764 2665 407 2143 3159 2555 3408 1256 5599 1269 4663 2029

[103] 512 5528 5160 2004 1335 588 6699 6297 351 5118 430 5517 340 6450 2876 1027 1624
[120] 5898 2969 5593 5778 2069 3814 589 5597 5437 4876 507 5022 2774 4592 3260 4812 4662
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[137] 955 3951 4134 4332 442 1950 4288 4567 4114 4410 2721 4652 985 4322 4553 749 4089
[154] 4035 3411 3984 3933 4091 1234 4031 3703 3526 3899 2398 4092 4436 721 2731 3781 627
[171] 855 3591 3772 3790 823 3660 972 1226 447 591 99 1308 5158 2380 907 421 674
[188] 2956 1496 732 3646 4217 1526 2059 1802 1942 2034 3436 3332 1676 3283 839 1869 2015
[205] 3033 3139 812 2649 2480 2561 2531 2589 342 94 2565 2649 2556 2164 20 237 1868
[222] 1940 9 2681 2098 1945 1430 2108 1806 2216 129 1816 4256 3056 2306 2244 2029 119
[239] 3505 3454 1042 3408 651 3358 2451 3488 3726 718 3405 3127 970 1541 3325 2212 1176
[256] 3010 781 853 2327 3614 548 2449 3215 3236 3234 3031 1688 2037 778 1899 788 2919
[273] 3103 2810 2731 2706 762 2317 6060 1140 633 5607 2414 2511 2555 2601 1724 2254 2361
[290] 1200 2384 2122 1769 2250 2208 2270 2127 2279 2198 2027 1953 1921 1816 6604 6387 6265
[307] 209 3495 1190 3652 719 2839 979 6363 3115 5084 5064 4653 2839 4048 711 3000 2639
[324] 1249 2485 1282 2254 2036 2085 4095 3737 1741 3077 558 2695 2467 2765

DMEFS is also presented as a binary class, with a cutoff used to distinguish between patients that had a recurrence event
and those that did not:

> nki$e.dmfs

(1] o o 0 O O OO OOOOOOOOOOOOOOOOOO0OTO0OO0OO
29 0 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 NANANANANA NA NA
[57] NA NA NA NA NANANANANANANA 1 1 21 1 1 1 1 1 1 1 O O O O O O O
[66] o0 0 0 1t 1 0 O 0 0O OO 1 O1 01 0O0O010O0O0O0OT1TT1O0O0 11

[1133 1 0 2 0 0 1 1 01 0 O0O0O110O0OO0OT1O01O01O0O01O0O0O0
[141] 1 0 0 0 0 0 0 01 01 0 OOOOOOTZ1O0O0O0O0OO0OT1O0O0T11
[t69] 0 1 1 0 0 0 1 0 0 1 1 1 1 1 0 O O 1 1 O 1 1 O O O O O O
[t971 0 0 1 1 1 1 1 1 1 0 1 0 O O O O 1 O O O O O O 1 O O O O
[226] 0 0 1 0 O O1 0 O O OO OOOOT11O0OOOT1O0UO0OT1O0 10 1
[253 0 1t 1 0 1 1 1 01 O OOOOT1O0OUOOT1O0OO0OOOO0OO0OO0TO0 1
[281] 1 0 0 O O O OO O O OO OV OV OO OOWOOOOOOT11O0O0O0O 11
[309 1 1 1 0 1 O 1 O O O OO1O0O0O1O0O0OO0OO0OO0OT1O0T1TO01O00O0
[3371 O

A number of patient samples do not have DMFS data available. Currently, SigCheck can not handle NAs in the metadata,
so the first step is to exclude these patients from our analysis, which brings the number of samples down to 319:

> dim(nki)

Features Samples
24481 337

> nki <- nkil,'is.na(nki$e.dmfs)]
> dim(nki)

Features Samples
24481 319

The next step is to provide a gene signature to check. A core function of SigCheck is to compare the performance of a
gene signature with the performance of known gene signatures against the same data set. To accomplish this, it includes
several sets of known signatures. One of these included signatures is the van't Veer signature, which we will use for this
example.

To load the known gene signatures that are included with SigCheck:

> library(SigCheck)
> data(knownSignatures)
> names (knownSignatures)

[1] "cancer" "proliferation" "non.cancer"
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There are three sets of gene signatures, including a set of cancer signatures. * The van't Veer signature is one of the
signatures in the known cancer gene signature set:

> names (knownSignatures$cancer)

[1] "ABBA" " ADORNO" "BEN-PORATH-EXP1" "BEN-PORATH-PRC2"
[5] "BUESS" "BUFFA" "CARTER" "CHANG"

[9] "CHI" "CRAWFORD" "DAI" "GLINSKY"
[13] "HALLSTROM" "HE" "HU" "HUA"

[17] "IVSHINA" "KOK" "KORKOLA" "LIU"

[21] "MA" "MILLER" "MORI" "PAIK"

[25] "PAWITAN" "PEI" "RAMASWAMY" "REUTER"
[29] "RHODES" "SAAL" "SHIPITSIN" "SORLIE"
[33] "SOTIRIOU-93" "SOTIRIOU-GGI"  "META-PCNA" "TAUBE"
[37] "TAVAZOIE" "VALASTYAN" "VANTVEER" "WANG-76"
[41] "WANG-ALKST204D" "WELM" "WEST" "WHITFIELD"
[45] "WONG-ESC" "WONG-MITOCHON"  "WONG-PROTEAS"  "YU"

> vantveer <- knownSignatures$cancer$VANTVEER
> vantveer

[1] "ACADS" "AP2B1" "ASNS" "BUB1" "CA9" "CENPA" "COL4A2"
(81 "cp" "DCK" "ECT2" "EXT1" "FLT1" "GNAZ" "GSTM3"
[15] "IGFBP5" "MCM6" "MMPO" "ALDH6A1" "0OXCT1" "PEX12" "PGK1"
[22] "QDPR" "RAD21" "RFC4" "SLC2A3" "STK3" "TGFB3" "BTG2"
[29] "SERF1A" "CDC42BPA" "TMEFF1" "FGF18" "GMPS" "WISP1" "PRC1"
[36] "CCNB2" "CCNE2" "MELK" "NDC80" "PECI" "PITRM1" "NMU"

[43] "GCN1L1" "ESM1" "AKAP2" "ORC6L" "BBC3" "UCHL5" "DTL"

[50] "RAB6B" "EGLN1" "C20orf46" "STK32B" "DEPDC1" "Clorf106" "Cl6orfé1l"
[67] "ERGIC1" "SCUBE2" "MS4AT" "FBX031"

The signature is provided in the form of symbolic gene names. These will need to be matched up with the feature
names in the ExpressionSet. While the default annotation is a probe identifier, the nki dataset provides a number of
alternative annotations:

> fvarLabels (nki)

[1] "probe" "EntrezGene.ID" "probe.name"
[4] "Alignment.score" "Length.of .probe" "NCBI.gene.symbol"
[7] "HUGO.gene.symbol" "Cytoband" "Alternative.symbols"

[10] "Description"
We'll be using the "HUGO.gene-symbol" to match the gene names in the van't Veer signature.

The final aspect of this dataset involve its division into a training (or discovery) set of samples and a validation set of
samples. The training set should include all the samples that were used in deriving the gene signature. It is expected that
the signature should perform optimally on these samples. A validation n set of samples that played no role in deriving the
signature is required to test the efficacy of the signature. For the NKI dataset, the varLabel named "series" specifies
which samples were int he original trainingset, and which were profiled in the follow-on experiment: For this example, we
will treat the first 100 samples as the training set.

> table(nki$series)

NKI NKI2
99 220

1See the Technical Notes section for information on how to obtain more signature lists.
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3 Example: Survival analysis

In this section, we will use the survival data to test the ability of the van't veer signature to predict outcome in the
validation set. The most straightforward way to accomplish this involved two function calls. The first is a call to
sigCheck, which sets up the experiment, establishes the baseline performance, generates Kaplan-Meier plots, and returns
a newly constructed object of class SigCheckObject. The second call, to sigCheckAll, runs a default series of tests
before plotting and returning the results.

3.1 Call: sigCheck

The sigCheck function is the constructor for SigCheckObjects. It requires a number of parameters that are used to
define the experimental data and signature.

The first required parameter is expressionSet, an ExpressionSet object that contains all the experimental data. In
this example, expressionSet=nki. The next required parameter is classes, a character string indicating which of
varLabels (expressionSet) contains the binary class data. In this example, classes=e.dmfs.

For a survival analysis, the survival parameter indicates which of varLabels(expressionSet) contains the numeric
survival data. In this example, classes=t.dmfs

The signature parameter contains the signature that will be checked. This is most easily specified as a vector of feature

names (ie gene IDs) that match features in the annotation parameter. The annotation parameter specifies which of
fvarLabels (expressionSet) contains the feature labels. In this example, signature=knownSignatures$cancer$VANTVEER,
and annotation="HUGO.gene.symbol".

If the data are divided into training and validation samples, the samples that comprise the validation set should be
specified using the validationSamples parameter.

The remaining parameters are optional, with usable defaults, and will be discussed in subsequent sections.
Putting this all together, the call to set up the experiment is:

> check <- sigCheck(nki, classes="e.dmfs", survival="t.dmfs",

+ signature=knownSignatures$cancer$VANTVEER,

+ annotation="HUGO.gene.symbol",

+ validationSamples=which (nki$series=="NKI2"))
> check

ExpressionSet (storageMode: lockedEnvironment)

assayData: 24481 features, 319 samples
element names: exprs

protocolData: none

phenoData
sampleNames: NKI_4 NKI_6 ... NKI_404 (319 total)
varLabels: samplename dataset ... e.os (21 total)
varMetadata: labelDescription
featureData
featureNames: Contig45645_RC Contigd44916_RC ... Contigl5167_RC (24481 total)
fvarLabels: probe EntrezGene.ID ... Description (10 total)

fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation: HUGO.gene.symbol

By default, this will generate two Kaplan-Meier plots, as shown in Figure 1. The first shows the performance on the
training set, and the other shows performance on the validation set. The method that uses the signature to separate the
samples into two groups, based on taking the first principal component (as described in [1]), is such that the High/Low
groups can be flipped in the two charts without concern.
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Figure 1: Results of sigCheck for NKI Breast Cancer dataset checking v’'ant Veer signature.

These plots show very strong performance on the training set, with distinct (but reduced) separation on the validation
set. Both p-values are reported as p<0.001. Examination of the resulting object shows the actual p-value computed for
the validation set:

> check@survivalPval

[1] 3.984627e-05

3.2 Call: sigCheckAll

From this analysis, it appears that the signature does indeed have power in distinguishing between two distinct survival
groups. The next question is how unique these specific genes in the signature are for this task. the function sigCheckAll
will run a series of checks for comparison purposes. In each check, some background performance distribution is computed,
and the performance of the signature is compared by calculating an empirical p-value.

The four tests include a distribution of p-values computed using randomly selected signature of the same size (number
of features). This check can be run separately using sigCheckRandom. The second test compares the performance
of this signature to a set of previously identified ones. This check can be run separately using sigCheckKnown. The
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Figure 2: Results of sigCheckPlot for NKI Breast Cancer dataset checking v’ant Veer signature.

third and fourth tests compare performance of the signature on the dataset to permuted versions of the dataset; specif-
ically permuting the class survival metadata, as well as permuting the feature data by randomly re-assigning the
expression values for each feature across the samples. The permuted data/metadata check can be run separately using
sigCheckPermuted.

The parameters to sigCheckAll include the SigCheckObject constructed by the previous call to sigCheck. The
iterations parameter determines the size of the null distribution for the random and permuted checks. The known
parameter specifies a set of known signatures to use for the second check, with the default being the 48 cancer signatures
identified by [1].

The number assigned to iterations will determine the accuracy of the p-value calculated for the random and permuted
tests. A value of at least 1000 is preferred to get a meaningful value:

> nkiResults <- sigCheckAll (check, iterations=1000)

As this vignette will take too long to run automatically with iterations=1000, the results have been pre-computed and
included as a data object with the (SigCheck) package:

> data(nkiResults)
By default, sigCheckAll will generate plots of the results. These can be re-generated using sigCheckPlot:
> sigCheckPlot (nkiResults)

In each of the four plots, the background distribution is plotted, with the x-axis representing survival p-values on a -log
10 scale, and the y-axis representing how many of the background tests produced p-values at that level. The solid red
vertical line shows the performance of the signature being tested. The further to the right of the distribution this line is,
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the more uniquely it performs for this check. In some cases, if the performance of the signature is out fo the range of
the background distribution, this line will not be drawn. The vertical red dotted line shows where a "significant” result
(p=0.05) would lie relative to the background distribution.

The upper-left plot shows performance of the v'ant veer signature relative to 1,000 randomly chosen signature of comprised
of an equal number of gene. The upper-right plot shows the performance compared to 48 known cancer prognostic
signatures, while the two lower plots show performance on permuted data (survival and gene expression across each
feature).

The result returned by the call to sigCheckAll is a list of results for each test:
> names (nkiResults)

[1] "checkRandom" "checkKnown" "checkPermutedSurvival"
[4] "checkPermutedFeatures"

The adjusted p-value computed for each check can be retrieved as follows:
> nkiResults$checkRandom$checkPval

[1] 0.014

> nkiResults$checkKnown$checkPval

[1] 0.083

> nkiResults$checkPermutedSurvival$checkPval

[1] 0.002

> nkiResults$checkPermutedFeatures$checkPval

[1] o

3.3 Scoring methods for dividing samples into survival groups

The survival analysis depends on a method for using the signature to divide the samples into survival groups before
computing the p-value for how their survival times differ. SigCheck divides this task into two steps. The first is to
calculate a score for each sample based on the feature values for each feature in the signature. The second step is to
divide the samples into groups based on these scores.

[1] discuss this issue, and recommend first determining the score for each sample by computing the first principal
component of the expression matrix (using only the features in the signature). They then suggest that the samples can
be divided into two groups based on whether their score is above or below the median score. This is the default method
used in SigCheck.

There are options for both the scoring and dividing steps. The scoring method is determined by the value of the parameter
scoreMethod for the function sigCheck. The default value is "PCA1". scoreMethod may also be "High", which simply
computes the mean expression value for each sample across the signature. This enables the samples to be divided into
a "High" expression group and a "Low" expression group. Another option is to use a machine-learning classifier to do the
scoring (scoreMethod="classifier"); the next section discusses how to use classifiers in SigCheck.

Finally, scoreMethod can be set to a user-defined function if you want to do your own mapping of expression value to
scores. The user-defined scoring function should take an ExpressionSet as a parameter. This ExpressionSet will
have as many rows as features that match the signature, and as many columns as there are samples (either training or
validation samples). It should return a vector of scores, one for each sample.

The second step is to use the scores to divide the samples into groups. The threshold parameter controls how this is
accomplished. Currently, the package only support division into either two or three groups, determined by which samples
have scores below the specified percentiles, and which are greater than or equal to the specified percentile. The default
is to use the median as the threshold, which will split the samples into two groups of approximately equal size. In many
cases, however, the real power of a signature is not to split the samples into two equal sized groups, but rather to
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identify a subset of samples that have a distinct outcome. Setting threshold=.66, for example, will split the samples
into a larger group with two-thirds of the sample, and a smaller group containing the one-third of samples with the
highest score. If you are using a score such as scoreMethod="High", these would be the samples with the highest mean
expression over the signature, while setting scoreMethod=.33 would split off a smaller group of sample with the lowest
mean expression. By specifying two percentile cutoffs, you can split the samples into three groups: one with high scores,
one with low scores, and one with intermediate scores. The performance of the signature will computed using only the
samples in the high and low groups.

To see how all this works, consider some alternative scoring and grouping methods for the sample data set. For example,
we can see how the v'ant Veer signature performs when looking at overall expression levels. The code below takes
advantage of the ability to create a new SigCheckObject from an existing one:

> par(mfrow=c(2,2))
> p5 <- sigCheck(check,
+ scoreMethod="High",threshold=.5,
plotTrainingKM=F)@survivalPval
p66 <- sigCheck(check,
scoreMethod="High", threshold=.66,
plotTrainingKM=F)@survivalPval
<- sigCheck(check,
scoreMethod="High",threshold=.33,
plotTrainingKM=F)@survivalPval
.66 <-sigCheck(check,
scoreMethod="High", threshold=c(.33,.66),
plotTrainingKM=F)@survivalPval

+ V++V + + Vv o+
o] e}
[ o
W W

+

> ps

[1] 0.0003488032
> p66

[1] 0.003568654
> p33

[1] 1.72021e-05
> p33.66

[1] 1.002417e-05

Figure 3 shows the baseline performance of the signature using different thresholds. The one that splits off high and low
expression groups, and eliminates the middle samples, performs the best. However to know how unique this performance
is, the random and known checks would have to be repeated using exactly the same evaluation criteria as for the main
signature.

4 Example: Classification Analysis

SigCheck uses the MLInterfaces package to enable a wide range of machine-learning algorithms to be applied to expression
data. Classifiers constructed in this way use only the binary classes metadata, and not the survival data, to predict
what class each sample belongs to.

Classifiers can be applied in two distinct ways: as a scoring method for determining survival groups, and for assessing the
classification potential of signatures when survival data is unavailable.
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Figure 3: Results of sigCheckPlot for NKI Breast Cancer dataset checking v’ant Veer signature, using "High”
scoring method and different percentile cutoffs.

4.1 Classifiers for scoring survival groups

As many classifiers generate a score for each sample (representing, for example, the probability that a sample belongs to
a specific class), they can be used as the basis for dividing samples into survival groups that can be uses to assess survival
analysis performance. This is accomplished by setting scoreMethod="classifier") when invoking (sigCheck).

When specifying a classifier, the classifierMethod parameter is used to determine what type of classifier is to be used.
This can be any classifier supported by the MLInterfaces package. The default, svmI, uses a Support Vector Machine.
When invoked, the training set samples will be used to construct a classifier that distinguished between the two classes
specified in the classes parameter. When the training set is divided into survival groups, the resulting classifier is used
to generate scores for all the samples. These scores are then subjected to the threshold parameter as with the other
scoreMethods.

To see this in action with the sample dataset, all that is required is to set scoreMethod="classifier":

> check <- sigCheck(check, scoreMethod="classifier")
> check@survivalPval

[1] 0.000122871
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Figure 4: Results of sigCheck for NKI Breast Cancer dataset checking v’ant Veer signature, using a Support
Vector Machine to classify samples into survival groups.

4.2 Checking classifier performance independently of survival

Another way of evaluating gene signatures is on how well they perform on the classification task itself. For example, if the
goals was to generate a gene signature to predict susceptibility to a disease, the distinction between those who developed
the disease and those who remain disease-free may be important than the associated timeframes. In some cases, only
class data (recurrence/non recurrence; death/survival) may be available for the samples, and no real-valued timescales.

In these cases (as well as cases where survival data are available but classification is of interest), the classification abilities
of a signature can be checked in similar manner to survival.

To generate such an analysis, simply leave the survival unspecified:

> check <- sigCheck(nki, classes="e.dmfs",

+ signature=knownSignatures$cancer$VANTVEER,
+ annotation="HUGO.gene.symbol",

+ validationSamples=which(nki$series=="NKI2"),
+ scoreMethod="classifier")

> check
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predicted
given 0 1
0 95 63
1 20 42
ExpressionSet (storageMode: lockedEnvironment)
assayData: 24481 features, 319 samples
element names: exprs
protocolData: none

phenoData
sampleNames: NKI_4 NKI_6 ... NKI_404 (319 total)
varLabels: samplename dataset ... e.os (21 total)
varMetadata: labelDescription
featureData
featureNames: Contig45645_RC Contigd44916_RC ... Contigl5167_RC (24481 total)
fvarLabels: probe EntrezGene.ID ... Description (10 total)

fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation: HUGO.gene.symbol

In this case, no Kaplan-Meier plots are generated as there is no survival data. The baseline classification performance
can be examined:

> check@sigPerformance
[1] 0.6227273

> check@modePerformance
[1] 0.7181818

> check@confusion

predicted
given 0 1

0 95 63

1 20 42

The first value is the percentage of validation samples correctly classified. The second value is the percentage that would
be correctly classified if the classifier just guess the most frequently observed class in the training set (the mode value).
The third value is the confusion matrix, which shows how validation samples in each category were classified. This can
be interpreted in terms of True Negatives and False Positives (first row), and False Negatives and True Positives (second
row).

The classification performance of the signature can be checked against the performance of a background distribution of
random or known signatures:

> classifyRandom <- sigCheckRandom(check, iterations=1000)
> classifyKnown <- sigCheckKnown (check)

As with the previous checks, the results have been pre-computed to save computation time:
> data(classifyResults)
The results can be plotted:

> par(mfrow=c(1,2))
> sigCheckPlot (classifyRandom, classifier=TRUE)
> sigCheckPlot (classifyKnown, classifier=TRUE)

Figure 5 shows the results of a classification analysis. The background distribution based on the classification performance
of the random or known signatures, so they are the percentage of validation samples correctly classified. That means
that for these plots, better performing signatures are toward the right on the x-axis. Also, the dotted red vertical line
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Figure 5: Results of classifier performance check against random and known signature for NKI Breast Cancer
dataset checking v’ant Veer signature, using "High” scoring method and different percentile cutoffs.

represents the performance of a mode classifier. It can be very useful to see what a classifier that always guesses the
category more prevalent in the training set for comparison to a curated gene signature and a sophisticated machine
learning algorithm.

4.3 Classification without a validation set: leave-one-out cross-validation

coming soon...

5 Technical notes

5.1 Obtaining gene signatures from MSigDB

When checking a signature's performance against known signatures (ie using the sigCheckKnown function), the gene
signatures available at the Broad Institute's MSigDB site (part of GSEQ [4]). These are located at the following URL:
http://software.broadinstitute.org/gsea/downloads.jsp. Note that you must first register and accept the licence terms,
which is why the signatures are not distributed with this package.

The gene sets can be downloaded in .gmt format. This can be read in using the read.gmt function from the qusage
package. For example, if you download the oncogenic signatures file, you can retrieve the signatures as follows:

> c6.oncogenic <- read.gmt('c6.all.v5.0.symbols.gmt')
> check.c6 <- sigCheckKnown(check, c6.oncogenic)
> sigCheckPlot (check.c6)
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5.2 Use of BiocParallel and parallel

This note shows how to control the parallel processing in SigCheck.

There are two different aspects of SigCheck that are able to exploit parallel processing. The primary one is when
multiple signatures or datasets are being evaluated independently. This include the iterations random signatures in
sigCheckRandom, the database of known signatures in sigCheckKnown, and the iterations permuted datasets in
sigCheckPermuted. In this case, the BiocParallel package is used to carry out these comparisons in parallel. By default,
BiocParallel uses parallel to run in multicore mode, but it can also be configured to schedule a compute task across
multiple computers. In the default multicore mode, it will use all of the cores on your system, which can result in a heavy
load (especially if there is inadequate memory). You can manually set the number of cores to use as follows:

> CoresToUse <- 6

> library(BiocParallel)

> mcp <- MulticoreParam(workers=CoresToUse)
> register(mcp, default=TRUE)

which limits the number of cores in use at any one time to six. If you want to use only one core (serial mode), you can
set CoresToUse <- 1, or register(SerialParam()).

The other aspect of processing that can use multiple processor cores is when performing leave-one-out cross-validation
(LOO-XV). In this case, the underlying MLInterfaces package takes care of the parallelization using the parallel package.
You can set the number of cores that will be used for this as follows:

> options (mc.cores=CoresToUse)

Note that in the LOO-XV case, as every random or known signature, or permuted dataset, requires parallel evaluation of
cross-validated classifiers, the parallelization at the level of iterations is disabled automatically.
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7 Session Info

> tolLatex(sessionInfo())

R version 3.3.1 (2016-06-21), x86_64-pc-linux-gnu

e Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

e Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils

e Other packages: AnnotationDbi 1.36.0, Biobase 2.34.0, BiocGenerics 0.20.0, BiocParallel 1.8.0, IRanges 2.8.0,
MLInterfaces 1.54.0, S4Vectors 0.12.0, SigCheck 2.6.0, XML 3.98-1.4, annotate 1.52.0, breastCancerNKI 1.11.0,
cluster 2.0.5, e1071 1.6-7, survival 2.39-5

e Loaded via a namespace (and not attached): BiocStyle 2.2.0, DBI 0.5-1, DEoptimR 1.0-6, MASS 7.3-45,

Matrix 1.2-7.1, R6 2.2.0, RColorBrewer 1.1-2, RCurl 1.95-4.8, RSQLite 1.0.0, Rcpp 0.12.7, assertthat 0.1,

base64enc 0.1-3, bitops 1.0-6, class 7.3-14, digest 0.6.10, diptest 0.75-7, dplyr 0.5.0, flexmix 2.3-13, fpc 2.1-10,

gbm 2.1.1, gdata 2.17.0, genefilter 1.56.0, ggvis 0.4.3, grid 3.3.1, gtools 3.5.0, htmltools 0.3.5, htmlwidgets 0.7,

httpuv 1.3.3, hwriter 1.3.2, jsonlite 1.1, kernlab 0.9-25, lattice 0.20-34, magrittr 1.5, mclust 5.2, mime 0.5,

mlbench 2.1-1, modeltools 0.2-21, mvtnorm 1.0-5, nnet 7.3-12, pls 2.5-0, prabclus 2.2-6, rda 1.0.2-2,
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robustbase 0.92-6, rpart 4.1-10, sfsmisc 1.1-0, shiny 0.14.1, splines 3.3.1, threejs 0.2.2, tibble 1.2, tools 3.3.1,
trimcluster 0.1-2, xtable 1.8-2
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