
Rcpi: R/Bioconductor Package as an Integrated
Informatics Platform in Drug Discovery

Nan Xiao, Dongsheng Cao, Qingsong Xu

Package Version: 1.11.6

2016-12-30

COMPUTATIONAL BIOLOGY &
DRUG DESIGN GROUP!
CENTRAL SOUTH UNIV., CHINA

.

Contents

1. Introduction 1

2. Applications in Bioinformatics 2

2.1 Predicting Protein Subcellular Localization . 2

3 Applications in Chemoinformatics 5

3.1 Regression Modeling in QSRR Study of Retention Indices 5

3.2 In Silico Toxicity Classification for Drug Discovery 9

3.3 Clustering of Molecules Based on Structural Similarities 12

3.4 Structure-Based Chemical Similarity Searching 14

4 Applications in Chemogenomics 16

4.1 Predicting Drug-Target Interaction by Integrating Chemical and Genomic Spaces 16

References 22

Rcpi Manual

1. Introduction

The Rcpi package (Xiao et al. 2014a) presented in this manual offers an R/Bioconductor
package emphasizing the comprehensive integration of bioinformatics and chemoinformatics
into a molecular informatics platform for drug discovery.

Rcpi implemented and integrated the state-of-the-art protein sequence descriptors and molec-
ular descriptors/fingerprints with R. For protein sequences, the Rcpi package could

� Calculate six protein descriptor groups composed of fourteen types of commonly used
structural and physicochemical descriptors that include 9,920 descriptors.

� Calculate profile-based protein representation derived by PSSM (Position-Specific Scor-
ing Matrix).

� Calculate six types of generalized scales-based descriptors derived by various dimension-
ality reduction methods for proteochemometric (PCM) modeling.

� Parallellized pairwise similarity computation derived by protein sequence alignment and
Gene Ontology (GO) semantic similarity measures within a list of proteins.

For small molecules, the Rcpi package could

� Calculate 307 molecular descriptors (2D/3D), including constitutional, topological, ge-
ometrical, and electronic descriptors, etc.

� Calculate more than ten types of molecular fingerprints, including FP4 keys, E-state
fingerprints, MACCS keys, etc., and parallelized chemical similarity search.

� Parallelized pairwise similarity computation derived by fingerprints and maximum com-
mon substructure search within a list of small molecules.

By combining various types of descriptors for drugs and proteins in different methods, in-
teraction descriptors representing protein-protein or compound-protein interactions could be
conveniently generated with Rcpi, including:

� Two types of compound-protein interaction (CPI) descriptors

� Three types of protein-protein interaction (PPI) descriptors

Several useful auxiliary utilities are also shipped with Rcpi:

� Parallelized molecule and protein sequence retrieval from several online databases, like
PubChem, ChEMBL, KEGG, DrugBank, UniProt, RCSB PDB, etc.

� Loading molecules stored in SMILES/SDF files and loading protein sequences from
FASTA/PDB files

� Molecular file format conversion

1

Rcpi Manual

The computed protein sequence descriptors, molecular descriptors/fingerprints, interaction
descriptors and pairwise similarities are widely used in various research fields relevant to drug
disvery, primarily bioinformatics, chemoinformatics, proteochemometrics and chemogenomics.

The Rcpi package is available from Bioconductor (http://bioconductor.org), visit http:

//bioconductor.org/packages/release/bioc/html/Rcpi.html for more details. This vi-
gnette corresponds to Rcpi 1.11.6 and was typeset on 2016-12-30.

To install the Rcpi package in R, simply type

source('http://bioconductor.org/biocLite.R')

biocLite('Rcpi')

To make the Rcpi package fully functional (especially the Open Babel related functionalities),
we recommend the users also install the Enhances packages by using:

source('http://bioconductor.org/biocLite.R')

biocLite('Rcpi', dependencies = c('Imports', 'Enhances'))

Several dependencies of the Rcpi package may require some system-level libraries, check the
corresponding manuals of these packages for detailed installation guides.

2. Applications in Bioinformatics

For bioinformatics research, Rcpi calculates commonly used descriptors and proteochemomet-
ric (PCM) modeling descriptors for protein sequences. Rcpi also computes pairwise similari-
ties derived by GO semantic similarity and sequence alignment.

2.1. Predicting Protein Subcellular Localization

Protein subcellular localization prediction involves the computational prediction of where a
protein resides in a cell. It is an important component of bioinformatics-based prediction of
protein function and genome annotation, and could also aid us to identify novel drug targets.

Here we use the subcellular localization dataset of human proteins presented in the study
of Chou and Shen (2008) for a demonstration. The complete dataset includes 3134 protein
sequences (2750 different proteins), classified into 14 human subcellular locations. We select
two classes of proteins as our benchmark dataset. Class 1 contains 325 extracell proteins, and
class 2 includes 307 mitochondrion proteins.

First, we load the Rcpi package, then read the protein sequences stored in two separated
FASTA files with readFASTA():

require(Rcpi)

load FASTA files

extracell = readFASTA(system.file('vignettedata/extracell.fasta',

package = 'Rcpi'))

mitonchon = readFASTA(system.file('vignettedata/mitochondrion.fasta',

package = 'Rcpi'))

2

http://bioconductor.org
http://bioconductor.org/packages/release/bioc/html/Rcpi.html
http://bioconductor.org/packages/release/bioc/html/Rcpi.html

Rcpi Manual

To read protein sequences stored in PDB format files, use readPDB() instead. The loaded
sequences will be stored as two lists in R, and each component in the list is a character string
representing one protein sequence. In this case, there are 325 extracell protein sequences and
306 mitonchon protein sequences:

length(extracell)

[1] 325

length(mitonchon)

[1] 306

To assure that the protein sequences only have the twenty standard amino acid types which
is required for the descriptor computation, we use the checkProt() function in Rcpi to do
the amino acid type sanity checking and remove the non-standard sequences:

extracell = extracell[(sapply(extracell, checkProt))]

mitonchon = mitonchon[(sapply(mitonchon, checkProt))]

length(extracell)

[1] 323

length(mitonchon)

[1] 304

Two protein sequences were removed from each class. For the remaining sequences, we cal-
culate the amphiphilic pseudo amino acid composition (APAAC) descriptor (Chou 2005) and
make class labels for classification modeling.

calculate APAAC descriptors

x1 = t(sapply(extracell, extractProtAPAAC))

x2 = t(sapply(mitonchon, extractProtAPAAC))

x = rbind(x1, x2)

make class labels

labels = as.factor(c(rep(0, length(extracell)), rep(1, length(mitonchon))))

In Rcpi, the functions of commonly used descriptors for protein sequences and proteochemo-
metric (PCM) modeling descriptors are named after extractProt...() and extractPCM...().

Next, we will split the data into a 75% training set and a 25% test set.

3

Rcpi Manual

split training and test set

set.seed(1001)

tr.idx = c(sample(1:nrow(x1), round(nrow(x1) * 0.75)),

sample(nrow(x1) + 1:nrow(x2), round(nrow(x2) * 0.75)))

te.idx = setdiff(1:nrow(x), tr.idx)

x.tr = x[tr.idx,]

x.te = x[te.idx,]

y.tr = labels[tr.idx]

y.te = labels[te.idx]

We will train a random forest classification model on the training set with 5-fold cross-
validation, using the randomForest package.

require(randomForest)

rf.fit = randomForest(x.tr, y.tr, cv.fold = 5)

print(rf.fit)

The training result is:

Call:

randomForest(x = x.tr, y = y.tr, cv.fold = 5)

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 8

##

OOB estimate of error rate: 25.11%

Confusion matrix:

0 1 class.error

0 196 46 0.1900826

1 72 156 0.3157895

With the model trained on the training set, we predict on the test set and plot the ROC curve
with the pROC package, as is shown in figure 1.

predict on test set

rf.pred = predict(rf.fit, newdata = x.te, type = 'prob')[, 1]

plot ROC curve

require(pROC)

plot.roc(y.te, rf.pred, col = '#0080ff', grid = TRUE, print.auc = TRUE)

The area under the ROC curve (AUC) is:

Call:

plot.roc.default(x = y.te, predictor = rf.pred, col = "#0080ff",

grid = TRUE, print.auc = TRUE)

##

Data: rf.pred in 81 controls (y.te 0) > 76 cases (y.te 1).

Area under the curve: 0.8697

4

Rcpi Manual

Specificity

S
e

n
s
iti

v
ity

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1.0 0.8 0.6 0.4 0.2 0.0

AUC: 0.870

Figure 1: ROC curve for the test set of protein subcellular localization data

3. Applications in Chemoinformatics

For chemoinformatics research, Rcpi calculates various types of molecular descriptors/fingerprints,
and computes pairwise similarities derived by fingerprints and maximum common substruc-
ture search. Rcpi also provides the searchDrug() function for parallelized molecular similar-
ity search based on these similarity types.

3.1. Regression Modeling in QSRR Study of Retention Indices

In Yan et al. (2012), a quantitative structure-retention relationship study was performed for
656 flavor compounds on four stationary phases of different polarities, using constitutional,
topological and geometrical molecular descriptors. The gas chromatographic retention indices
(RIs) of these compounds were accurately predicted using linear models. Here we choose the
molecules and their RIs of one stationary phase (OV101) as our benchmark dataset.

Since it would be rather tedious to implement the complete cross-validation procedures, the
R package caret is used here. To run the R code below, users need to install the caret
package and the required predictive modeling packages first. The caret package provides a
unified interface for the modeling tuning task across different statistical machine learning
packages. It is particularly helpful in QSAR modeling, for it contains tools for data splitting,
pre-processing, feature selection, model tuning and other functionalities.

Just like the last section, we load the Rcpi package, and read the molecules stored in a SMILES
file:

require(Rcpi)

5

Rcpi Manual

RI.smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

RI.csv = system.file('vignettedata/RI.csv', package = 'Rcpi')

x.mol = readMolFromSmi(RI.smi, type = 'mol')

x.tab = read.table(RI.csv, sep = '\t', header = TRUE)

y = x.tab$RI

The readMolFromSmi() function is used for reading molecules from SMILES files, for molecules
stored in SDF files, use readMolFromSDF() instead.

The CSV file RI.csv contains tabular data for the retention indices, compound name, and
odor information of the compounds. Here we only extracted the RI values by calling x.tab$RI.

After the molecules were properly loaded, we calculate several selected molecular descrip-
tors. The corresponding functions for molecular descriptor calculation are all named after
extractDrug...() in Rcpi:

calculate selected molecular descriptors

x = suppressWarnings(cbind(

extractDrugALOGP(x.mol),

extractDrugApol(x.mol),

extractDrugECI(x.mol),

extractDrugTPSA(x.mol),

extractDrugWeight(x.mol),

extractDrugWienerNumbers(x.mol),

extractDrugZagrebIndex(x.mol)))

After the descriptors were calculated, the result x would be an R data frame, each row
represents one molecule, and each column is one descriptor (predictor). The Rcpi package
integrated the molecular descriptors and chemical fingerprints calculated by the rcdk package
(Steinbeck et al. 2003) and the ChemmineOB package (Horan and Girke 2013).

Next, a partial least squares model will be fitted with the pls and caret package. The cross-
validation setting is 5-fold repeated CV (repeat for 10 times).

regression on training set

require(caret)

require(pls)

cross-validation settings

ctrl = trainControl(method = 'repeatedcv', number = 5, repeats = 10,

summaryFunction = defaultSummary)

train pls model

set.seed(1002)

pls.fit = train(x, y, method = 'pls', tuneLength = 10, trControl = ctrl,

metric = 'RMSE', preProc = c('center', 'scale'))

6

Rcpi Manual

print cross-validation result

print(pls.fit)

The cross-validation result is:

Partial Least Squares

##

297 samples

10 predictors

##

Pre-processing: centered, scaled

Resampling: Cross-Validated (5 fold, repeated 10 times)

##

Summary of sample sizes: 237, 237, 237, 238, 239, 238, ...

##

Resampling results across tuning parameters:

##

ncomp RMSE Rsquared RMSE SD Rsquared SD

1 104 0.884 9.44 0.0285

2 86.4 0.92 6.99 0.0194

3 83.8 0.924 6.56 0.0185

4 79.6 0.931 6.98 0.0194

5 76.3 0.937 7.45 0.0187

6 74.7 0.94 6.85 0.0162

7 73.7 0.941 6.75 0.0159

8 73.5 0.942 6.5 0.0142

9 72.5 0.944 6.18 0.0137

##

RMSE was used to select the optimal model using the smallest value.

The final value used for the model was ncomp = 9.

We see that the RMSE of the PLS regression model was decreasing when the number of
principal components (ncomp) was increasing. We can plot the components and RMSE to
helps us select the desired number of principal components used in the model.

Components vs RMSE

print(plot(pls.fit, asp = 0.5))

From figure 2, we consider that selecting six or seven components is acceptable. At last, we
plot the experimental RIs and the predicted RIs to see if the model fits well on the training
set (Figure 3):

plot experimental RIs vs predicted RIs

plot(y, predict(pls.fit, x), xlim = range(y), ylim = range(y),

col = '#0080ff', xlab = 'Experimental RIs', ylab = 'Predicted RIs')

abline(a = 0, b = 1)

7

Rcpi Manual

#Components

R
M

S
E

 (
R

e
p

e
a

te
d

 C
ro

s
s
-V

a
lid

a
tio

n
)

80

90

100

2 4 6 8

Figure 2: Number of principal components vs. RMSE for the PLS regression model

500 1000 1500 2000

5
0

0
1

0
0

0
1

5
0

0
2

0
0

0

Experimental RIs

P
re

d
ic

te
d

 R
Is

Figure 3: Experimental RIs vs. Predicted RIs

8

Rcpi Manual

3.2. In Silico Toxicity Classification for Drug Discovery

In the perspective of quantitative pharmacology, the successful discovery of novel drugs de-
pends on the pharmacokinetics properties, like absorption, distribution, metabolism, and
excretion. In addition, the potential toxicity of chemical compounds is taken into account.
QSAR or QSPR methods are usually employed to predict the ADME/T qualities of potential
drug candidates.

In the study of Cao et al. (2012b), quantitative structure-toxicity relationship (QSTR) models
were established for classifying five toxicity datasets. Here we use the maximum recommended
daily dose dataset (FDAMDD) from FDA Center for Drug Evaluation and Research as our
benchmark dataset.

First, load the drug molecules stored in a SMILES file into R:

require(Rcpi)

fdamdd.smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

fdamdd.csv = system.file('vignettedata/FDAMDD.csv', package = 'Rcpi')

x.mol = readMolFromSmi(fdamdd.smi, type = 'mol')

x.smi = readMolFromSmi(fdamdd.smi, type = 'text')

y = as.factor(paste0('class', scan(fdamdd.csv)))

The object x.mol is used for computing the MACCS and E-state fingerprints, the object
x.smi is used for computing the FP4 fingerprints. The 0-1 class labels stored in FDAMDD.csv

indicates whether the drug molecule has high toxicity or not.

Then we calculate three different types of molecular fingerprints (E-state, MACCS, and FP4)
for the drug molecules:

calculate molecular fingerprints

x1 = extractDrugEstateComplete(x.mol)

x2 = extractDrugMACCSComplete(x.mol)

x3 = extractDrugOBFP4(x.smi, type = 'smile')

As the nature of fingerprint-based structure representation, the calculated 0-1 matrix x1, x2,
and x3 will be very sparse. Since there are several columns have nearly exactly the same value
for all the molecules, we should remove them with nearZeroVar() in caret before modeling,
and split our training set and test set:

Remove near zero variance variables

require(caret)

x1 = x1[, -nearZeroVar(x1)]

x2 = x2[, -nearZeroVar(x2)]

x3 = x3[, -nearZeroVar(x3)]

split training and test set

set.seed(1003)

9

Rcpi Manual

tr.idx = sample(1:nrow(x1), round(nrow(x1) * 0.75))

te.idx = setdiff(1:nrow(x1), tr.idx)

x1.tr = x1[tr.idx,]

x1.te = x1[te.idx,]

x2.tr = x2[tr.idx,]

x2.te = x2[te.idx,]

x3.tr = x3[tr.idx,]

x3.te = x3[te.idx,]

y.tr = y[tr.idx]

y.te = y[te.idx]

On the training sets, we will train three classification models separately using SVM (RBF
kernel), using the kernlab package and caret package. The cross-validation setting is 5-fold
repeated CV (repeat for 10 times). Then print the cross-validation result.

svm classification on training sets

require(kernlab)

cross-validation settings

ctrl = trainControl(method = 'cv', number = 5, repeats = 10,

classProbs = TRUE,

summaryFunction = twoClassSummary)

SVM with RBF kernel

svm.fit1 = train(x1.tr, y.tr, method = 'svmRadial', trControl = ctrl,

metric = 'ROC', preProc = c('center', 'scale'))

svm.fit2 = train(x2.tr, y.tr, method = 'svmRadial', trControl = ctrl,

metric = 'ROC', preProc = c('center', 'scale'))

svm.fit3 = train(x3.tr, y.tr, method = 'svmRadial', trControl = ctrl,

metric = 'ROC', preProc = c('center', 'scale'))

print cross-validation result

print(svm.fit1)

print(svm.fit2)

print(svm.fit3)

The training result when using E-state fingerprints:

Support Vector Machines with Radial Basis Function Kernel

##

597 samples

23 predictors

2 classes: 'class0', 'class1'

##

Pre-processing: centered, scaled

Resampling: Cross-Validated (5 fold)

##

Summary of sample sizes: 478, 479, 477, 477, 477

##

Resampling results across tuning parameters:

##

C ROC Sens Spec ROC SD Sens SD Spec SD

0.25 0.797 0.7 0.765 0.0211 0.0442 0.00666

0.5 0.808 0.696 0.79 0.0173 0.059 0.0236

1 0.812 0.703 0.781 0.0191 0.0664 0.0228

10

Rcpi Manual

##

Tuning parameter 'sigma' was held constant at a value of 0.02921559

ROC was used to select the optimal model using the largest value.

The final values used for the model were sigma = 0.0292 and C = 1.

We could see that after removing the near zero variance predictors, there are only 23 predictors
left for the original length 79 E-state fingerprints.

The training result when using MACCS keys:

Support Vector Machines with Radial Basis Function Kernel

##

597 samples

126 predictors

2 classes: 'class0', 'class1'

##

Pre-processing: centered, scaled

Resampling: Cross-Validated (5 fold)

##

Summary of sample sizes: 477, 477, 477, 478, 479

##

Resampling results across tuning parameters:

##

C ROC Sens Spec ROC SD Sens SD Spec SD

0.25 0.834 0.715 0.775 0.0284 0.0994 0.0589

0.5 0.848 0.726 0.79 0.0299 0.065 0.0493

1 0.863 0.769 0.793 0.0307 0.0229 0.0561

##

Tuning parameter 'sigma' was held constant at a value of 0.004404305

ROC was used to select the optimal model using the largest value.

The final values used for the model were sigma = 0.0044 and C = 1.

There are 126 predictors left for the original length 166 MACCS keys after removing the near
zero variance predictors. The model performance by AUC values is slightly better than using
the E-state fingerprints.

The training result when using FP4 fingerprints:

Support Vector Machines with Radial Basis Function Kernel

##

597 samples

58 predictors

2 classes: 'class0', 'class1'

##

Pre-processing: centered, scaled

Resampling: Cross-Validated (5 fold)

##

Summary of sample sizes: 478, 478, 477, 478, 477

##

Resampling results across tuning parameters:

##

C ROC Sens Spec ROC SD Sens SD Spec SD

0.25 0.845 0.769 0.746 0.0498 0.0458 0.0877

0.5 0.856 0.744 0.777 0.0449 0.0148 0.0728

1 0.863 0.751 0.777 0.0428 0.036 0.0651

##

Tuning parameter 'sigma' was held constant at a value of 0.01077024

ROC was used to select the optimal model using the largest value.

The final values used for the model were sigma = 0.0108 and C = 1.

11

Rcpi Manual

There are 58 predictors left for the original length 512 FP4 fingerprints after the screening.
The model performance by AUC values is almost the same comparing to using MACCS keys,
and better than using E-state fingerprints.

We predict on the test sets with the established models, and plot the ROC curves in one
figure, as is shown in figure 4.

predict on test set

svm.pred1 = predict(svm.fit1, newdata = x1.te, type = 'prob')[, 1]

svm.pred2 = predict(svm.fit2, newdata = x2.te, type = 'prob')[, 1]

svm.pred3 = predict(svm.fit3, newdata = x3.te, type = 'prob')[, 1]

generate colors

require(RColorBrewer)

pal = brewer.pal(3, 'Set1')

ROC curves of different fingerprints

require(pROC)

plot(smooth(roc(y.te, svm.pred1)), col = pal[1], grid = TRUE)

plot(smooth(roc(y.te, svm.pred2)), col = pal[2], grid = TRUE, add = TRUE)

plot(smooth(roc(y.te, svm.pred3)), col = pal[3], grid = TRUE, add = TRUE)

Specificity

S
e
n
s
iti
v
ity

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1.0 0.8 0.6 0.4 0.2 0.0

Figure 4: Smoothed ROC curves for different fingerprint types

3.3. Clustering of Molecules Based on Structural Similarities

Apart from supervised methods (classification and regression), unsupervised approaches, like
clustering, is also widely applied in the quantitative research of drugs.

In reality, there are usually too many chemical compounds available for identifying drug-like

12

Rcpi Manual

molecules. Thus it would be attractive using clustering methods to aid the selection of a
representative subset of all available compounds. For a clustering approach that groups com-
pounds together by their structural similarity, applying the principle similar compounds have
similar properties means that we only need to test the representative compounds from each
individual cluster, rather than do the time-consuming complete set of experiments, and this
should be sufficient to understand the structure-activity relationships of the whole compound
set.

The Rcpi package provides easy-to-use functions for computing the similarity between small
molecules derived by molecular fingerprints and maximum common substructure search.

As a example, the SDF file tyrphostin.sdf below is a database composed by searching
tyrphostin in PubChem and filtered by Lipinski’s rule of five. We load this SDF file into R
using readMolFromSDF():

require(Rcpi)

mols = readMolFromSDF(system.file('compseq/tyrphostin.sdf', package = 'Rcpi'))

Then compute the E-state fingerprints for all the molecules using extractDrugEstate(), and
calculate their pairwise similarity matrix with calcDrugFPSim():

simmat = diag(length(mols))

for (i in 1:length(mols)) {

for (j in i:length(mols)) {

fp1 = extractDrugEstate(mols[[i]])

fp2 = extractDrugEstate(mols[[j]])

tmp = calcDrugFPSim(fp1, fp2, fptype = 'compact', metric = 'tanimoto')

simmat[i, j] = tmp

simmat[j, i] = tmp

}

}

For the computed similarity matrix simmat, we will try to do hierarchical clustering with it,
then visualize the clustering result:

mol.hc = hclust(as.dist(1 - simmat), method = 'ward')

require(ape) # for tree-like visualization

clus5 = cutree(mol.hc, 5) # cut dendrogram into 5 clusters

generate colors

require(RColorBrewer)

pal5 = brewer.pal(5, 'Set1')

plot(as.phylo(mol.hc), type = 'fan', tip.color = pal5[clus5],

label.offset = 0.1, cex = 0.7)

The clustering result for these molecules is shown in figure 5.

13

Rcpi Manual

1
2

3

4

5

6

7

8

9
10

11

12

13

1
4

15

16

17

18

19

20

21

22

23

2
4

25

2
6

2
7

28

29

3
03
1

32

3
3

3
4

35

36

37

38

39

40

4
1

4
2

4
3

44

4
5

4
6

47

4
8

49

5
0

51
5
2

5
3

54

5
5

5
6

57

58

59

60

61

62

63

64

6
5

66

67

6
8

69

70

71

72

73

74

7
5

76
77

78

79
80

81

82

83

84

85

86

8
7

88

89

90

9
1

92

9
3

94

95

96

97

9
8

9
9

100

101
102

10
3

104

1
0
5

Figure 5: Tree visualization of molecular clustering result

3.4. Structure-Based Chemical Similarity Searching

Structure-based chemical similarity searching ranks molecules in a database by their similarity
degree to one query molecule structure. The numerical similarity value is usually computed
based on the molecular fingerprints with selected metrics or by maximum common structure
search. It is one of the core techniques for ligand-based virtual screening in drug discovery.

The SDF file DB00530.sdf below is retrieved from DrugBank, the drug ID DB00530 is Er-
lotinib, which is a reversible tyrosine kinase inhibitor. Given this molecule as the query
molecule, we will do a similarity searching in the database tyrphostin.sdf presented in the
last subsection.

require(Rcpi)

mol = system.file('compseq/DB00530.sdf', package = 'Rcpi')

moldb = system.file('compseq/tyrphostin.sdf', package = 'Rcpi')

We could do parallelized drug molecular similarity search with the searchDrug() function
in Rcpi. Here we choose the search criterion to be MACCS keys with cosine similarity,
FP2 fingerprints with tanimoto similarity, and maximum common substructure search with
tanimoto similarity.

rank1 = searchDrug(mol, moldb, cores = 4, method = 'fp',

fptype = 'maccs', fpsim = 'tanimoto')

14

Rcpi Manual

rank2 = searchDrug(mol, moldb, cores = 4, method = 'fp',

fptype = 'fp2', fpsim = 'cosine')

rank3 = searchDrug(mol, moldb, cores = 4, method = 'mcs',

mcssim = 'tanimoto')

The returned search result is stored as a numerical vector, each element’s name is the molecule
number in the database, and the value is the similarity value between the query molecule and
this molecule. We shall print the top search results here:

head(rank1)

92 100 83 101 1 36

0.6491228 0.6491228 0.5882353 0.5660377 0.5000000 0.4861111

head(rank2)

100 92 83 101 94 16

0.8310005 0.8208663 0.5405856 0.5033150 0.4390790 0.4274081

head(rank3)

92 100 23 39 94 64

0.7000000 0.7000000 0.4000000 0.4000000 0.4000000 0.3783784

The Rcpi package also integrated the functionality of converting molecular file formats. For
example, we could convert the SDF files to SMILES files using convMolFormat(). Since the
No. 92 molecule ranks the highest in the three searches performed, we will calculate the
similarity derived by maximum common substructure search between the query molecule and
the No. 92 molecule using calcDrugMCSSim():

convert SDF format to SMILES format

convMolFormat(infile = mol, outfile = 'DB00530.smi', from = 'sdf', to = 'smiles')

convMolFormat(infile = moldb, outfile = 'tyrphostin.smi', from = 'sdf', to = 'smiles')

smi1 = readLines('DB00530.smi')

smi2 = readLines('tyrphostin.smi')[92] # select No.92 molecule in database

calcDrugMCSSim(smi1, smi2, type = 'smile', plot = TRUE)

The MCS search result is stored in a list, which contains the original MCS result provided by
the fmcsR package (Wang et al. 2013), the Tanimoto coefficient and the overlap coefficient.

[[1]]

An instance of "MCS"

Number of MCSs: 1

530: 29 atoms

4705: 22 atoms

MCS: 18 atoms

Tanimoto Coefficient: 0.54545

Overlap Coefficient: 0.81818

##

[[2]]

Tanimoto_Coefficient

15

Rcpi Manual

0.5454545

##

[[3]]

Overlap_Coefficient

0.8181818

By using calcDrugMCSSim(..., plot = TRUE), the maximum common substructure of the
two molecules is presented in figure 6.

530

O

O

O

N N

NH

O

4705

BrNHN

N

O

O

Figure 6: Maximum common structure of the query molecule and No.92 molecule in the
chemical database (SDF file)

4. Applications in Chemogenomics

For chemogenomics modeling, Rcpi calculates compound-protein interaction (CPI) descriptors
and protein-protein interaction (PPI) descriptors.

4.1. Predicting Drug-Target Interaction by Integrating Chemical and Ge-
nomic Spaces

The prediction of novel interactions between drugs and target proteins is a key area in genomic
drug discovery. In this example, we use the G protein-coupled receptor (GPCR) dataset
provided by Yamanishi et al. (2008) as our benchmark dataset.

A drug-target interaction network can be naturally modeled as a bipartite graph, where the
nodes are target proteins or drug molecules and edges (only drugs and proteins could be
connected by edges) represent drug-target interactions. Initially, the graph only contains
edges describing the real drug-target interactions determined by experiments or other ways.
In this example, all real drug-target interaction pairs (i.e., 635 drug-target interactions) are
used as the positive samples. For negative samples we select random, non-interacting pairs
from these drugs and proteins. They are constructed as follows:

1. Separate the pairs in the above positive samples into single drugs and proteins;

16

Rcpi Manual

2. Re-couple these singles into pairs in a way that none of them occurs in the corresponding
positive dataset.

Ten generated negative sets were used in Cao et al. (2012a), here we only use one of them
for a demonstration. The drug ID and target ID is stored in GPCR.csv. The first column
is KEGG protein ID, and the second column is KEGG drug ID. The first 635 rows is the
positive set, and the last 635 rows is the negative set.

require(Rcpi)

gpcr = read.table(system.file('vignettedata/GPCR.csv', package = 'Rcpi'),

header = FALSE, as.is = TRUE)

Get a glimpse of the data:

head(gpcr)

V1 V2

1 hsa:10161 D00528

2 hsa:10800 D00411

3 hsa:10800 D01828

4 hsa:10800 D05129

5 hsa:11255 D00234

6 hsa:11255 D00300

We will visualize the network first. Figure 7 shows the connection pattern for the GPCR
drug-target interaction network in the form of an arc diagram.

require(igraph)

require(arcdiagram)

require(reshape)

g = graph.data.frame(gpcr[1:(nrow(gpcr)/2),], directed = FALSE)

edgelist = get.edgelist(g)

vlabels = V(g)$name

vgroups = c(rep(0, 95), rep(1, 223))

vfill = c(rep('#8B91D4', 95), rep('#B2C771', 223))

vborders = c(rep('#6F74A9', 95), rep('#8E9F5A', 223))

degrees = degree(g)

xx = data.frame(vgroups, degrees, vlabels, ind = 1:vcount(g))

yy = arrange(xx, desc(vgroups), desc(degrees))

new.ord = yy$ind

arcplot(edgelist, ordering = new.ord, labels = vlabels,

cex.labels = 0.1, show.nodes = TRUE,

17

Rcpi Manual

col.nodes = vborders, bg.nodes = vfill,

cex.nodes = log10(degrees) + 0.1,

pch.nodes = 21, line = -0.5, col.arcs = hsv(0, 0, 0.2, 0.25))

D
00

28
3

D
00

45
4

D
00

51
3

D
00

72
6

D
00

52
8

D
02

36
1

D
00

49
4

D
02

35
4

D
00

45
1

D
00

43
7

D
00

99
6

D
02

14
9

D
00

25
5

D
01

71
3

D
00

77
5

D
02

35
6

D
00

27
0

D
01

97
3

D
00

28
1

D
00

50
9

D
00

60
7

D
00

60
9

D
01

02
2

D
01

05
1

D
01

60
3

D
02

23
7

D
00

49
3

D
01

16
4

D
00

11
3

D
01

87
1

D
02

07
0

D
00

61
3

D
00

56
0

D
01

29
5

D
02

67
1

D
00

41
1

D
05

12
9

D
02

56
6

D
03

62
1

D
00

42
6

D
00

60
4

D
01

35
8

D
00

50
3

D
00

13
6

D
00

56
3

D
03

96
6

D
00

23
4

D
00

30
0

D
00

31
8

D
00

23
2

D
00

27
4

D
00

39
7

D
00

52
4

D
03

85
8

D
00

22
7

D
01

02
0

D
01

02
4

D
01

96
5

D
02

23
4

D
00

09
5

D
00

60
6

D
02

07
6

D
03

27
4

D
04

03
4

D
00

43
2

D
00

48
3

D
01

39
0

D
01

45
4

D
02

06
6

D
02

15
0

D
02

33
8

D
02

37
4

D
03

41
5

D
03

87
9

D
00

11
0

D
02

34
0

D
00

67
6

D
05

31
2

D
00

18
0

D
02

25
0

D
00

46
5

D
00

54
0

D
00

64
6

D
00

77
9

D
02

32
7

D
00

33
2

D
01

71
2

D
02

88
4

D
02

91
0

D
00

23
5

D
00

59
8

D
00

60
1

D
00

63
2

D
00

63
5

D
00

64
5

D
02

34
2

D
03

49
0

D
03

88
0

D
03

88
1

D
00

05
9

D
00

79
0

D
01

22
7

D
01

71
7

D
00

41
5

D
00

67
5

D
02

82
6

D
05

74
0

D
02

57
8

D
00

83
7

D
00

83
8

D
01

23
6

D
02

72
1

D
02

72
5

D
00

41
9

D
01

35
2

D
00

44
2

D
03

44
2

D
01

82
8

D
00

52
5

D
00

71
5

D
01

10
3

D
01

11
8

D
01

26
9

D
01

29
7

D
00

76
0

D
00

76
5

D
01

69
9

D
03

65
4

D
03

21
0

D
00

30
6

D
00

37
1

D
04

00
6

D
00

95
4

D
00

96
5

D
01

69
2

D
00

51
4

D
02

34
9

D
04

37
5

D
02

35
8

D
02

61
4

D
04

62
5

D
00

68
3

D
00

68
4

D
00

68
7

D
00

68
8

D
01

38
6

D
02

14
7

D
02

35
9

D
05

79
2

D
00

78
0

D
00

98
7

D
01

46
2

D
01

74
5

D
03

16
5

D
00

55
9

D
00

40
0

D
00

44
3

D
00

52
2

D
00

52
3

D
00

62
7

D
02

08
2

D
04

04
0

D
05

24
6

D
01

12
6

D
02

27
8

D
02

27
9

D
00

24
1

D
01

34
6

D
00

36
4

D
00

48
0

D
00

52
0

D
00

52
1

D
00

66
5

D
00

66
6

D
01

24
2

D
01

32
4

D
01

33
2

D
01

78
2

D
04

97
9

D
00

29
5

D
00

42
2

D
00

44
0

D
00

67
3

D
03

50
3

D
00

67
4

D
02

35
7

D
01

99
4

D
06

05
6

D
06

39
6

D
00

04
9

D
00

13
9

D
00

22
5

D
00

38
0

D
00

39
4

D
00

41
0

D
00

54
2

D
00

57
4

D
01

07
1

D
00

30
1

D
00

49
8

D
00

84
5

D
04

71
6

D
05

11
3

D
05

93
8

D
01

65
2

D
00

68
2

D
03

18
7

D
01

89
1

D
00

35
6

D
01

96
4

D
00

07
9

D
05

34
1

D
00

10
6

D
00

76
9

D
00

33
6

D
03

64
2

D
01

92
5

D
02

00
7

D
02

58
8

D
00

49
9

D
03

36
5

D
00

09
4

D
01

44
1

hs
a:

15
4

hs
a:

14
8

hs
a:

15
3

hs
a:

15
0

hs
a:

11
28

hs
a:

32
69

hs
a:

14
6

hs
a:

15
1

hs
a:

14
7

hs
a:

18
13

hs
a:

11
29

hs
a:

33
56

hs
a:

15
5

hs
a:

15
2

hs
a:

18
12

hs
a:

18
14

hs
a:

11
31

hs
a:

33
51

hs
a:

33
52

hs
a:

33
58

hs
a:

35
77

hs
a:

49
88

hs
a:

11
32

hs
a:

18
16

hs
a:

18
5

hs
a:

33
60

hs
a:

11
33

hs
a:

32
74

hs
a:

33
50

hs
a:

33
55

hs
a:

33
57

hs
a:

59
34

0
hs

a:
11

25
5

hs
a:

13
4

hs
a:

33
54

hs
a:

33
62

hs
a:

13
5

hs
a:

18
15

hs
a:

33
61

hs
a:

49
86

hs
a:

57
31

hs
a:

57
39

hs
a:

88
43

hs
a:

10
80

0
hs

a:
13

6
hs

a:
22

25
45

hs
a:

29
18

hs
a:

33
63

hs
a:

57
32

hs
a:

57
33

hs
a:

57
37

hs
a:

64
80

5
hs

a:
72

01
hs

a:
14

0
hs

a:
29

12
hs

a:
29

13
hs

a:
29

16
hs

a:
49

85
hs

a:
57

10
5

hs
a:

67
52

hs
a:

69
15

hs
a:

10
16

1
hs

a:
12

34
hs

a:
12

41
hs

a:
12

68
hs

a:
19

09
hs

a:
19

10
hs

a:
23

62
0

hs
a:

25
50

hs
a:

28
46

hs
a:

29
11

hs
a:

29
14

hs
a:

29
15

hs
a:

29
17

hs
a:

33
84

42
hs

a:
45

43
hs

a:
50

28
hs

a:
50

29
hs

a:
50

30
hs

a:
50

31
hs

a:
50

32
hs

a:
55

2
hs

a:
55

4
hs

a:
56

41
3

hs
a:

57
24

hs
a:

57
29

hs
a:

60
10

hs
a:

67
51

hs
a:

67
53

hs
a:

67
55

hs
a:

88
6

hs
a:

88
7

hs
a:

90
52

hs
a:

92
83

hs
a:

99
34

Figure 7: Arc diagram visualization of the GPCR drug-target interaction network

An arc diagram visualize the nodes in the network in a one-dimensional layout, while using
circular arcs to represent edges. With a good ordering of nodes, it is easy to identify cliques
and bridges.

Next, we will download the target protein sequences (in FASTA format) and drug molecule
(in SMILES format) from the KEGG database, in parallel:

require(Rcpi)

gpcr = read.table(system.file('vignettedata/GPCR.csv', package = 'Rcpi'),

header = FALSE, as.is = TRUE)

protid = unique(gpcr[, 1])

drugid = unique(gpcr[, 2])

protseq = getSeqFromKEGG(protid, parallel = 5)

drugseq = getSmiFromKEGG(drugid, parallel = 50)

If the connection is slow or accidentally interrupts, just try more times until success.

The functions in Rcpi named after getMolFrom...() and getSmiFrom...() supports the par-
allelized retrieval of (drug) molecules from PubChem, ChEMBL, CAS, KEGG, and DrugBank.
The functions named after getSeqFrom...(), getFASTAFrom...() and getPDBFrom...()

supports the parallelized retrieval of proteins from UniProt, KEGG and RCSB PDB. The
functions getDrug() and getProt() are two integrated wrapper functions for downloading
the molecules and protein sequences from these online databases.

18

Rcpi Manual

After the sequences were downloaded, we could calculate the protein sequence descriptors and
molecular descriptors for the targets and drugs:

x0.prot = cbind(t(sapply(unlist(protseq), extractProtAPAAC)),

t(sapply(unlist(protseq), extractProtCTriad)))

x0.drug = cbind(extractDrugEstateComplete(readMolFromSmi(textConnection(drugseq))),

extractDrugMACCSComplete(readMolFromSmi(textConnection(drugseq))),

extractDrugOBFP4(drugseq, type = 'smile'))

Since the descriptors is only for the uniqued drug and target list, we need to generate the full
descriptor matrix for the training data:

generate drug x / protein x / y

x.prot = matrix(NA, nrow = nrow(gpcr), ncol = ncol(x0.prot))

x.drug = matrix(NA, nrow = nrow(gpcr), ncol = ncol(x0.drug))

for (i in 1:nrow(gpcr)) x.prot[i,] = x0.prot[which(gpcr[, 1][i] == protid),]

for (i in 1:nrow(gpcr)) x.drug[i,] = x0.drug[which(gpcr[, 2][i] == drugid),]

y = as.factor(c(rep('pos', nrow(gpcr)/2), rep('neg', nrow(gpcr)/2)))

Generate drug-target interaction descriptors using getCPI().

x = getCPI(x.prot, x.drug, type = 'combine')

The pairwise interaction is another useful type of representation in drug-target prediction,
protein-protein interaction prediction and related research. Rcpi also provides getPPI() to
generate protein-protein interaction descriptors. getPPI() provides three types of interactions
while getCPI() provides two types. The argument type is used to control this:

� Compound-Protein Interaction (CPI) Descriptors

For compound descriptor vector d1×p1
1 and the protein descriptor vector d1×p2

2 , there are
two methods for construction of descriptor vector d for compound-protein interaction:

1. 'combine' - combine the two feature matrix, d has p1 + p2 columns;

2. 'tensorprod' - column-by-column (pseudo)-tensor product type interactions, d
has p1 × p2 columns.

� Protein-Protein Interaction (PPI) Descriptors

For interaction protein A and protein B, let d1×p
1 and d1×p

2 be the descriptor vectors.
There are three methods to construct the protein-protein interaction descriptor d:

1. 'combine' - combine the two descriptor matrix, d has p + p columns;

2. 'tensorprod' - column-by-column (pseudo)-tensor product type interactions, d
has p× p columns;

19

Rcpi Manual

3. 'entrywise' - entrywise product and entrywise sum of the two matrices, then
combine them, d has p + p columns.

Train a random forest classification model with 5-fold repeated CV:

require(caret)

x = x[, -nearZeroVar(x)]

cross-validation settings

ctrl = trainControl(method = 'cv', number = 5, repeats = 10,

classProbs = TRUE,

summaryFunction = twoClassSummary)

train a random forest classifier

require(randomForest)

set.seed(1006)

rf.fit = train(x, y, method = 'rf', trControl = ctrl,

metric = 'ROC', preProc = c('center', 'scale'))

Print the cross-validation result:

print(rf.fit)

Random Forest

##

1270 samples

562 predictors

2 classes: 'neg', 'pos'

##

Pre-processing: centered, scaled

Resampling: Cross-Validated (5 fold)

##

Summary of sample sizes: 1016, 1016, 1016, 1016, 1016

##

Resampling results across tuning parameters:

##

mtry ROC Sens Spec ROC SD Sens SD Spec SD

2 0.83 0.726 0.778 0.0221 0.044 0.0395

33 0.882 0.795 0.82 0.018 0.0522 0.0443

562 0.893 0.822 0.844 0.0161 0.0437 0.0286

##

ROC was used to select the optimal model using the largest value.

The final value used for the model was mtry = 562.

Predict on the training set (for demonstration purpose only) and plot ROC curve.

20

Rcpi Manual

rf.pred = predict(rf.fit$finalModel, x, type = 'prob')[, 1]

require(pROC)

plot(smooth(roc(y, rf.pred)), col = '#0080ff', grid = TRUE, print.auc = TRUE)

The ROC curve is shown in figure 8.

Specificity

S
e

n
s
iti

v
ity

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1.0 0.8 0.6 0.4 0.2 0.0

AUC: 0.712

Figure 8: ROC curve for predicting on the training set of the GPCR drug-target interaction
dataset using random forest

21

Rcpi Manual

References

Atchley WR, Zhao J, Fernandes AD, Drüke T (2005). “Solving the protein sequence metric
problem.” Proceedings of the National Academy of Sciences of the United States of America,
102(18), 6395–6400.

Bhasin M, Raghava GPS (2004). “Classification of Nuclear Receptors Based on Amino
Acid Composition and Dipeptide Composition.” Journal of Biological Chemistry, 279(22),
23262–6.

Cao DS, Liang YZ, Deng Z, Hu QN, He M, Xu QS, Zhou GH, Zhang LX, Deng Zx, Liu
S (2013a). “Genome-Scale Screening of Drug-Target Associations Relevant to Ki Using a
Chemogenomics Approach.” PloS one, 8(4), e57680.

Cao DS, Liang YZ, Yan J, Tan GS, Xu QS, Liu S (2013b). “PyDPI: Freely Available Python
Package for Chemoinformatics, Bioinformatics, and Chemogenomics Studies.” Journal of
chemical information and modeling.

Cao DS, Liu S, Xu QS, Lu HM, Huang JH, Hu QN, Liang YZ (2012a). “Large-scale predic-
tion of drug-target interactions using protein sequences and drug topological structures.”
Analytica chimica acta, 752, 1–10.

Cao DS, Xu QS, Hu QN, Liang YZ (2013c). “ChemoPy: freely available python package for
computational biology and chemoinformatics.” Bioinformatics, 29(8), 1092–1094.

Cao DS, Xu QS, Liang YZ (2013d). “propy: a tool to generate various modes of Chou’s
PseAAC.” Bioinformatics.

Cao DS, Zhao JC, Yang YN, Zhao CX, Yan J, Liu S, Hu QN, Xu QS, Liang YZ (2012b).
“In silico toxicity prediction by support vector machine and SMILES representation-based
string kernel.” SAR and QSAR in Environmental Research, 23(1-2), 141–153.

Cao Y, Charisi A, Cheng LC, Jiang T, Girke T (2008). “ChemmineR: a compound mining
framework for R.” Bioinformatics, 24(15), 1733–1734.

Chou KC (2000). “Prediction of Protein Subcellar Locations by Incorporating Quasi-Sequence-
Order Effect.” Biochemical and Biophysical Research Communications, 278, 477–483.

Chou KC (2001). “Prediction of Protein Cellular Attributes Using Pseudo-Amino Acid Com-
position.” PROTEINS: Structure, Function, and Genetics, 43, 246–255.

Chou KC (2005). “Using Amphiphilic Pseudo Amino Acid Composition to Predict Enzyme
Subfamily Classes.” Bioinformatics, 21, 10–19.

Chou KC, Cai YD (2004). “Prediction of Protein Sub-cellular Locations by GO-FunD-PseAA
Predictor.” Biochemical and Biophysical Research Communications, 320, 1236–1239.

Chou KC, Shen HB (2008). “Cell-PLoc: a package of Web servers for predicting subcellular
localization of proteins in various organisms.” Nature protocols, 3(2), 153–162.

Damborsky J (1998). “Quantitative Structure-function and Structure-stability Relationships
of Purposely Modified Proteins.” Protein Engineering, 11, 21–30.

22

Rcpi Manual

Dubchak I, Muchink I, Holbrook SR, Kim SH (1995). “Prediction of Protein Folding Class
Using Global Description of Amino Acid Sequence.” Proceedings of the National Academy
of Sciences, 92, 8700–8704.

Dubchak I, Muchink I, Mayor C, Dralyuk I, Kim SH (1999). “Recognition of a Protein Fold
in the Context of the SCOP Classification.” Proteins: Structure, Function and Genetics,
35, 401–407.

Georgiev AG (2009). “Interpretable numerical descriptors of amino acid space.” Journal of
Computational Biology, 16(5), 703–723.

Grantham R (1974). “Amino Acid Difference Formula to Help Explain Protein Evolution.”
Science, 185, 862–864.

Guha R, Jurs P (2005). “Integrating R with the CDK for QSAR modeling.” In 230th American
Chemical Society Meeting & Conference, Washington DC, volume 32.

Hellberg S, Sjoestroem M, Skagerberg B, Wold S (1987). “Peptide quantitative structure-
activity relationships, a multivariate approach.” Journal of medicinal chemistry, 30(7),
1126–1135.

Hopp-Woods (1981). “Prediction of Protein Antigenic Determinants from Amino Acid Se-
quences.” Proceedings of the National Academy of Sciences, 78, 3824–3828.

Horan K, Girke T (2013). ChemmineOB: R interface to a subset of OpenBabel function-
alities. R package version 1.0.1, URL http://manuals.bioinformatics.ucr.edu/home/

chemminer.

Kawashima S, Kanehisa M (2000). “AAindex: Amino Acid Index Database.” Nucleic Acids
Research, 28, 374.

Kawashima S, Ogata H, Kanehisa M (1999). “AAindex: Amino Acid Index Database.” Nucleic
Acids Research, 27, 368–369.

Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kanehisa M (2008).
“AAindex: Amino Acid Index Database (Progress Report).” Nucleic Acids Research, 36,
D202–D205.

Li Z, Lin H, Han Y, Jiang L, Chen X, Chen Y (2006). “PROFEAT: A Web Server for
Computing Structural and Physicochemical Features of Proteins and Peptides from Amino
Acid Sequence.” Nucleic Acids Research, 34, 32–37.

Mei H, Liao ZH, Zhou Y, Li SZ (2005). “A new set of amino acid descriptors and its application
in peptide QSARs.” Peptide Science, 80(6), 775–786.

Pages H, Aboyoun P, Gentleman R, DebRoy S (2013). Biostrings: String objects representing
biological sequences, and matching algorithms. R package version 2.30.1.

Rao H, Zhu F, Yang G, Li Z, Chen Y (2011). “Update of PROFEAT: A Web Server for
Computing Structural and Physicochemical Features of Proteins and Peptides from Amino
Acid Sequence.” Nucleic Acids Research, 39, 385–390.

23

http://manuals.bioinformatics.ucr.edu/home/chemminer
http://manuals.bioinformatics.ucr.edu/home/chemminer

Rcpi Manual

Sandberg M, Eriksson L, Jonsson J, Sjöström M, Wold S (1998). “New chemical descriptors
relevant for the design of biologically active peptides. A multivariate characterization of 87
amino acids.” Journal of medicinal chemistry, 41(14), 2481–2491.

Schneider G, Wrede P (1994). “The Rational Design of Amino Acid Sequences by Artificial
Neural Networks and Simulated Molecular Evolution: Do Novo Design of an Idealized
Leader Cleavage Site.” Biophysical Journal, 66, 335–344.

Shen J, Zhang J, Luo X, Zhu W, Yu K, Chen K, Li Y, Jiang H (2007). “Predicting Protein-
protein Interactions Based Only on Sequences Information.” Proceedings of the National
Academy of Sciences, 104, 4337–4341.

Sjöström M, Rännar S, Wieslander Å (1995). “Polypeptide sequence property relationships in
Escherichia coli based on auto cross covariances.” Chemometrics and intelligent laboratory
systems, 29(2), 295–305.

Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E (2003). “The Chem-
istry Development Kit (CDK): An open-source Java library for chemo-and bioinformatics.”
Journal of chemical information and computer sciences, 43(2), 493–500.

Tian F, Zhou P, Li Z (2007). “T-scale as a novel vector of topological descriptors for amino
acids and its application in QSARs of peptides.” Journal of molecular structure, 830(1),
106–115.

van Westen GJ, Swier RF, Cortes-Ciriano I, Wegner JK, Overington JP, IJzerman AP, van
Vlijmen HW, Bender A (2013a). “Benchmarking of protein descriptor sets in proteochemo-
metric modeling (part 2): modeling performance of 13 amino acid descriptor sets.” Journal
of cheminformatics, 5(1), 42.

van Westen GJ, Swier RF, Wegner JK, IJzerman AP, van Vlijmen HW, Bender A (2013b).
“Benchmarking of protein descriptor sets in proteochemometric modeling (part 1): com-
parative study of 13 amino acid descriptor sets.” Journal of cheminformatics, 5(1), 41.

van Westen GJ, van den Hoven OO, van der Pijl R, Mulder-Krieger T, de Vries H, Wegner
JK, IJzerman AP, van Vlijmen HW, Bender A (2012). “Identifying novel adenosine receptor
ligands by simultaneous proteochemometric modeling of rat and human bioactivity data.”
Journal of Medicinal Chemistry, 55(16), 7010–7020.

van Westen GJ, Wegner JK, Geluykens P, Kwanten L, Vereycken I, Peeters A, IJzerman
AP, van Vlijmen HW, Bender A (2011). “Which compound to select in lead optimization?
Prospectively validated proteochemometric models guide preclinical development.” PloS
one, 6(11), e27518.

Venkatarajan MS, Braun W (2001). “New quantitative descriptors of amino acids based on
multidimensional scaling of a large number of physical–chemical properties.” Molecular
modeling annual, 7(12), 445–453.

Wang Y, Backman TW, Horan K, Girke T (2013). “fmcsR: mismatch tolerant maximum
common substructure searching in R.” Bioinformatics, 29(21), 2792–2794.

Wikberg JE, Lapinsh M, Prusis P (2004). “Proteochemometrics: a tool for modeling the
molecular interaction space.” Chemogenomics in drug discovery, pp. 289–309.

24

Rcpi Manual

Xiao N, Cao D, Xu Q (2014a). Rcpi: Toolkit for Compound-Protein Interaction in Drug
Discovery. R package version 1.0.0, URL https://www.bioconductor.org/packages/

release/bioc/html/Rcpi.html.

Xiao N, Xu Q, Cao D (2014b). protr: Protein Sequence Descriptor Calculation and Simi-
larity Computation with R. R package version 0.2-1, URL http://CRAN.R-project.org/

package=protr.

Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M (2008). “Prediction of drug–
target interaction networks from the integration of chemical and genomic spaces.” Bioin-
formatics, 24(13), i232–i240.

Yan J, Cao DS, Guo FQ, Zhang LX, He M, Huang JH, Xu QS, Liang YZ (2012). “Com-
parison of quantitative structure–retention relationship models on four stationary phases
with different polarity for a diverse set of flavor compounds.” Journal of Chromatography
A, 1223, 118–125.

Yu G, Li F, Qin Y, Bo X, Wu Y, Wang S (2010). “GOSemSim: an R package for measuring
semantic similarity among GO terms and gene products.” Bioinformatics, 26(7), 976–978.

Zaliani A, Gancia E (1999). “MS-WHIM scores for amino acids: a new 3D-description for
peptide QSAR and QSPR studies.” Journal of chemical information and computer sciences,
39(3), 525–533.

Zhang QC, Petrey D, Deng L, Qiang L, Shi Y, Thu CA, Bisikirska B, Lefebvre C, Accili D,
Hunter T, et al. (2012). “Structure-based prediction of protein-protein interactions on a
genome-wide scale.” Nature, 490(7421), 556–560.

Affiliation:

Nan Xiao
School of Mathematics and Statistics
Central South University
Changsha, Hunan, China
E-mail: me@nanx.me
URL: http://nanx.me

Dongsheng Cao
School of Pharmaceutical Sciences
Central South University
Changsha, Hunan, China

Qingsong Xu
School of Mathematics and Statistics
Central South University
Changsha, Hunan, China

25

https://www.bioconductor.org/packages/release/bioc/html/Rcpi.html
https://www.bioconductor.org/packages/release/bioc/html/Rcpi.html
http://CRAN.R-project.org/package=protr
http://CRAN.R-project.org/package=protr
mailto:me@nanx.me
http://nanx.me

	Introduction
	1. Introduction
	Applications in Bioinformatics
	2. Applications in Bioinformatics
	Predicting Protein Subcellular Localization
	2.1 Predicting Protein Subcellular Localization

	Applications in Chemoinformatics
	3 Applications in Chemoinformatics
	Regression Modeling in QSRR Study of Retention Indices
	3.1 Regression Modeling in QSRR Study of Retention Indices
	In Silico Toxicity Classification for Drug Discovery
	3.2 In Silico Toxicity Classification for Drug Discovery
	Clustering of Molecules Based on Structural Similarities
	3.3 Clustering of Molecules Based on Structural Similarities
	Structure-Based Chemical Similarity Searching
	3.4 Structure-Based Chemical Similarity Searching

	Applications in Chemogenomics
	4 Applications in Chemogenomics
	Predicting Drug-Target Interaction by Integrating Chemical and Genomic Spaces
	4.1 Predicting Drug-Target Interaction by Integrating Chemical and Genomic Spaces

	References

