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Abstract

PureCN is a purity and ploidy aware copy number caller for cancer samples inspired
by the ABSOLUTE algorithm [1]. It was designed for hybrid capture sequencing
data, especially with medium-sized targeted gene panels without matching normal
samples in mind (matched whole exome data is of course supported).

It can be used to supplement existing normalization and segmentation algorithms,
i.e. the software can start from BAM files, from target-level coverage data, from
copy number log-ratios or from already segmented data. If the correct purity
and ploidy solution was identified, PureC/N can also help in classifying variants as
germline vs. somatic or clonal vs. sub-clonal.

PureCN was further designed to integrate well with industry standard pipelines [2],
but it is straightforward to generate input data from other pipelines.
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Quick start

This tutorial will demonstrate on a toy example how we recommend running
PureCN on targeted sequencing data. To estimate tumor purity, we jointly utilize
both target-level’ coverage data and allelic fractions of single nucleotide variants
(SNVs), inside - and optionally outside - the targeted regions. Knowledge of purity
will in turn allow us to accurately (i) infer integer copy number and (ii) classify
variants (somatic vs. germline, mono-clonal vs. sub-clonal, heterozygous vs. ho-
mozygous etc.).

This requires 3 basic input files:

1. A VCF file containing germline SNPs and somatic mutations. Somatic status
is not required in case the variant caller was run without matching normal
sample.

2. The tumor BAM file.

3. A BAM file from a normal control sample, either matched or process-matched.

In addition, we need to know a little bit more about the assay. This is the annoying
step, since here you need to provide some information. Most importantly, we need
to know the positions of all targets. Then we need to correct for GC-bias, for which
we need GC-content for each target. Optionally, if gene-level calls are wanted, we
also need for each target a gene symbol. To obtain best results, we can finally
use a pool of normal samples to automatically learn more about our assay and its
biases and common artifacts.

The next sections will show how to do all this with PureCN alone or with the
help of GATK and/or existing copy number pipelines. We tried to make this as
pain-free as possible.

Basic input files

2.1

Single nucleotide variants

Germline SNPs and somatic mutations are expected in a single VCF file. At the
bare minimum, this VCF should contain read depths of reference and alt alleles in an
AD genotype field and a DB info flag for dbSNP membership. If a matched normal
is available, then somatic status information is currently expected in a SOMATIC
info flag in the VCF. The VariantAnnotation package provides examples how to
add info fields to a VCF in case the used variant caller does not add this flag.

VCF files generated by MuTect [3] should work well and in general require no
post-processing. PureCN can handle MuTect VCF files generated in both single
and matched normal mode.

1The captured genomic
regions, e.g. exons.
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2.2

2.3

Coverage data

For the default segmentation function provided by PureCN, the algorithm first
needs to calculate log-ratios of tumor vs. normal control coverage. Coverage data
needs to be provided in GATK DepthOfCoverage format?:

Target total_coverage average_coverage
chrl:69091-70009 0 0 0
chrl:367659-368598 6358 9.25
chrl:621096-622035 6294 9.16

The intervals define the captured genomic regions (targets) and are provided by the
manufacturer of your capture kit3. Default parameters assume that these intervals
do NOT include a "padding" to include flanking regions of targets. PureCN can
include variants in flanking regions if the variant caller was run with interval padding
(See Sections 9 and 14).

It is recommended to GC-normalize coverage (how this done is described later in
Section 3). The GC-content for each target is expected in GATK GCContentBy-
Interval format:

Target gc_bias Gene

chrl:69091-70009 0.427638737758433 OR4F5
chrl:367659-368598 0.459574468085106 OR4F29
chrl:621096-622035 0.459574468085106 OR4F3

The Gene column is optional and only required for providing gene-level copy number
and LOH calls. This information should be available in the technical documentation
of your capture kit. Simplistic example code for annotating target intervals with
gene symbols is given in the Appendix of this vignette for testing purposes.

Generating coverage data without GATK

The calculateBamCoverageByInterval function can be used to generate the re-
quired coverage data from BAM files:

bam.file <- system.file("extdata", "exl.bam", package="PureCN",
mustWork = TRUE)
interval.file <- system.file("extdata", "exl_intervals.txt",

package="PureCN", mustWork = TRUE)

calculateBamCoverageByInterval (bam.file=bam.file,
interval.file=interval.file, output.file="ex1l coverage.txt")

To calculate GC-content, PureCN provides the calculateGCContentByInterval
function:

interval.file <- system.file("extdata", "ex2_intervals.txt",
package = "PureCN", mustWork = TRUE)

2GATK will generate
additional columns and
PureCN will ignore
these when provided

3While PureCN can
use a pool of normal
samples to learn which
intervals are reliable
and which not, it is
highly recommended
to provide the correct
intervals. Garbage in,
garbage out.
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2.4

2.5

reference.file <- system.file("extdata", "ex2_reference.fa",
package = "PureCN", mustWork = TRUE)

calculateGCContentByInterval(interval.file, reference.file,
output.file = "ex2_gc_file.txt")

Third-party segmentation tools

PureCN integrates well with existing copy number pipelines. Instead of coverage
data, the user then needs to provide either already segmented data or a wrapper
function. This is described in Section 7.

Example data

We now load a few example files that we will use throughout this tutorial:

normal.coverage.file <- system.file("extdata", "example_normal.txt",
package="PureCN")
normal2.coverage.file <- system.file("extdata", "example_normal2.txt",

package="PureCN")
normal.coverage.files <- c(normal.coverage.file, normal2.coverage.file)

tumor.coverage.file <- system.file("extdata", "example_tumor.txt",
package="PureCN")
seg.file <- system.file("extdata", "example_seg.txt",
package = "PureCN")
vcf.file <- system.file("extdata", "example_vcf.vcf", package="PureCN")
gc.gene.file <- system.file("extdata", "example_gc.gene.file.txt",

package="PureCN")

GC-bias

The algorithm works best when the coverage files are GC-normalized. We can
easily create GC-normalized coverage files:

correctCoverageBias(normal.coverage.file, gc.gene.file,
"example_normal_loess.txt")

All the following steps in this vignette assume that the coverage data are
GC-normalized. The example coverage files are already GC-normalized. Sec-
tion 12.1 presents a convenient command line script for generating GC-normalized
coverage data from BAM files or from GATK coverage files.
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4 Pool of normals

41  Selection of normals for log-ratio calculation

For calculating copy number log-ratios of tumor vs. normal, PureCN requires cov-
erage from a process-matched normal sample. Using a normal that was sequenced
using a similar, but not identical assay, rarely works, since differently covered ge-
nomic regions result in too many log-ratio outliers. This section describes how to
identify a good process-matched normal in case no matched normal is available or
in case the matched normal has low or uneven coverage.

The createNormalDatabase function builds a database of coverage files:

normalDB <- createNormalDatabase(normal.coverage.files)

## Allosome coverage appears to be missing, cannot determine sex.
## Allosome coverage appears to be missing, cannot determine sex.

# serialize, so that we need to do this only once for each assay
saveRDS(normalDB, file="normalDB.rds")

Again, please make sure that all coverage files were GC-normalized prior to building
the database (Section 3). Internally, createNormalDatabase determines the sex of
the samples and trains a PCA that is later used for clustering a tumor file with all
normal samples in the database. This clustering is performed by the findBestNor
mal function:

normalDB <- readRDS("normalDB.rds")

# get the best normal

best.normal.coverage.file <- findBestNormal(tumor.coverage.file,
normalDB)

This function can also return multiple normal files that can be averaged into a
single pool:

# get the best 2 normals and average them

best.normal.coverage.files <- findBestNormal(tumor.coverage.file,
normalDB, num.normals=2)

pool <- poolCoverage(lapply(best.normal.coverage.files,
readCoverageGatk), remove.chrs=c('chrX', 'chrY"))

Pooling is only recommended when the coverage in normals is significantly lower
than in tumor. Otherwise the PCA will typically do a good job in selecting a
normal with decent coverage and similar biases compared to tumor. But it is worth
experimenting with different strategies using the plotBestNormal function. Note
that this example removes coverage from sex chromosomes; if the normal database
contains a sufficient number of samples with matching sex, findBestNormal will
return only normal samples with matching sex.
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4.2  Artifact filtering

It is important to remove as many artifacts as possible, since low ploidy solutions
are typically punished more by artifacts than high ploidy solutions. High ploidy
solutions are complex and usually find ways of explaining artifacts reasonably well.
This following steps in this section are optional, but recommended especially when
matched normals are not available.

We first use coverage data of normal samples to estimate the expected variance in
coverage per target:

target.weight.file <- "target weights.txt"
createTargetWeights(tumor.coverage.file, normal.coverage.files,
target.weight.file)

## Loading coverage data. ..
## Average coverage: 100X (tumor), 99X (normal).

## Average coverage: 100X (tumor), 43X (normal).

This function calculates target-level copy number log-ratios for all normal samples
provided in the normal.coverage.files argument. Assuming that all normal sam-
ples are in general diploid, an unusual high variance in log-ratio is indicative of an
target with either common germline alterations or frequent artifacts; high or low
copy number log-ratios in these targets are unlikely measuring somatic copy num-
ber events. For the log-ratio calculation, we provide a coverage file that is used
as tumor in the log-ratio calculation. The corresponding tumor.coverage.file
argument can also be an array of coverage files, in which case the target coverage
variance is averaged over all provided tumor files. As long as the coverage of the
tumor files is even, only 1 or 2 tumor files are necessary, however.

We can also use the pool of normals to find SNPs with biased allelic fractions in
low quality regions (very significantly different from 0.5 for heterozygous SNPs).
If a matching normal is provided, most variants in low quality regions with biased
allelic fractions should be automatically ignored. Note that this is not meant to
model non-reference bias leading in expected allelic ratio only slightly below 0.5
(typically around 0.48 on average). This bias is typically not strong enough to
influence selection of SNV states.

snp.blacklist <- c("SNP_blacklist.csv", "SNP_blacklist_segmented.csv")
recreateBlacklists <- FALSE

if (recreateBlacklists) {
mutect.normal.files <- dir("poolofnormals", pattern="vcf$",
full.names=TRUE)
snp.bl <- createSNPBlacklist(mutect.normal.files)
write.csv(snp.bl[[1]], file=snp.blacklist[1])
write.csv(snp.bl[[2]], file=snp.blacklist[2], row.names=FALSE,
quote=FALSE)



Copy number calling and SNV classification using targeted short read sequencing

Finally, we recommend running MuTect with a pool of normal samples to filter
common sequencing errors and alignment artifacts from the VCF. MuTect requires
a single VCF containing all normal samples, for example generated by the GATK
CombineVariants tool. It is possible to provide PureCN this combined VCF as well;
it might help the software correcting non-reference read mapping biases. This is
described in the setMappingBiasVcf documentation.

4.3  Artifact filtering without a pool of normals

By default, PureCN will exclude targets with coverage below 15X from segmenta-
tion. For SNVs, the same 15X cutoff is applied. MuTect applies more sophisticated
artifact tests and flags suspicious variants. If MuTect was run in matched normal
mode, then both potential artifacts and germline variants are rejected, that means
we cannot just filter by the PASS/REJECT MuTect flags. The filterVcfMuTect
function optionally reads the MuTect 1.1.7 stats file and will keep germline vari-
ants, while removing potential artifacts. Without the stats file, PureCN will use
only the filters based on read depths as defined in filterVcfBasic. Both func-
tions are automatically called by PureCN, but can be easily modified and replaced
if necessary.

Instead of using a pool of normals to find SNPs with biased allelic fractions, we can
also use a BED file to blacklist regions. For example the segmental duplications and
simple repeats tracks from the UCSC. This is again recommended when matching
normals are not available.

# Instead of using a pool of normals to find low quality regions,
# we use suitable BED files, for example from the UCSC genome browser.

# We do not download these in this vignette to avoid build failures
# due to internet connectivity problems.
downloadFromUCSC <- FALSE
if (downloadFromUCSC) {
library(rtracklayer)
mySession <- browserSession("UCSC")
genome(mySession) <- "hgl9"
tbl.segmentalDups <- getTable( ucscTableQuery(mySession,
track="Segmental Dups", table="genomicSuperDups"))
tbl.simpleRepeats <- getTable( ucscTableQuery(mySession,
track="Simple Repeats", table="simpleRepeat"))
write.table(tbl.segmentalDups[,-11],
file="hgl9_segmentalDuplications.txt", sep="\t",
row.names=FALSE)
write.table(tbl.simpleRepeats|[,-1],
file="hgl9_simpleRepeats.txt", sep="\t",
row.names=FALSE)

snp.blacklist <- c('hgl9_segmentalDuplications.txt',
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'hgl9_simpleRepeats.txt')

5 Recommended run

Finally, we can run PureCN with all that information:

ret <-runAbsoluteCN(normal.coverage.file=normal.coverage.file,
tumor.coverage.file=tumor.coverage.file, vcf.file=vcf.file,
genome="hg19", sampleid='Samplel’,
gc.gene.file=gc.gene.file,

# args.filterVcf=list(snp.blacklist=snp.blacklist,

# stats.file=mutect.stats.file),
args.filterTargets=list(normalDB=normalDB),
args.segmentation=list(target.weight.file=target.weight.file),
post.optimize=FALSE, plot.cnv=FALSE, verbose=FALSE)

The normal.coverage.file argument points to a coverage file obtained from either
a matched or a process-matched normal sample, but can be also a small pool of
best normals (Section 4.1). The files specified in args.filterVcf help PureCN
filtering SNVs more efficiently for artifacts as described in Sections 4.2 and 4.3. The
normalDB argument (Section 4.1) in args.filterTargets allows the segmentation
function to skip targets with low coverage in the pool of normals. If possible, these
files should be generated and provided. The post.optimize flag will increase the
runtime by about a factor of 4-5, but might return slightly more accurate purity
estimates. For high quality whole exome data, this is typically not necessary for
copy number calling (but might be for variant classification, see Section 10.1). The
plot.cnv argument allows the segmentation function to generate additional plots
if set to TRUE. Finally, verbose outputs important and helpful information about
all the steps performed and is therefore set to TRUE by default.

We now create a few output files:

file.rds <- 'Samplel_PureCN.rds'

saveRDS(ret, file=file.rds)
pdf('Samplel_PureCN.pdf', width=10, height=12)
plotAbs(ret, type='all')

dev.off()
## pdf
## 2

The RDS file now contains the serialized return object of the runAbsoluteCN call.
The PDF contains helpful plots for all local minima, sorted by likelihood. The first
plot in the generated PDF is displayed in Figure 1 and shows the purity and ploidy
local optima, sorted by final likelihood score after fitting both copy number and
allelic fractions.
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plotAbs(ret, type="overview")
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Purity

Figure 1: Overview. The colors visualize the copy number fitting score from low (blue) to
high (red). The numbers indicate the ranks of the local optima.

We now look at the main plots of the maximum likelihood solution in more detail.
plotAbs(ret, 1, type="hist")
Purity: 0.65 Tumor ploidy: 1.384
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Figure 2: Log-ratio histogram.
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Figure 2 displays a histogram of tumor vs. normal copy number log-ratios for the
maximum likelihood solution (number 1 in Figure 1). The height of a bar in this
plot is proportional to the fraction of the genome falling into the particular log-ratio
copy number range. The vertical dotted lines and numbers visualize the, for the
given purity/ploidy combination, expected log-ratios for all integer copy numbers
from 0 to 7. It can be seen that most of the log-ratios of the maximum likelihood
solution align well to expected values for copy numbers of 0, 1 and 2.

plotAbs(ret, 1, type="BAF")
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Figure 3: B-allele frequency plot. Each dot is a (predicted) germline SNP. The first panel
shows the allelic fractions. The black lines visualize the expected (not the average!) allelic frac-
tions in the segment. These are calculated using the estimated purity and the total and minor
segment copy numbers. These are visualized in black and grey, respectively, in the second and
third panel. The second panel shows the copy number log-ratios, the third panel the integer
copy numbers.

Germline variant data are informative for calculating integer copy number, because
unbalanced maternal and paternal chromosome numbers in the tumor portion of
the sample lead to unbalanced germline allelic fractions. Figure 3 shows the allelic
fractions of predicted germline SNPs. In the middle panel, the corresponding copy
number log-ratios are shown. The lower panel displays the calculated integer copy
numbers, corrected for purity and ploidy.
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Allelic fraction (germline)

Allelic fraction (somatic)

Figure 4: Allele fraction plots.
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Each dot is again a (predicted) germline SNP. This plot nor-
mally also shows somatic mutations in two additional panels. This toy example contains only
germline SNPs however.

Finally, Figure 4 provides a little bit more insight into how well the variants fit the
expected values. The left panel shows the correlation of expected and observed
allelic fractions. The expected value is determined by the most likely state. High
ploidy solutions have a lot of states, so this correlation is expected to be good for
high ploidy solutions. The right panel plots the observed allelic fractions against
copy number. The labels show the expected values for all called states; 2m1 would

be diploid, heterozygous, 2m2 diploid, homozygous.
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Curation

6.1

6.2

Manual

For prediction of SNV status (germline vs. somatic, sub-clonal vs. clonal, homozy-
gous vs. heterozygous), it is important that both purity and ploidy are correct. We
provide functionality for curating results:

createCurationFile(file. rds)

This will generate a CSV file in which the correct purity and ploidy values can be
manually entered. It also contains a column "Curated", which should be set to
TRUE, otherwise the file will be overwritten when re-run.

Then in R, the correct solution (closest to the combination in the CSV file) can be
loaded with the readCurationFile function:

ret <- readCurationFile(file.rds)

This function has various handy features, but most importantly it will re-order the
local optima so that the curated purity and ploidy combination is ranked first.
This means plotAbs(ret,1,type="hist") would show the plot for the curated
purity/ploidy combination, for example.

The default curation file will list the maximum likelihood solution:

read.csv('Samplel PureCN.csv')

##  Sampleid Purity Ploidy Flagged Failed Curated
## 1 Samplel 0.65 1.383545 TRUE FALSE  FALSE
## Comment
## 1 EXCESSIVE LOSSES;RARE KARYOTYPE;EXCESSIVE LOH

PureCN currently only flags samples with warnings, it does not mark any samples
as failed. The Failed column in the curation file can be used to manually flag
samples for exclusion in downstream analyses.

Automatic

If PureCN is mainly used for copy number calling, not for classifying variants, then
a deterministic algorithm that does not require manual curation is important and
can produce good results for most samples. A default workflow for automatic
curation is available in the autoCurateResults function. This is a work in progress
and implements various heuristics that try to call the correct solution in difficult
samples (i.e., noisy or quiet samples). We recommend copying and renaming the
function when reproducibility is crucial.

13
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The number of considered local optima is typically high and potentially confusing.
The first step in the auto curation is thus to remove low likelihood optima. Inter-
nally, this is done with the bootstrapResults function. This function bootstraps
variants in the provided VCF and re-ranks local optima. Solutions that never rank
high are then excluded (Figure 5). Large-scale copy number artifacts can decrease
the likelihood scores of correct solutions, however, potentially resulting in a removal
of purity/ploidy estimates closest to the true values.

The next step in the auto curation workflow is rescuing low ranking diploid so-
lutions. True high ploidy solutions typically have a rather uniform copy number
distribution, while diploid solutions in general have only a small number of het-
erozygous losses and single copy gains; a large fraction of the genome would be
by definition normal diploid. The getDiploid function is internally used to find
diploid solutions. Since there should not be any diploid solutions in true high ploidy
samples, these diploid solutions are then moved to the top of the ranking. If mul-
tiple diploid solutions exist, additional heuristics try to guess the correct one (for
example the diploid purity should not be too different from the maximum likelihood

purity).

ret <- autoCurateResults(ret)

## Bootstrapping VCF to reduce number of solutions.
## Found 0 diploid solutions.

plotAbs(ret, type="overview")

-3548

Ploidy
-4267
Copy number Log-Likelihood

-4986

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Purity

Figure 5: Overview. As in Figure 1, but with low likelihood solutions automatically removed.

These automatically curated samples can of course be manually curated as well:

file.curated.rds <- 'Samplel PureCN_autocurated.rds'
saveRDS(ret, file=file.curated.rds)
pdf('Samplel PureCN_autocurated.pdf', width=10, height=12)
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plotAbs(ret, type='all')

dev.off()
## pdf
## 2

createCurationFile(file.curated. rds)

Custom normalization and segmentation

7.1

Copy number normalization and segmentation are crucial for obtaining good purity
and ploidy estimates. If you have a well-tested pipeline that produces clean results
for your data, you might want (and maybe should) use PureCN as add-on to your
pipeline. By default, we will use DNAcopy [4] to segment normalized target-level
coverage log-ratios. It is straightforward to replace the default with other methods
and the segmentationCBS function can serve as an example.

The next section describes how to replace the default segmentation. For the prob-
ably more uncommon case that only the coverage normalization is performed by
third-party tools, see Section 7.2.

Custom segmentation

It is possible to provide already segmented data, which is especially recommended
when matched SNP6 data are available or when third-party segmentation tools are
not written in R. Otherwise it is usually however better to customize the default
segmentation function, since the algorithm then has access to the raw log-ratio
distribution*. The expected file format for already segmented copy number data
is:

ID chrom loc.start loc.end num.mark seg.mean
Samplel 1 61723 5773942 2681 0.125406444072723
Samplel 1 5774674 5785170 10 -0.756511807441712

Since its likelihood model is exon-based, PureCN currently still requires an interval
file to generate simulated target-level log-ratios from a segmentation file. For
simplicity, this interval file is expected either in GATK DepthOfCoverage format
and provided via the tumor.coverage.file argument or via the gc.gene.file
argument (see Figure 6). Note that PureCN will re-segment the simulated log-
ratios using the default segmentationCBS function, in particular to identify regions
of copy-number neutral LOH and to cluster segments with similar allelic imbalance
and log-ratio. The provided interval file should therefore cover all significant copy
number alterations®.

retSegmented <- runAbsoluteCN(seg.file=seg.file,
gc.gene.file=gc.gene.file, vcf.file=vcf.file,

4If the third-party tool
provides target-level
log-ratios, then these
can be provided via the
log.ratio argument in
addition to seg.file
though. See also Sec-
tion 7.2.

5If this behaviour is

not wanted, because
maybe the custom
function already identi-
fies CNNLOH reliably,
segmentationCBS can be
replaced with a minimal
version.
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7.2

max.candidate.solutions=1, genome="hgl9",
test.purity=seq(0.3,0.7,by=0.05), verbose=FALSE,
plot.cnv=FALSE)

The max.candidate.solutions and test.purity arguments are set to non-default
values to reduce the runtime of this vignette.

plotAbs (retSegmented, 1, type="BAF")

Purity: 0.65 Tumor ploidy: 1.38 SNV log-likelihood: -11.62 Mean coverage: 109;82
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Figure 6: B-allele frequency plot for segmented data. This plot shows the maximum like-
lihood solution for an example where segmented data are provided instead of coverage data.
Note that the middle panel shows no variance in log-ratios, since only segment-level log-ratios
are available.

Custom normalization

If third-party tools such as GATK4 are used to calculate target-level copy number
log-ratios, and PureCN should be used for segmentation and purity/ploidy inference
only, it is possible to provide these log-ratios:

# We still use the log-ratio exactly as normalized by PureCN for this

# example

log.ratio <- calculatelLogRatio(readCoverageGatk(normal.coverage.file),
readCoverageGatk(tumor.coverage.file), verbose=FALSE)
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retLogRatio <- runAbsoluteCN(log.ratio=1log.ratio,
gc.gene.file=gc.gene.file, vcf.file=vcf.file,
max.candidate.solutions=1, genome="hgl9",
test.purity=seq(0.3,0.7,by=0.05), verbose=FALSE,
args.filterTargets=list(normalDB=normalDB),
plot.cnv=FALSE)

Again, the max.candidate.solutions and test.purity arguments are set to non-
default values to reduce the runtime of this vignette. It is highly recommended to
compare the log-ratios obtained by PureCN and the third-party tool, since some
pipelines automatically adjust log-ratios for a default purity value. Note that this
example uses a pool of normals to filter low quality targets. Interval coordinates
are again expected in either a gc.gene.file or a tumor.coverage.file. If a tumor
coverage file is provided, then all targets below the coverage minimum are further
excluded.

COSMIC annotation

If a matched normal is not available, it is also helpful to provide runAbsoluteCN
the COSMIC database [5] via cosmic.vcf.file. While this has limited effect on
purity and ploidy estimation due the sparsity of hotspot mutations, it often helps
in the manual curation to compare how well high confidence germline (dbSNP) vs.
somatic (COSMIC) variants fit a particular purity/ploidy combination.

Off-target reads

10

It is possible to use SNPs in off-target reads in the SNV fitting step by setting the
runAbsoluteCN argument remove.off.target.snvs to FALSE. An often better al-
ternative to including all off-target reads is running MuTect with interval "padding"
(between 50-100bp). Instead of including all off-target SNPs, this will only include
SNPs in the flanking regions of targets with remove.off.target.snvs=FALSE (see
Section 14).

We recommend a large pool of normals and generating SNP blacklists as described
in Sections 4.2 and 4.3.

Output

The plotAbs() call above will generate the main plots shown in the manuscript.
The R data file (file.rds) contains gene-level copy number calls, SNV status and
LOH calls. The purity/ploidy combinations are sorted by likelihood and stored in
ret$results.
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10.1

names (ret)

## [1] "candidates" "results" "input"

We provide convenient functions to extract information from this data structure
and show their usage in the next sections. We recommend using these functions
instead of accessing the data directly since data structures might change in future
versions.

Prediction of somatic status and cellular fraction

To understand allelic fractions of particular SNVs, we must know the (i) somatic
status, the (ii) tumor purity, the (iii) local copy number, as well as the (iv) number
of chromosomes harboring the mutations or SNPs. One of PureCN main functions
is to find the most likely combination of these four values. We further assign
posterior probabilities to all possible combinations or states. Availability of matched
normals reduces the search space by already providing somatic status.

The predictSomatic function provides access to these probabilities. For predicted
somatic mutations, this function also provides cellular fraction estimates, i.e. the
fraction of tumor cells with mutation. Fractions significantly below 1 indicate
sub-clonality®:

head(predictSomatic(ret), 3)

## chr start end SOMATIC.MO SOMATIC.M1
## chr1114515871xxx chrl 114515871 114515871 0 2.402990e-38
## chr1150044293xxx chrl 150044293 150044293 0 1.222383e-38
## chr1158449835xxx chrl 158449835 158449835 0 7.550793e-62
## SOMATIC.M2 SOMATIC.M3 SOMATIC.M4 SOMATIC.M5
## chr1114515871xxx 4.111643e-07 1.143216e-224 0 0
## chr1150044293xxx 4.552325e-10 9.630686e-227 0 0
## chr1158449835xxx 1.127246e-14 1.197342e-228 0 0
## SOMATIC.M6 SOMATIC.M7  GERMLINE.MO GERMLINE.M1
## chr1114515871xxx 0 0 3.852893e-69 0
## chr1150044293xxx 0 0 7.365854e-64 0
## chr1158449835xxx 0 0 3.661565e-105 0
## GERMLINE.M2 GERMLINE.M3 GERMLINE.M4 GERMLINE.M5
## chr1114515871xxx  0.9999996 0 0 0
## chr1150044293xxx 1.0000000 0 0 0
## chr1158449835xxx 1.0000000 0 0 0
## GERMLINE.M6 GERMLINE.M7 GERMLINE.CONTHIGH

## chr1114515871xxx 0 0 2.458485e-42

## chrl1150044293xxx 0 0 9.428729%e-21

## chr1158449835xxx 0 0 3.555243e-26

#i# GERMLINE.CONTLOW ML.SOMATIC ML.M ML.C

## chr1114515871xxx 5.657573e-288 FALSE 2 2

## chr1150044293xxx 1.122262e-242 FALSE 2 2

6This number can be
above 1 when the ob-
served allelic fraction
is higher than expected
for a clonal mutation.
This may be due to
random sampling,
wrong copy number,
sub-clonal copy num-
ber events, or wrong
purity/ploidy estimates.
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## chr1158449835xxx 0.000000e+00 FALSE 2 2

#i#t ML.M.Segment ML.AR AR AR.ADJUSTED

## chrl1114515871xxx 0 0.825 0.755183 0.7760674

## chr1150044293xxx 0 0.825 0.817078 0.8396741

## chr1158449835xxx 0 0.825 0.834266 0.8573374

## MAPPING.BIAS CN.Subclonal Log.Ratio Prior.Somatic
## chrl1114515871xxx 0.9730894 FALSE 0.4110604 9.90099e-05
## chr1150044293xxx 0.9730894 FALSE 0.2418054 9.90099e-05
## chr1158449835xxx 0.9730894 FALSE 0.7319846  9.90099e-05
## Prior.Contamination ML.LOH gene.symbol

## chrl1114515871xxx 0.01 TRUE HIPK1

## chrl1150044293xxx 0.01 TRUE VPS45

## chr1158449835xxx 0.01 TRUE OR10R2

## Cellfraction

## chrl114515871xxx NA

## chrl1150044293xxx NA

## chr1158449835xxx NA

MO to M7 are multiplicity values, i.e. the number of chromosomes harboring the
mutation (e.g. 1 heterozygous, 2 homozygous if copy number C is 2). Columns
with the ML prefix indicate maximum likelihood estimates, e.g. ML.AR is the
expected allelic ratio of the most likely state, AR is the observed allelic ratio as
provided in the VCF file. GERMLINE.CONTHIGH and GERMLINE.CONTLOW
are the two contamination states. The former are homozygous germline SNPs
that were not filtered out because reference alleles from another individual were
sequenced, resulting in allelic fractions smaller than 1. The latter are non-reference
alleles only present in the contamination.

To annotate the input VCF file with these values:

vcf <- predictSomatic(ret, return.vcf=TRUE)
writeVcf(vcf, file="Samplel_PureCN.vcf")

Note that the posterior probabilities assume that the purity and ploidy
combination is correct. Before classifying variants, it is thus important to
manually curate samples. Further note that small inaccuracies in purity can
decrease the classification performance significantly, and we currently recommend
the post.optimize option when variant classification is important.

Amplifications and deletions

To call amplifications, we recommend using a cutoff of 6 for focal amplifications
and a cutoff of 7 otherwise. For homozygous deletions, a cutoff of 0.5 is useful to
allow some heterogeneity in copy number.

For samples that failed PureCN calling we recommended using common log-ratio
cutoffs to call amplifications, for example 0.9.
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This strategy is implemented in the callAlterations function:

gene.calls <- callAlterations(ret)
head(gene.calls)

## chr start end C seg.mean seg.id number.exons
## EIF2A chr3 150264590 150301699 7 1.6343 5 14
## AADAC chr3 151531951 151545961 7 1.6343

## FGF5 chrd4 81187979 81207827 0 -1.2008
## SPP1 chr4 88898048 88904049 0 -1.2008
## PPM1K chr4 89183747 89199736 0 -1.2008
## MMRN1 chr4 90816123 90874570 0 -1.2008
##t gene.mean gene.min gene.max focal type
## EIF2A 1.782366 0.5916938 2.3573686 TRUE AMPLIFICATION
## AADAC 1.060134 0.6476273 1.3938954 TRUE AMPLIFICATION

© © O o u
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## FGF5 -1.017110 -1.1767409 -0.8132705 FALSE DELETION
## SPP1 -1.271431 -1.5553359 -0.6862161 FALSE DELETION
## PPM1K -1.141944 -1.7978892 -0.4340134 FALSE DELETION
## MMRN1 -1.194234 -1.9457390 -0.7587568 FALSE DELETION
## num.snps.segment loh
## EIF2A 0 NA
## AADAC 0 NA
## FGF5 0 NA
## SPP1 0 NA
## PPM1K 0 NA
## MMRN1 0 NA

It is also often useful to filter the list further by known biology, for example to
exclude non-focal amplifications of tumor suppressor genes. The Sanger Cancer
Gene Census [6] for example provides such a list.

Find genomic regions in LOH

The gene.calls data.frame described above provides gene-level LOH information.
To find the corresponding genomic regions in LOH, we can use the calllLOH func-
tion:

loh <- callLOH(ret)

head(loh)

#i#t chr start end arm C M type
## 1 chrl 114515871 121535434 p 2 0 WHOLE ARM COPY-NEUTRAL LOH
## 2 chrl 124535434 247419499 g 2 O WHOLE ARM COPY-NEUTRAL LOH
## 3 chr2 10262881 92326171 plo WHOLE ARM LOH
## 4 chr2 95326171 231775198 q 1 0 WHOLE ARM LOH
## 5 chr2 236403412 239039169 q 2 0 COPY-NEUTRAL LOH
## 6 chr3 11888043 90504854 p21
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11 Power to detect somatic mutations

As final quality control step, we can test if coverage and tumor purity are sufficent
to detect mono-clonal or even sub-clonal somatic mutations. We strictly follow the
power calculation by Carter et al. [1].

The following Figure 7 shows the power to detect mono-clonal somatic mutations
as a function of tumor purity and sequencing coverage (reproduced from [1]):

purity <- ¢(0.1,0.15,0.2,0.25,0.4,0.6,1)

coverage <- seq(5,35,1)

power <- lapply(purity, function(p) sapply(coverage, function(cv)
calculatePowerDetectSomatic(coverage=cv, purity=p, ploidy=2,
verbose=FALSE) $power))

# Figure S7b in Carter et al.
plot(coverage, power[[1]], col=1l, xlab="Sequence coverage",
ylab="Detection power", ylim=c(0,1), type="1")

for (i in 2:length(power)) lines(coverage, power[[i]], col=i)

abline(h=0.8, lty=2, col="grey")

legend("bottomright", legend=paste("Purity", purity),
fill=seq_along(purity))

o
S
[ee)
g
g o
& o
o
c
il
©
2 < |
g o
W Purity 0.1
W Purity 0.15
~ B Purity0.2
© Purity 0.25
O Purity 0.4
B Purity 0.6
g | O Purity 1

I I I I I I I
5 10 15 20 25 30 35

Sequence coverage

Figure 7: Power to detect mono-clonal somatic mutations. Reproduced from [1].

Figure 8 then shows the same plot for sub-clonal mutations present in 20% of all
tumor cells:
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coverage <- seq(5,350,1)

power <- lapply(purity, function(p) sapply(coverage, function(cv)
calculatePowerDetectSomatic(coverage=cv, purity=p, ploidy=2,
cell.fraction=0.2, verbose=FALSE)$power))

plot(coverage, power[[1]], col=1, xlab="Sequence coverage",
ylab="Detection power", ylim=c(0,1), type="1")

for (i in 2:length(power)) lines(coverage, power[[i]], col=i)

abline(h=0.8, lty=2, col="grey")

legend("bottomright", legend=paste("Purity", purity),
fill=seq_along(purity))
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Figure 8: Power to detect sub-clonal somatic mutations present in 20% of all tumor cells.
Reproduced from [1].
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12  Command line scripts

12.1 Coverage

We provide a basic template for GC-normalizing BAM or GATK DepthOfCoverage
files from the command line. For example:

# From a BAM file
Rscript Coverage.R --outdir ~/tmp/ --bam exl.bam \
--gcgene exl_intervals.txt

# From a GATK DepthOfCoverage file
Rscript Coverage.R --outdir ~/tmp/ --gatkcoverage example_tumor.txt \
--gcgene example_gc.gene.file.txt

Table 1: Coverage command line script.

Argument name  Corresponding PureCN argument  PureCN function

—help -h

—outdir -o

—bam -b bam.file calculateBamCoverageByInterval
—gatkcoverage -g  coverage.file correctCoverageBias

—gcgene -C gc.gene.file correctCoverageBias

12.2 PureCN

PureCN.R is an example script to run PureCN with basic parameters:

# From GC-normalized coverage data

Rscript PureCN.R --outdir ~/tmp/ --tumor example_tumor.txt \
--normal example_normal.txt --vcf example_vcf.vcf -i Samplel \
--genome hgl9 --gcgene example_gc.gene.file.txt

# From already segmented data

Rscript PureCN.R --outdir ~/tmp/ --segfile example_seg.txt \
--vcf example_vcf.vcf -i Samplel --genome hgl9 \
--gcgene example_gc.gene.file.txt

These R scripts can be found in the extdata directory of the installed package.
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13

Table 2: PureCN command line script.

Argument name Corresponding PureCN argument PureCN function

—help -h

—outdir -o

—normal -n normal.coverage.file runAbsoluteCN
—tumor -t tumor.coverage.file runAbsoluteCN
—vcf -v vcf.file runAbsoluteCN
—genome -g genome runAbsoluteCN
—gcgene -C gc.gene.file runAbsoluteCN
—segfile -f seg.file runAbsoluteCN
—snpblacklist -s snp.blacklist filterVcfBasic
—statsfile -a stats.file filterVcfMuTect
—targetweightfile -e  target.weight.file segmentationCBS
—-normaldb -d normalDB (serialized with saveRDS) findBestNormal, filterTargets
—sampleid -i sampleid runAbsoluteCN

Limitations

14

PureCN currently assumes a completely diploid normal genome. For human sam-
ples, it tries to detect sex by calculating the coverage ratio of chromosomes X
and Y and will then remove sex chromosomes in male samples’. For non-human
samples, the user needs to manually remove all non-diploid chromosomes from the
coverage data and specify sex="diploid’ in the PureCN call.

While PureCN supports and models sub-clonal somatic copy number alterations,
it currently assumes that the majority of alterations are mono-clonal. For most
clinical samples, this is reasonable, but very heterogeneous samples are likely not
possible to call without manual curation (but please note that other algorithms
that model poly-genomic tumors do not necessarily have a higher call rate, since
they tend to overfit noisy samples). Due to the lack of signal, manual curation is
also recommended in low purity samples or very quiet genomes.

In the absence of matched normals, the software currently requires some normal
contamination to infer germline genotypes. Since cell lines are rarely matched,
PureCN will likely not work well with cell line data.

Finally, the software currently does not officially support VCF files containing in-
dels. Support for VCFs generated by MuTect 2 that include both single nucleotide
variants (SNVs) and indels is planned for Bioconductor 3.5. Experimental support
for MuTect 2 VCFs generated in tumor-only mode is available now.

FAQ

If the ploidy is frequently too high, please check:

= Does the log-ratio histogram (Figure 2) look noisy? If yes, then

"Loss of Y chromosome
(LOY) can result in
wrong female calls, es-
pecially in high purity
samples or if LOY is in
both tumor and con-
taminating normal cells.
The software throws

a warning in this case
when germline SNPs
are provided.
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= s the coverage sufficient? Tumor coverages below 80X can be difficult,
especially in low purity samples. Normal coverages below 50X might
result in high variance of log-ratios. See Section 4.1 for finding a good
normal sample for log-ratio calculation.

= Is the coverage data of both tumor and normal GC-normalized? If not,
see correctCoverageBias.

= |s the quality of both tumor and normal sufficient? A high AT or
GC-dropout might result in high variance of log-ratios. Challenging
FFPE samples also might need parameter tuning of the segmentation
function. See segmentationCBS. A high expected tumor purity allows
more aggressive segmentation parameters, such as prune.hclust.h=0.2
or higher.

= Was the correct target interval file used (genome version and capture
kit, see Section 2.2)? If unsure, ask the help desk of your sequencing
center.

= Were the normal samples run with the same assay and pipeline?

= Did you provide runAbsoluteCN all the recommended files as described
in Section 57

= For whole-genome data, you most likely get better results using a spe-
cialized third-party segmentation method as described in section 7, since
our default is optimized for targeted sequencing.

Otherwise, if log-ratio peaks are clean as in Figure 2:

= Was MuTect run without a matched normal? If yes, then make sure to
provide a SNP blacklist as described in Sections 4.2 and 4.3.

= A high fraction of sub-clonal copy-number alterations might also result
in a low ranking of correct low ploidy solutions.

Will PureCN work with my data?

PureCN was designed for medium-sized (>2-3Mb) targeted panels. The
more data, the better, best results are typically achieved in whole-exome
data.

The same is obviously true for coverage. Coverages below 80X are difficult
unless purities are high and coverages are even.

The number of heterozygous SNPs is also important. Copy number probes
enriched in SNPs are therefore very helpful.

While PureCN supports to some degree uneven tiling of targets, the more
evenly distributed the better. Large gaps are problematic and might require
third-party segmentation tools that support off-target reads (Section 7).

Whole-genome data is not officially supported and specialized tools will likely
provide better results. Third-party segmentation tools designed for this data
type would be again required.
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= PureCN also needs process-matched normal samples, again, the more the
better.

If you have trouble generating input data PureCN accepts, please check:

= For problems related to generating valid coverage data, either consult the
GATK manual for the DepthOfCoverage tool or Section 2.3 for the equivalent
function in PureCN.

= Currently only VCF files generated by MuTect 1 are officially supported and
well tested. A minimal example MuTect call would be:

$JAVA -Xmx6g -jar $MUTECT \
--analysis_type MuTect -R $REFERENCE \
--dbsnp $DBSNP_VCF \

--cosmic $COSMIC_VCF \

-I:normal $BAM_NORMAL \

-I:tumor $BAM_TUMOR \

-0 $0UT/${ID}_bwa_mutect_stats.txt \
-vcf $0UT/${ID}_bwa_mutect.vcf

The default output file is the stats or call-stats file; this can be provided
in addition to the required VCF file via args.filterVcf in runAbsoluteCN.
If provided, it may help PureCN filter artifacts. This requires MuTect in
version 1.1.7. Note that this MuTect call will keep all off-target calls. We
recommend running MuTect with interval file, but include flanking regions:

$JAVA -Xmx6g -jar $MUTECT \
--analysis_type MuTect -R $REFERENCE \
--dbsnp $DBSNP_VCF \

--cosmic $COSMIC_VCF \
--interval_padding 75 \

--L $INTERVAL_FILE \

-I:normal $BAM_NORMAL \

-I:tumor $BAM_TUMOR \

-0 $0UT/${ID}_bwa_mutect_stats.txt \
-vcf $0UT/${ID}_bwa_mutect.vcf

We highly recommend finding good values for the interval_padding argu-
ment for each assay. A good cutoff will maximize the number of heterozygous
SNPs and keep only an acceptable number of lower quality calls. To include
SNPs in the flanking regions, it is necessary to set remove.off.target.snvs=FALSE.
Future versions will automatically keep these variants.

Questions related to manual curation. PureCN, like most other related tools,
essentially finds the most simple explanation of the data. There are three major
problems with this approach:
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= First, hybrid capture data can be noisy and the algorithm must distinguish
signal from noise; if the algorithm mistakes noise for signal, then this often
results in wrong high ploidy calls (see Sections 4.2 and 4.3). If all steps in
this vignette were followed, then PureCN should do a good job in ignoring
common artifacts. Noisy samples thus often have outlier ploidy values and
are often automatically flagged by PureCN. The correct solution is in most
of these cases ranked second or third.

= The second problem is that signal can be sparse, i.e. when the tumor purity
is very low or when there are only few somatic events. Manual curation is
often easy in the latter case. For example when small losses are called as
homozygous, but corresponding germline allele-frequencies are unbalanced
(a complete loss would result in balanced germline allele frequencies, since
only normal DNA is left). Future versions might improve calling in these
cases by underweighting uninformative genomic regions.

= The third problem is that tumor evolution is fast and complex and very
difficult to incorporate into general likelihood models. Sometimes multiple
solutions explain the data equally well, but one solution is then often clearly
more consistent with known biology, for example LOH in tumor suppressor
genes such as TP53. A basic understanding of both the algorithm and the
tumor biology of the particular cancer type are thus important for curation.
Fortunately, in most cancer types, such ambiguity is rather rare.

If all or most of the samples are flagged as:

Noisy segmentation: The default of 200 for max.segments is calibrated for high
quality and high coverage whole exome data. For whole genome data or
lower coverage data, this value needs to be re-calibrated. In case the copy
number data looks indeed noisy, please see the first FAQ.

High AT /GC dropout: If the data is GC-normalized, then there might be is-
sues with either the target intervals or the provided GC content. Please
double check that all files are correct and that all the coverage files are
GC-normalized (Section 3).
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Annotating intervals with gene symbols

A simple function that annotates intervals with the first overlapping interval from
the RefSeq gene track:

tblGenes <- NULL
if (downloadFromUCSC) {
library(rtracklayer)
mySession <- browserSession("UCSC")
genome (mySession) <- "hgl9"
tblGenes <- getTable( ucscTableQuery(mySession,
track="RefSeq Genes", table="refGene"))
}

.annotateIntervals <- function(gc.gene.file, tblGenes,
output.file = NULL) {
grGenes <- GRanges(segnames=tblGenes$chrom,
IRanges (start=tblGenes$cdsStart, end=tblGenes$cdsEnd))
gc <- read.delim(gc.gene.file, as.is=TRUE)
# misuse this function to convert interval string into data. frame
gc.data <- readCoverageGatk(gc.gene.file)



Copy humbe

}

if (

Session

r calling and SNV classification using targeted short read sequencing

grGC <- GRanges(segnames=gc.dataschr,
IRanges(start=gc.data$probe_start, end=gc.data$probe_end))
ov <- findOverlaps(grGC, grGenes, select="first")
gc$Gene <- tblGenes$name2[ov]
if (!is.null(output.file)) {
write.table(gc, file = output.file, row.names = FALSE,
quote = FALSE, sep = "\t")
}

invisible(gc)

lis.null(tblGenes)) .annotateIntervals(gc.gene.file, tblGenes)
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