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Polyfit [2] is an add-on to the negative-binomial based package DESeq [1] for two-class
detection of differential expression. Its purpose is to ensure the p-value distribution is
close to uniform over the interval [0, 1] for the subset of genes satisfying the null hypoth-
esis of no differential expression. The first component of Polyfit is the function pfNbi-

nomTest which replaces the function nbinomTest in DESeq. Its purpose is to smooth
point singularities (or ‘flagpoles’), particularly one at p = 1, in the p-value distribution
caused by calculating calculating p-values from a discrete distribution. The output from
this function should then be passed to the second component, the function levelPVal-

ues. Its purpose is to apply a variant of the Storey-Tibshirani procedure [3] to shift the
p-values so that those corresponding to the null hypothesis have a unform distribution,
and to calculate corresponding q-values (or ‘adjusted p-values’) for controlling errors via
the false discovery rate.

To load and attach Polyfit, type

> library(Polyfit)

at the R prompt. edgeR and DESeq are dependencies and will be automatically loaded.

Removing the flagpoles

When calculating p-values, DESeq assumes as a null hypothesis that the total number of
counts KA and KB summed over replicates in each of conditions A and B is distributed
according to a negative binomial distribution with parameters estimated from the data.
The distribution of KA, conditonal on the observed value kA+kB of the sum of counts in
both conditions is thus a discrete distribution. DESeq calculates p-values as the sum of
probabilities from this distribution less than or equal to the probability of the observed
counts (kA, kB) (see Fig. 1). This method invariably causes a spikes in the histogram
of generated p-values, the most notable one being at p = 1 from those observed counts
which happen to hit the mode of the null hypothesis distribution.

Because it needs to fit a smooth polynomial to the p-value histogram, Polyfit redis-
tributes the spikes by replacing the discrete distribution with a “squared off” continuous
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Figure 1: Calculation of p-values by the DESeq functions nbinomTest (left) and the
replacement Polyfit function pfNbinomTest (right).

distribution, as shown in the right half of Fig. 1. If the data are generated according
to the postulated null hypothesis, the p-values will then have a uniform distribution on
[0, 1].

In the following example we use simulated data generated by the DESeq function
makeExampleCountDataSet(). To generate p-values with the flagploes removed, replace
the DESeq function nbinomTest with its Polyfit replacement pfNbinomTest.

> cds <- makeExampleCountDataSet()

> cds <- estimateSizeFactors( cds )

> cds <- estimateDispersions( cds )

> nbT <- nbinomTest( cds, "A", "B" )

> pValuesDESeq <- nbT$pval # <-- Original DESeq code

> nbTPolyfit <- pfNbinomTest( cds, "A", "B" )

> pValuesPFDESeq <- nbTPolyfit$pval # <-- Polyfit replacement

Histograms of the resulting p-values are shown in Fig. 2.

Levelling the p-value histogram

Because the parameters of the negative binomial distribution for each gene must be
estimated from the available count data, p-values reported by DESeq for those genes
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Figure 2: Histogram of p-values generated by nbinomTest and pfNbinomTest
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Figure 3: (a) Example p-value spectrum calculated by DESeq for synthetic data RNA-seq
with 15% genes up- or down-regulated after removal of ‘flagpoles’ (taken from ref. [2]).
The shaded histogram is the 85% of transcripts which are unregulated. (b) Schematic
representation of the Storey-Tibshirani procedure for estimating false discovery rates,
assuming correctly calculated p-values. (c) Schematic representation of the analogous
Polyfit procedure. (TP = true positives, FP = false positives, FN = false negatives and
TN = true negatives at a specified significance point α.)

which are not differentially expressed may not be uniformly distributed. A fairly extreme
case is shown in Fig. 3(a) generated from DESeq using synthetic data after the flagpole
has been removed as described above.

If p-values have been calculated exactly, the Storey-Tibshirani procedure calculates
q-values, that is, estimates of the false discovery rate, essentially by fitting a uniform
distribution to the right hand part of the p-value histogram (see Fig. 3(b)). Polyfit
replaces the uniform distribution fit with a polynomial fit (see Fig. 3(c)), and estimates
p-values and q-values for each gene by the formulae

corrected p-value =
FP

FP + TN
, corrected q-value =

FP

FP + TP
.

The function levelPValues generates the levelled p-values, estimated q-values cal-
culated from the adapted Storey-Tibshirani procedure and, for comparison, also reports
q-values calculated from the levelled p-values using the Benjamini-Hochberg procedure.
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The following code calculates the corrected p-values and q-values from the nominal
p-values generated in the DESeq example above:

> lP <- levelPValues(pValuesPFDESeq)

> outTable <- cbind(origPval= pValuesPFDESeq,

+ levelledPval=lP$pValueCorr,

+ levelledQval=lP$qValueCorr,

+ BH_Qval=lP$qValueCorrBH)

> head(outTable)

origPval levelledPval levelledQval BH_Qval

[1,] 0.4573727 0.4347455 0.7473259 0.8570526

[2,] 0.9945096 0.9941373 0.8715706 0.9993694

[3,] 0.9705185 0.9685380 0.8676380 0.9943168

[4,] 0.8623553 0.8535899 0.8548530 0.9803139

[5,] 0.9145234 0.9089253 0.8606066 0.9867677

[6,] 0.6397353 0.6205208 0.8084190 0.9267217

If the option plot=TRUE is used a diagnostic plot in the format of Fig. 4 showing
the p-value distribution before and after levelling is produced. The top left hand panel
plots estimates of the fraction (π0) of genes not DE obtained by fitting a quadratic to
the nominal p-value historgam (without flagpoles) over the interval [λ, 1]. Beneath this
is a density plot of obtained estimates π̂0. The optimal λ (the red dot) is obtained by
choosing the π̂0(λ) closest to the mode of the π̂0 density. The mode is also indicated
by the dotted line in the top left panel. The original and corrected p-value histograms
are shown on the right, together with optimally fitted quadratic (upper plot) and its
image after correction (lower plot). The red part of the quadratic and its image below
correspond to the interval over which the quadratic is fitted.
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Figure 4: Diagnostic plot produced by levelPValues
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