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1 Introduction

The OmicsMarkeR package contains functions to streamline the analysis of ’omics’ level datasets with
the objective to classify groups and determine the most important features. OmicsMarkeR loads pack-
ages as needed and assumes that they are installed. I will provide a short tutorial using the both
synthetic datasets created by internal functions as well as the ’Sonar’ dataset.

Install OmicsMarkeR using

source("http://bioconductor.org/biocLite.R")

biocLite("OmicsMarkeR")

to ensure that all the needed packages are installed.
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2 Basic Classification Example

OmicsMarkeR has a few simplified functions that attempt to streamline the classification and feature
selection process including the addition of stability metrics. We will first generate a synthetic dataset.
This includes three functions that can be used to create multivariate datasets that can mimic specific
omics examples. This can include a null dataset via the create.rand.matrix to create a random
multivarate dataset with nvar = 50 and nsamp = 100. The create.corr.matrix function induces
correlations to the datasets. The create.discr.matrix function induces variables to be discriminate
between groups. The number of groups can be specified with num.groups.

library("OmicsMarkeR")

set.seed(123)

dat.discr <- create.discr.matrix(

create.corr.matrix(

create.random.matrix(nvar = 50,

nsamp = 100,

st.dev = 1,

perturb = 0.2)),

D = 10

)

To avoid confusion in the coding, one can isolate the variables and classes from the newly created
synthetic dataset. These two objects are then used in the fs.stability function. I can then choose
which algorithm(s) to apply e.g. method = c("plsda", "rf"), the number of top important features
f = 20, the number of bootstrap reptititions for stability analysis k = 3, the number of k-fold cross-
validations k.folds = 10 and if I would like to see the progress output verbose = TRUE.

warning: You will receive warnings if you run code exactly as shown in this vignette. This is intentional
as the PLSDA runs with this simple dataset often only need a single component but you need to indicate
2 to fit the model. This is provided for the users information.

vars <- dat.discr$discr.mat

groups <- dat.discr$classes

fits <- fs.stability(vars,

groups,

method = c("plsda", "rf"),

f = 10,

k = 3,

k.folds = 10,

verbose = 'none')

## foreach: simple, scalable parallel programming from Revolution Analytics

## Use Revolution R for scalability, fault tolerance and more.

## http://www.revolutionanalytics.com

## Warning: package ’plyr’ was built under R version 3.2.1

http://bioconductor.org/packages/release/bioc/html/OmicsMarkeR.html
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## randomForest 4.6-10

## Type rfNews() to see new features/changes/bug fixes.

## Warning: package ’e1071’ was built under R version 3.2.1

## Loading required package: survival

## Warning: package ’survival’ was built under R version 3.2.1

## Loading required package: lattice

## Warning: package ’lattice’ was built under R version 3.2.1

## Loading required package: splines

## Loading required package: parallel

## Loaded gbm 2.1.1

## Loading required package: cluster

## Warning: package ’cluster’ was built under R version 3.2.1

## Loading required package: Matrix

## Warning: package ’Matrix’ was built under R version 3.2.1

## Loaded glmnet 2.0-2

## Warning in training(data = trainData, method = method[i], tuneValue = as.data.frame(bestTune[[i]]),

: PLSDA model contained only 1 component.

## PLSDA requires at least 2 components.

##

## Model fit with 2 components

## Warning in training(data = trainData, method = method[i], tuneValue = as.data.frame(bestTune[[i]]),

: PLSDA model contained only 1 component.

## PLSDA requires at least 2 components.

##

## Model fit with 2 components

## Warning in training(data = trainData, method = method[d], tuneValue = tuned.methods$bestTune[[d]],

: PLSDA model contained only 1 component.

## PLSDA requires at least 2 components.

##

## Model fit with 2 components

## Warning in training(data = trainData.new[[d]], method = method[d], tuneValue = as.data.frame(t(unlist(tunedModel.new[[d]]$bestTune))),

: PLSDA model contained only 1 component.

## PLSDA requires at least 2 components.

##

## Model fit with 2 components

## Warning in training(data = trainData, method = method[d], tuneValue = tuned.methods$bestTune[[d]],

: PLSDA model contained only 1 component.

http://bioconductor.org/packages/release/bioc/html/OmicsMarkeR.html
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## PLSDA requires at least 2 components.

##

## Model fit with 2 components

## Warning in training(data = trainData.new[[d]], method = method[d], tuneValue = as.data.frame(t(unlist(tunedModel.new[[d]]$bestTune))),

: PLSDA model contained only 1 component.

## PLSDA requires at least 2 components.

##

## Model fit with 2 components

If I would like to see the performance metrics, I can simply use the performance.metrics func-
tion. This will provide a concise data.frame of confusion matrix and ROC statistics. Additionally, the
Robustness-Performance Trade-off value (RPT) is provided with the results.

performance.metrics(fits)

## plsda rf

## Accuracy 0.88333333 0.93333333

## Kappa 0.76666667 0.86666667

## ROC.AUC 0.92000000 0.96000000

## Sensitivity 0.86666667 0.93333333

## Specificity 0.90000000 0.93333333

## Pos Pred Value 0.90303030 0.93333333

## Neg Pred Value 0.87777778 0.93333333

## Accuracy SD 0.07637626 0.11547005

## Kappa SD 0.15275252 0.23094011

## ROC.AUC SD 0.07549834 0.06928203

## Sensitivity SD 0.11547005 0.11547005

## Specificity SD 0.10000000 0.11547005

## Pos Pred Value SD 0.10013765 0.11547005

## Neg Pred Value SD 0.10715168 0.11547005

fits$RPT

## plsda rf

## 0.7933472 0.3017964

If I would want to see the occurance of the features the model identified as the most important, this is
accomplished by feature.table. This function returns a simple table reporting the consistency (i.e.
how many times identified) and frequency (percent identified in all runs).

feature.table(fits, "plsda")

## features consistency frequency

## 1 V1 3 1

## 2 V11 3 1

## 3 V14 3 1

## 4 V21 3 1

http://bioconductor.org/packages/release/bioc/html/OmicsMarkeR.html
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## 5 V23 3 1

## 6 V26 3 1

## 7 V28 3 1

## 8 V37 3 1

## 9 V16 2 0.667

## 10 V2 1 0.333

## 11 V47 1 0.333

## 12 V41 1 0.333

## 13 V44 1 0.333

If the user is interesting in applying the fitted model (determined by fs.stability) towards some
new data this can be accomplished with predictNewClasses. This could either be yet another level
to evaluate the tuned model’s performance or if the user is applying the model in a production type
setting where you are systematically using this model on new data that comes in.

# create some 'new' data

newdata <- create.discr.matrix(

create.corr.matrix(

create.random.matrix(nvar = 50,

nsamp = 100,

st.dev = 1,

perturb = 0.2)),

D = 10

)$discr.mat

# original data combined to a data.frame

orig.df <- data.frame(vars, groups)

# see what the PLSDA predicts for the new data

# NOTE, newdata does not require a .classes column

predictNewClasses(fits, "plsda", orig.df, newdata)

Note - This function is not as efficient as I would like at present. Currently it requires the original
dataset to refit the model from the parameters retained from fs.stability. I intend to provide
the option to retain fitted models so a user can simply pull them without a need to refit. However,
I am concerned about the potential size of objects (e.g. random forest, gbm, etc.). Thoughts and
contributions are welcome.

http://bioconductor.org/packages/release/bioc/html/OmicsMarkeR.html
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3 Ensemble Methods

In machine learning ensembles of models can be used to obtain better predictive performance than
any individual model. There are multiple types of ensemble types including the bayes optimal classifier,
bayesian model averaging (BMA), bayesian model combination (BMC), boostrap aggregation (bagging),
and boosting. Although it is the intention to include all the methods the only currently implemented
method is bagging.

Bagging, in the simplest terms, is defined as giving a set of trained models equal weight when ’voting’
on an optimal solution. The most familiar application of this concept is in the random forest algorithm.
This technique requires a defined aggregation technique to combine the set of models. Implemented
methods include Complete Linear Aggregation (CLA), Ensemble Mean (EM), Ensemble Stability (ES),
and Ensemble Exponential (EE).

To conduct an ensemble analysis, the code is nearly identical to the first example in Section 1. The
fs.ensembl.stability function contains the same arguments as fs.stability in addition to a few
more for the ensemble components. Please see ?fs.ensemble.stability for complete details on
each. The two major additional parameters are bags and aggregation.metric. The bags parameter
naturally defines the number of bagging iterations and the aggregation.metric is a string defining
the aggregation method. These arguments have common defaults predefined so the call can be:

fits <- fs.ensembl.stability(vars,

groups,

method = c("plsda", "rf"),

f = 10,

k = 3,

k.folds = 10,

verbose = 'none')

As in Section 1, the performance.metrics function can be applied for summary statistics.

http://bioconductor.org/packages/release/bioc/html/OmicsMarkeR.html
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3.1 Aggregation Methods

If the user wishes to apply an aggregation method manually utilizing results from an alternative analysis,
this can also be done. This package provides a the wrapper aggregation to apply this analysis. For
these methods, the variables must have been ranked and the rownames assigned as the variable names.
The function then will return that aggregated list of variables with their new respective ranks.

# test data

ranks <- replicate(5, sample(seq(50), 50))

row.names(ranks) <- paste0("V", seq(50))

head(aggregation(ranks, "CLA"))

## [,1]

## V45 1.0

## V7 2.0

## V50 3.0

## V18 4.0

## V15 5.0

## V20 6.5

This is used internally in fs.ensembl.stability to optimize which variables are selected to be included
in the final optimized model. The only exception to the format above is with the EE function where
the number of variables must be defined with f.

http://bioconductor.org/packages/release/bioc/html/OmicsMarkeR.html
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4 Custom Tuning

The default implementation assumes that each model will be tuned with the same resolution of tuning
parameters. For example, a default call with PLSDA and Random Forest will result in tuning 3 com-
ponents and 3 mtry for each respectively. However, let’s say I want to be more fine tuned with my
random forest model. You can create a customized grid using denovo.grid.

# requires data.frame of variables and classes

plsda <- denovo.grid(orig.df, "plsda", 3)

rf <- denovo.grid(orig.df, "rf", 5)

# create grid list

# Make sure to assign appropriate model names

grid <- list(plsda=plsda, rf=rf)

# pass to fs.stability or fs.ensemble.stability

fits <- fs.stability(vars,

groups,

method = c("plsda", "rf"),

f = 10,

k = 3,

k.folds = 10,

verbose = 'none',

grid = grid)

The user can create their own grid completely manually but must use the appropriate names as defined
by the functions. These can be check with params. As an example: paramsmethod="plsda".

Note - the argument names must be preceded by a period. This is to prevent any unforseen conflicts
in the code.

http://bioconductor.org/packages/release/bioc/html/OmicsMarkeR.html
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5 Stability Metrics

5.1 Stability Metric Basics

It is quite possible that a user may already have fitted a model previously or using a model that has not
yet been implemented in this package. However, they may be interested in applying one or more of the
stability metrics defined within this package. These functions are very simple to use. To demonstrate,
let’s create some sample data consisting of our Metabolite Population.

metabs <- paste("Metabolite", seq(20), sep="_")

Now, let’s say you have run you different special model twice on different samples of a dataset. You
complete your feature selection and get two lists of Metabolites. Here I am just randomly sampling.

set.seed(13)

run1 <- sample(metabs, 10)

run2 <- sample(metabs, 10)

The user can now evaluate how similar the sets of metabolites selected are via multiple possible
stability metrics. These include the Jaccard Index (jaccard), Dice-Sorensen (sorensen), Ochiai’s
Index (ochiai), Percent of Overlapping Features (pof), Kuncheva’s Index (kuncheva), Spearman
(spearman), and Canberra (canberra). The latter two methods are not Set Methods and do require
the same number of features in each vector. The relevant citations are provided in each function’s
documenation.

The general use for most of the functions is:

jaccard(run1, run2)

## [1] 0.25

The exception to this is Kuncheva’s Index. This requires one additional parameter, the number of
features (e.g. metabolites) in the original dataset. This metric is designed to account for smaller
numbers of variables increasing the likelihood of matching sets by chance. Naturally, if you have many
more variables it would be far more indicative of significance if you see the same small subset again and
again as opposed to a small set seeing the same variables.

# In this case, 20 original variables

kuncheva(run1, run2, 20)

## [1] 0.4

http://bioconductor.org/packages/release/bioc/html/OmicsMarkeR.html
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5.2 Pairwise Stability

5.2.1 Pairwise Feature Stability

The above examples immediately lead to the question, what if I have more than two runs? What I have
3, 5, 10, or more bootstrap iterations? This is also know as a data perturbation ensemble approach.
It would be very tedious to have to call the same function for every single comparison. Therefore a
pairwise function exists to allow a rapid comparison between all sets. This pairwise.stability is
very similar to the individual stability functions in practice. Let’s take an example consisting of 5 runs.

set.seed(21)

# matrix of Metabolites identified (e.g. 5 trials)

features <- replicate(5, sample(metabs, 10))

Please note that currently only matrix objects are accepted by pairwise.stability. To use the
function, you simply pass your matrix of variables and stability metric (e.g. sorensen). The only
exception is when applying Kuncheva’s Index where the nc parameter again must be set (which can
be ignored otherwise). This will return all list containing the upper triangular matrix of stability values
and an overall average.

pairwise.stability(features, "sorensen")

## $comparisons

## Resample.2 Resample.3 Resample.4 Resample.5

## Resample.1 0.4 0.4 0.5 0.5

## Resample.2 0.0 0.5 0.5 0.5

## Resample.3 0.0 0.0 0.5 0.5

## Resample.4 0.0 0.0 0.0 0.7

##

## $overall

## [1] 0.5

http://bioconductor.org/packages/release/bioc/html/OmicsMarkeR.html
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5.2.2 Pairwise Model Stability

Now, in the spirit of this package, you may have the alternate approach whereby you have created several
bootstrapped data sets and run a different statistical model on each data set. You could compare each
one manually, but again to avoid such tedious work another function is provided for specifically this
purpose. Let’s take a theoretical example where I have bootstrapped 5 different data sets and applied
two models to each dataset (PLSDA and Random Forest). Please note that currently only list objects
are accepted by pairwise.model.stability.

Note - here I am only randomly sampling but in practice the each model would have been trained on
the same dataset.

set.seed(999)

plsda <-

replicate(5, paste("Metabolite", sample(metabs, 10), sep="_"))

rf <-

replicate(5, paste("Metabolite", sample(metabs, 10), sep="_"))

features <- list(plsda=plsda, rf=rf)

# nc may be omitted unless using kuncheva

pairwise.model.stability(features, "kuncheva", nc=20)

## $comparisons

## Resample.1 Resample.2 Resample.3 Resample.4 Resample.5

## plsda.vs.rf 0.3 0.2 0.5 0.3 0.5

##

## $overall

## [1] 0.36

http://bioconductor.org/packages/release/bioc/html/OmicsMarkeR.html
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6 Permuation Analysis

One additional level of analysis often applied to these datasets is Monte Carlo Permuations. For example,
I would like to check the chance that my data can distinguish between the groups by chance. This can
be done by permuting the groups in the dataset and applying the model on each permuation. This
can be accomplished with perm.class, which also provides a plot of the classification distribution.
Additionally, one may be interested in another way to evaluate the importance of variables to the
distinguishing the groups. Once again, groups can be permuted, the model refit to the data and the
importance of the variables evaluated. This is accomplished with perm.features.

# permuate class

perm.class(fits, vars, groups, "rf", k.folds=5,

metric="Accuracy", nperm=10)

# permute variables/features

perm.features(fits, vars, groups, "rf",

sig.level = .05, nperm = 10)

http://bioconductor.org/packages/release/bioc/html/OmicsMarkeR.html
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7 Parallel Analysis

Given the repetitive nature of this analysis there are ample opportunities to level the power of parallel
computing. These include fs.stability, fs.ensembl.stability, perm.class, and perm.features

simply by specifying the parameter allowParallel = TRUE in the respective function. However, the
parallel backend must be registered in order to work. There are slight differences between operating
systems so here are two examples.

For Unix OS, you probably will use doMC

library(doMC)

n <- detectCores()

registerDoMC(n)

For a Windows OS, you likely with use the doSNOW

library(parallel)

library(doSNOW)

# get number of cores

n <- detectCores()

# make clusters

cl <- makeCluster(n)

# register backend

registerDoSNOW(cl)

NOTE - remember to stop your clusters on Windows when you are finished with stopCluster(cl).

http://bioconductor.org/packages/release/bioc/html/OmicsMarkeR.html
http://cran.fhcrc.org/web/packages/doMC/index.html
http://cran.fhcrc.org/web/packages/doSNOW/index.html
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sessionInfo()

## R version 3.2.0 (2015-04-16)

## Platform: x86_64-w64-mingw32/x64 (64-bit)

## Running under: Windows 7 x64 (build 7601) Service Pack 1

##

## locale:

## [1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252

## [3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C

## [5] LC_TIME=English_United States.1252

##

## attached base packages:

## [1] parallel splines stats graphics grDevices utils datasets methods

## [9] base

##

## other attached packages:

## [1] caTools_1.17.1 glmnet_2.0-2 Matrix_1.2-2 pamr_1.55

## [5] cluster_2.0.3 gbm_2.1.1 lattice_0.20-33 survival_2.38-3

## [9] e1071_1.6-6 randomForest_4.6-10 DiscriMiner_0.1-29 plyr_1.8.3

## [13] foreach_1.4.2 OmicsMarkeR_1.1.1 devtools_1.8.0

##

## loaded via a namespace (and not attached):

## [1] Rcpp_0.12.0 class_7.3-13 gtools_3.5.0 digest_0.6.8

## [5] chron_2.3-47 R6_2.1.0 BradleyTerry2_1.0-6 stats4_3.2.0

## [9] evaluate_0.7.2 httr_1.0.0 ggplot2_1.0.1 highr_0.5

## [13] BiocInstaller_1.18.1 biocViews_1.36.0 curl_0.9.1 caret_6.0-52

## [17] data.table_1.9.4 SparseM_1.6 minqa_1.2.4 car_2.0-25

## [21] nloptr_1.0.4 RUnit_0.4.28 assertive_0.3-0 proto_0.3-10

## [25] lme4_1.1-8 stringr_1.0.0 RCurl_1.95-4.7 munsell_0.4.2

## [29] compiler_3.2.0 rversions_1.0.2 BiocGenerics_0.14.0 mgcv_1.8-7

## [33] nnet_7.3-10 codetools_0.2-14 BiocCheck_1.4.0 XML_3.98-1.3

## [37] permute_0.8-4 brglm_0.5-9 MASS_7.3-43 bitops_1.0-6

## [41] grid_3.2.0 RBGL_1.44.0 nlme_3.1-121 assertive.base_0.0-1

## [45] gtable_0.1.2 git2r_0.10.1 magrittr_1.5 formatR_1.2

## [49] scales_0.2.5 graph_1.46.0 stringi_0.5-5 reshape2_1.4.1

## [53] getopt_1.20.0 optparse_1.3.0 xml2_0.1.1 BiocStyle_1.6.0

## [57] iterators_1.0.7 tools_3.2.0 Biobase_2.28.0 pbkrtest_0.4-2

## [61] colorspace_1.2-6 memoise_0.2.1 knitr_1.11 quantreg_5.11

http://bioconductor.org/packages/release/bioc/html/OmicsMarkeR.html
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