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Introduction

Single-cell RNA sequencing is able to quantify the whole transcriptome from the
small amount of RNA present in individual cells. However, a consequence of
reverse-transcribing and amplifying small quantities of RNA is a large number
of dropouts, genes with zero expression in particular cells. The frequency of
dropout events is strongly non-linearly related to the measured expression levels
of the respective genes. M3Drop posits that these dropouts are due to failures of
reverse transcription, a simple enzyme reaction, thus should be modelled using
the Michaelis-Menten equation as follows:

Si
Si + K
Where P; is the proportion of cells where gene ¢ dropouts out, S; is the mean
expression of gene ¢ and K is the Michaelis constant.

P =1

Example Workflow

We'll be using a portion of the Deng et al. (2014) dataset in this example. You
can download the R-package containing this data (M3DExampleData) from
Bioconductor using biocLite().

> library(M3Drop)
> library(M3DExampleData)

QC and Normalization

The first step is to clean the data by remove cells with too few detected genes,
genes that with very low expression, and to normalize the data. This can be
done using any method but M3Drop includes a simple function that will clean
the expression matrix and convert raw counts to counts per million (CPM). If
alternative normalization methods are used the input expression matrix must
not be log-transformed, nor contain negative values. If normalization adjusts
zero values then M3Drop will use the minimal expression value in the entire
matrix as the value for dropouts.



> Normalized_data <- M3DropCleanData(Mmus_example_list$data,
+ labels = Mmus_example_list$labels,

+ is.counts=TRUE, min_detected_genes=2000)
> dim(Normalized_data$data)

[1] 17278 133
> length(Normalized_data$labels)

[1] 133

Fitting the Michaelis-Menten

Next, we can compare the fits of different possible functions relating the pro-
portion of dropouts to the average expression for each gene.

> fits <- M3DropDropoutModels (Normalized_data$data)
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Figure 1: Fits of three different dropout models.

Visual inspection of the resulting plot (Figure 1) shows that the Michaelis-
Menten equation is the best fit to the data. However, we can also examine some
statistics to confirm this:

> # Sum absolute residuals
> data.frame (MM=fits$MMFit$SAr, Logistic=fits$LogiFit$SAr,
+ DoubleExpo=fits$ExpoFit$SAr)



MM Logistic DoubleExpo
1 1632 1729 2731

> # Sum squared residuals
> data.frame (MM=fits$MMFit$SSr, Logistic=fits$LogiFit$SSr,
+ DoubleExpo=fits$ExpoFit$SSr)

MM Logistic DoubleExpo
1 373 345 825

Here we see that the sum of squared residuals favours the flatter logistic curve
due to the noise in the data, where as sum of absolute residuals shows the
Michaelis-Menten is the best fit to the data.

Identifying Differentially Expressed (DE) Genes

Since the Michaelis-Menten equation is concave, averaging across a mixed pop-
ulation forces differentially expressed genes to be shifted to the right of the
Michaelis-Menten curve. DE genes are identified by comparing the local K cal-
culated for a specific gene to the global K fitted across all genes using a Z-test
followed by multiple-testing correction. Here we find 1,248 DE genes at 1%
FDR.

> DE_genes <- M3DropDifferentialExpression(Normalized_data$data,

+ mt_method="fdr", mt_threshold=0.01)
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Figure 2: Differentially expressed genes at 1% FDR (purple).



Note that this function runs directly from the expression matrix, hence one
could skip straight to identifying DE genes without comparing models and any
external normalisation method can be applied to the raw counts prior to DE
analysis.

Examining DE Genes and Identifying Subpopu-
lations of Cells

To check that the identified genes are truly differentially expressed we can plot
the normalised expression of the genes across cells.

> heat_out <- M3DropExpressionHeatmap (DE_genes$Gene, Normalized_data$data,
+ cell_labels = Normalized_data$labels)
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Figure 3: Heatmap of expression of DE genes.

The heatmap (Figure 3) shows that the identified DE genes are differentially
expressed across timepoints. Furthermore, it shows that the blastocysts cluster
into two different groups based on the expression of these genes. We can extract
these groups and identify marker genes for them as follows:

> cell_populations <- M3DropGetHeatmapCellClusters (heat_out, k=4)
> library("ROCR")
> marker_genes <- M3DropGetMarkers (Normalized_data$data, cell_populations)

The first function cuts the dendrogram from the heatmap to produce k clus-
ters of cells. These labels are stored in cell_populations. The second function
tests all genes as marker genes for the provided clusters.



Marker genes are ranked by the area-under the ROC curve (AUC) for pre-
dicting the population with the highest expression of the gene from the other
groups. Significance is calculated using a Wilcox-rank-sum test. Now we can
examine the marker genes of the two clusters of blastocyst cells more closely.

> head(marker_genes[marker_genes$Group==4,],20)

AUC Group pval
Col4al 0.9650350 4 7.798215e-20
Tdgf1l 0.9543124 4 3.895741e-19
Upp1l 0.9491841 4 1.337152e-18
Sat1l 0.9473193 4 1.861266e-18
Uhrfil 0.9473193 4 1.861266e-18
Sik1l 0.9433566 4 3.677662e-18
Ckb 0.9400932 4 6.479222e-18
E130012A19Rik 0.9286713 4 3.415802e-17
Fabpb 0.9277389 4 5.220991e-17
Ahcy 0.9275058 4 5.410417e-17
Sppl 0.9272727 4 4.802140e-17
Etvb 0.9177156 4 2.653114e-16
Rnf130 0.9160839 4 2.976160e-16
Slcil2a7 0.9135198 4 5.328023e-16
Pmm1 0.9107226 4 8.410373e-16
Npm1 0.9107226 4 8.410373e-16
Pecaml 0.9102564 4 8.971274e-16
Ephx2 0.9095571 4 1.354118e-17
Serpinhl 0.9074592 4 3.505876e-16
Sox2 0.9074592 4 1.043932e-15

> marker_genes [rownames (marker_genes)=="Cdx2",]

AUC Group pval
Cdx2 0.8166667 3 8.188436e-10

This shows that the inner cell mass (ICM) marker Sox2 is one of the top
20 markers for group 4 and that the trophectoderm (TE) marker Cdx2 is a
marker for group 3, suggesting these two clusters coorespond to ICM and TE
cells within each blastocyst.

Comparing to Other Methods

For comparison purposes, I have also included a function which implements the
method to identify highly variable genes presented in Brennecke et al. (2013)
with the added option to run it without providing spike-ins, in which case all
genes are used to fit the function between CV2 and mean expression.

> HVG <- BrenneckeGetVariableGenes (Normalized_data$data)
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Figure 4: 1,236 Significantly highly variable genes (pink) using all genes as
spike-ins (10% FDR).

This method is more sensitive to lowly expressed genes, and frequently picks
up genes with fewer than 10 reads per million. In addition, the quadratic model
it uses frequenly over estimates the expected variability of highly expressed
genes thus only one gene with more than 1000 reads per million was detected
as highly variable (Figure 4). This is in contrast with M3Drop (Figure 2) which
recognizes the low information available for lowly expressed genes thus identifies
few genes with expression < 10 reads per million as differentially expressed.

This difference can also be seen by comparing the heatmaps for the respec-
tive genes (Figure 3,5). The highly variable genes contains many more genes
exhibiting just noisy expression, whereas nearly all genes detected by M3Drop
are clearly differentially expressed across the different cell populations.

> heat_out <- M3DropExpressionHeatmap (HVG, Normalized_data$data,
+ cell_labels = Normalized_data$labels)
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Figure 5: Heatmap of expression of highly variable genes across cells.
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