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1 Introduction

The IRanges package is designed to represent sequences, ranges representing indices along those sequences,
and data related to those ranges. In this vignette, we will rely on simple, illustrative example datasets,
rather than large, real-world data, so that each data structure and algorithm can be explained in an intuitive,
graphical manner. We expect that packages that apply IRanges to a particular problem domain will provide
vignettes with relevant, realistic examples.

The IRanges package is available at bioconductor.org and can be downloaded via biocLite:

> source("http://bioconductor.org/biocLite.R")
> biocLite("IRanges")

> library(IRanges)

2 Vector objects

In the context of the IRanges package, a sequence is an ordered finite collection of elements. The IRanges
packages represents two types of objects as sequences: (1) atomic sequences and (2) lists (or non-atomic
sequences). The following subsections describe each in turn. All IRanges-derived sequences inherit from the
Vector virtual class.

2.1 Atomic Vectors

In R, atomic sequences are typically stored in atomic vectors. The IRanges package includes an additional
atomic sequence object type, Rle, which compresses an atomic sequence through run-length encoding.
We begin our discussion of atomic sequences using two Rle vectors.

> set.seed(0)

> lambda <- c(rep(0.001, 4500), seq(0.001, 10, length = 500),

+ seq(10, 0.001, length = 500))

> xVector <- Rle(rpois(le7, lambda))

> yVector <- Rle(rpois(le7, lambda[c(251:1length(lambda), 1:250)1))

All atomic sequences in R have three main properties: (1) a notion of length or number of elements, (2)
the ability to extract elements to create new atomic sequences, and (3) the ability to be combined with one
or more atomic sequences to form larger atomic sequences. The main functions for these three operations
are length, [, and c.

> length(xVector)

[1] 10000000



> xVector[1]

integer-Rle of length 1 with 1 run
Lengths: 1
Values : O

> zVector <- c(xVector, yVector)
While these three methods may seem trivial, they provide a great deal of power and many atomic sequence

manipulations can be constructed using them.

2.1.1 Vector Subsetting

As with ordinary R atomic vectors, it is often necessary to subset one sequence from another. When this
subsetting does not duplicate or reorder the elements being extracted, the result is called a subsequence. In
general, the [ function can be used to construct a new sequence or extract a subsequence, but its interface is
often inconvenient and not amenable to optimization. To compensate for this, the IRanges package supports
seven additional functions for sequence extraction:

1. window - Extracts a subsequence over a specified region.

2. subset - Extracts the subsequence specified by a logical vector.

3. head - Extracts a consecutive subsequence containing the first n elements.
4. tail - Extracts a consecutive subsequence containing the last n elements.
5. rev - Creates a new sequence with the elements in the reverse order.

6. rep - Creates a new sequence by repeating sequence elements.

The following code illustrates how these functions are used on an ordinary R integer vector:

> xSnippet <- xVector[IRanges (4751, 4760)]
> xSnippet

integer-Rle of length 10 with 9 runs
Lengths: 111111112
Values : 46 5462675
> head(xSnippet)

integer-Rle of length 6 with 6 runs
Lengths: 111111
Values : 4 6 546 2

> tail(xSnippet)

integer-Rle of length 6 with 5 runs
Lengths: 1 111 2
Values : 6 2 6 7 5

> rev(xSnippet)

integer-Rle of length 10 with 9 runs
Lengths: 211111111
Values : 576 26456 4



> rep(xSnippet, 2)

integer-Rle of length 20 with 18 runs
Lengths: 111111112111111112
Values : 46 54626754654626T7F5
> subset (xSnippet, xSnippet >= 5L)

integer-Rle of length 7 with 5 rums
Lengths: 1 1 21 2
Values : 6 56 7 5

2.1.2 Combining Vectors

The IRanges package uses two generic functions, ¢ and append, for combining two Vector objects. The
methods for Vector objects follow the definition that these two functions are given the the base package.

> c(xSnippet, rev(xSnippet))

integer-Rle of length 20 with 17 runs
Lengths: 11 111111411111111
Values : 46 546267576264564
> append (xSnippet, xSnippet, after = 3)

integer-Rle of length 20 with 18 runs
Lengths: 111111111112111112
Values : 4 6 546546267546267F5
2.1.3 Looping over Vectors and Vector subsets

In R, for looping can be an expensive operation. To compensate for this, IRanges uses three generics,
endoapply, lapply, and sapply, for looping over sequences and two generics, aggregate and shiftApply,
to perform calculations over subsequences. The lapply and sapply functions are familiar to many R users
since they are the standard functions for looping over the elements of an R list object. The endoapply
function performs an endomorphism equivalent to lapply, i.e. returns a Vector object of the same class as
the input rather than a list object. More will be given on these three functions in the Lists subsection.

The aggregate function combines sequence extraction functionality of the window function with looping
capabilities of the sapply function. For example, here is some code to compute medians across a moving
window of width 3 using the function aggregate:

> xSnippet

integer-Rle of length 10 with 9 runs
Lengths: 111111112
Values : 465462675

> aggregate(xSnippet, start = 1:8, width = 3, FUN = median)
[1] 55546665

The shiftApply function is a looping operation involving two sequences whose elements are lined up
via a positional shift operation. For example, the elements of xVector and yVector were simulated from
Poisson distributions with the mean of element i from yVector being equivalent to the mean of element i +
250 from xVector. If we did not know the size of the shift, we could estimate it by finding the shift that
maximizes the correlation between xVector and yVector.
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Figure 1: Correlation between xVector and yVector for various shifts.

> cor (xVector, yVector)
[1] 0.5739224

> shifts <- seq(235, 265, by=3)
> corrs <- shiftApply(shifts, yVector, xVector, FUN = cor)

> plot(shifts, corrs)

The result is shown in Fig. [I]

2.1.4 Run Length Encoding

Up until this point we have used R atomic vectors to represent atomic sequences, but there are times when
these object become too large to manage in memory. When there are lots of consecutive repeats in the
sequence, the data can be compressed and managed in memory through a run-length encoding where a data
value is paired with a run length. For example, the sequence {1, 1, 1, 2, 3, 3} can be represented as values
= {1, 2, 3}, run lengths = {3, 1, 2}.

The Rle class in IRanges is used to represent a run-length encoded (compressed) sequence of logical,
integer, numeric, complez, character, or raw values. One way to construct an Rle object is through the Rle
constructor function:

> xRle <- Rle(xVector)
> yRle <- Rle(yVector)
> xRle

integer-Rle of length 10000000 with 1510219 runs
Lengths: 780 1 208 1 1599 1 ... 5 1 91 1 927
Values : 0 1 0 1 0 1 ... 0 1 0 1 0



> yRle

integer-Rle of length 10000000 with 1511351 runs
Lengths: 1003 1 413 1 896 1 ... 3 1 845 1 419
Values : 0 1 0 1 0 1 ... 0 1 0 1 0

When there are lots of consecutive repeats, the memory savings through an RLE can be quite dramatic.
For example, the xRle object occupies less than one quarter of the space of the original xVector object,
while storing the same information:

> as.vector(object.size(xRle) / object.size(xVector))
[11 1

> identical (as.vector(xRle), xVector)

[1] FALSE

The functions runValue and runLength extract the run values and run lengths from an Rle object
respectively:

> head(runValue(xRle))
(11010101

> head(runLength(xRle))

[1] 780 1 208 1 1599 1

The Rle class supports many of the basic methods associated with R atomic vectors including the Ops,
Math, Math2, Summary, and Complex group generics. Here is a example of manipulating Rle objects using
methods from the Ops group:

> xRle > 0

logical-Rle of length 10000000 with 197127 runs
Lengths: 780 1 208 1 1599 ... 1 91 1 927
Values : FALSE TRUE FALSE TRUE FALSE ... TRUE FALSE TRUE FALSE

> xRle + yRle

integer-Rle of length 10000000 with 1957707 runs
Lengths: 780 1 208 1 13 1 413 ... 5 1 91 1507 1419
Values : o 1 o 1 0 1 O0... o 1 o0 1 0 1 O

> xRle > 0 | yRle > 0

logical-Rle of length 10000000 with 210711 runs
Lengths: 780 1 208 1 13 ... 1 507 1 419
Values : FALSE TRUE FALSE TRUE FALSE ... TRUE FALSE TRUE FALSE

Here are some from the Summary group:
> range (xRle)

[11 o0 26



> sum(xRle > 0 | yRle > 0)
[1] 2105185

And here is one from the Math group:
> loglp(xRle)

numeric-Rle of length 10000000 with 1510219 runs
Lengths: 780 1 ... 927
Values : 0 0.693147180559945 ... 0

As with the atomic vectors, the cor and shiftApply functions operate on Rle objects:
> cor(xRle, yRle)
[1] 0.5739224
> shiftApply(249:251, yRle, xRle, FUN = function(x, y) var(x, y) / (sd(x) * sd(y)))
[1] 0.8519138 0.8517324 0.8517725

For more information on the methods supported by the Rle class, consult the Rle man page.

2.2 Lists

In many data analysis situation there is a desire to organize and manipulate multiple objects simultaneously.
Typically this is done in R through the usage of a list. While a list serves as a generic container, it does
not confer any information about the specific class of its elements, provides no infrastructure to ensure
type safety, and the S3 and S4 method dispatch mechanisms do not support method selection for lists with
homogeneous object types. The List virtual class defined in the IRanges package addresses these issues. List
is a direct extension of Vector.

2.2.1 Lists of Atomic Vectors

The first type of lists we consider are those containing atomic sequences such as integer vectors or Rle
objects. We may wish to define a method that retrieves the length of each atomic sequence element, without
special type checking. To enable this, we define collection classes such as IntegerList and RleList, which
inherit from the List virtual class, for representing lists of integer vectors and Rle objects respectively.

> getClassDef ("RleList")

Virtual Class "RleList" [package "IRanges"]

Slots:

Name: elementType elementMetadata metadata
Class: character DataTableORNULL list
Extends:

Class "AtomicList", directly

Class "List", by class "AtomicList", distance 2
Class "Vector", by class "AtomicList", distance 3
Class "Annotated", by class "AtomicList", distance 4

Known Subclasses: "RleViews", "CompressedRlelList", "SimpleRleList"



As the class definition above shows, the RleList class is virtual with subclasses SimpleRleList and Com-
pressedRleList. A SimpleRleList class uses a regular R list to store the underlying elements and the Com-
pressedRleList class stores the elements in an unlisted form and keeps track of where the element breaks are.
The former “simple list” class is useful when the Rle elements are long and the latter “compressed list” class
is useful when the list is long and/or sparse (i.e. a number of the list elements have length 0).

In fact, all of the atomic vector types (raw, logical, integer, numeric, complex, and character) have similar
list classes that derive from the List virtual class. For example, there is an IntegerList virtual class with
subclasses SimplelntegerList and CompressedIntegerList.

Each of the list classes for atomic sequences, be they stored as vectors or Rle objects, have a constructor
function with a name of the appropriate list virtual class, such as IntegerList, and an optional argument
compress that takes an argument to specify whether or not to create the simple list object type or the
compressed list object type. The default is to create the compressed list object type.

> args(IntegerList)

function (..., compress = TRUE)

NULL

> cIntListl <- IntegerList(x = xVector, y = yVector)

> cIntListl

IntegerList of length 2

[["x"]] 0O00000000000000...00000000000000O
[["y"]] 000000000000000...000000000000000
> sIntList2 <- IntegerList(x = xVector, y = yVector, compress = FALSE)
> sIntList2

IntegerList of length 2

[["x"]] 000000000000000...00000000000000O
[["y"]] 000000000000000...000000000000000
> ## sparse integer list

> xExploded <- lapply(xVector[1:5000], function(x) seq_len(x))

> cIntList2 <- IntegerList(xExploded)

> sIntList2 <- IntegerList(xExploded, compress = FALSE)

> object.size(cIntList2)

33080 bytes
> object.size(sIntList2)
253952 bytes

The length function returns the number of elements in a Vector-derived object and, for a List-derived
object like “simple list” or “compressed list”, the elementNROWS function returns an integer vector containing
the lengths of each of the elements:

> length(cIntList2)
[1] 5000

> Rle(elementNROWS (cIntList2))



integer-Rle of length 5000 with 427 runs
Lengths: 780 1 208 1 1599 1 ... 1 1 1 1 1
Values : 0 1 0 1 0 1 ... 10 9 6 9 12

Just as with ordinary R list objects, List-derived object support the [[ for element extraction, c for
combining, and lapply/sapply for looping. When looping over sparse lists, the “compressed list” classes
can be much faster during computations since only the non-empty elements are looped over during the
lapply/sapply computation and all the empty elements are assigned the appropriate value based on their
status.

> system.time (sapply (xExploded, mean))

user system elapsed
0.044 0.000 0.044

> system.time (sapply(sIntList2, mean))

user system elapsed
0.044 0.000 0.045

> system.time(sapply(cIntList2, mean))

user system elapsed
0.048 0.000 0.048

> identical (sapply(xExploded, mean), sapply(sIntList2, mean))
[1] TRUE
> identical (sapply (xExploded, mean), sapply(cIntList2, mean))
[1] TRUE

Unlist ordinary R list objects, AtomicList objects support the Ops (e.g. +, ==, &), Math (e.g. log, sqrt),
Math2 (e.g. round, signif), Summary (e.g. min, max, sum), and Complex (e.g. Re, Im) group generics.

> xRleList <- RleList(xRle, 2L * rev(xRle))
> yRleList <- RleList(yRle, 2L * rev(yRle))
> xRleList > 0

Rlelist of length 2

([111]
logical-Rle of length 10000000 with 197127 runs
Lengths: 780 1 208 1 1599 ... 1 91 1 927
Values : FALSE TRUE FALSE TRUE FALSE ... TRUE FALSE TRUE FALSE
[[2]1]
logical-Rle of length 10000000 with 197127 runs
Lengths: 927 1 91 1 5 ... 1 208 1 780
Values : FALSE TRUE FALSE TRUE FALSE ... TRUE FALSE TRUE FALSE

> xRlelList + yRlelList



RlelList of length 2

([111
integer-Rle of length 10000000 with 1957707 runs
Lengths: 780 1 208 1 13 1413 ... 5 1 91 1507 1419
Valges: 0 1 o0 1 o0 1 O0... O 1 O 1 0 1 O
[[2]1]
integer-Rle of length 10000000 with 1957707 runs
Lengths: 419 1507 1 91 1 5 ...413 1 13 1208 1 780
Values : 0 2 0 2 0 2 O0... 0 2 0 2 0 2 O

> sum(xRleList > O | yRleList > 0)
[1] 2105185 2105185

Since these atomic lists inherit from List, they can also use the looping function endoapply to perform
endomorphisms.

> safe.max <- function(x) { if(length(x)) max(x) else integer(0) }
> endoapply(sIntList2, safe.max)

IntegerList of length 5000
[[1]] integer(0)
[[2]] integer(0)
[[3]] integer(0)
[[4]] integer(0)
[[5]] integer(0)
[[6]] integer(0)
[[7]] integer(0)
[[8]] integer(0)
[[9]1] integer(0)
[[10]] integer(0)

<4990 more elements>
> endoapply(cIntList2, safe.max)

IntegerList of length 5000
[[1]] integer(0)
[[2]] integer(O)
[[3]] integer(0)
[[4]] integer(0)
[[5]] integer(0)
[[6]] integer(0)
[[7]1] integer(0)
[[8]] integer(0)
[[9]] integer(0)
[[10]] integer(0)

<4990 more elements>
> endoapply(sIntList2, safe.max)[[1]]

integer (0)



3 Data Tables

To Do: DataTable, DataFrame, DataFramelList, SplitDataFrameList

4 Vector Annotations

Often when one has a collection of objects, there is a need to attach metadata that describes the collection
in some way. Two kinds of metadata can be attached to a Vector object:

1. Metadata about the object as a whole: this metadata is accessed via the metadata accessor and is
represented as an ordinary list;

2. Metadata about the individual elements of the object: this metadata is accessed via the mcols accessor
(mcols stands for metadata columns) and is represented as a DataTable object (i.e. as an instance of
a concrete subclass of DataTable, e.g. a DataFrame object). This DataTable object can be thought of
as the result of binding together one or several vector-like objects (the metadata columns) of the same
length as the Vector object. Each row of the DataTable object annotates the corresponding element
of the Vector object.

5 Vector Ranges

When analyzing sequences, we are often interested in particular consecutive subsequences. For example, the
a vector could be considered a sequence of lower-case letters, in alphabetical order. We would call the first
five letters (a to e) a consecutive subsequence, while the subsequence containing only the vowels would not
be consecutive. It is not uncommon for an analysis task to focus only on the geometry of the regions, while
ignoring the underlying sequence values. A list of indices would be a simple way to select a subsequence.
However, a sparser representation for consecutive subsequences would be a range, a pairing of a start position
and a width, as used when extracting sequences with window.

When analyzing subsequences in IRanges, each range is treated as an observation. The virtual Ranges
class represents lists of ranges, or, equivalently and as a derivative IntegerList, sequences of consecutive
integers. The most commonly used implementation of Ranges is IRanges, which stores the starts and widths
as ordinary integer vectors. To construct an IRanges instance, we call the IRanges constructor. Ranges are
normally specified by passing two out of the three parameters: start, end and width (see help(IRanges) for
more information).

irl <- IRanges(start = 1:10, width = 10:1)
ir2 <- IRanges(start = 1:10, end = 11)
ir3 <- IRanges(end = 11, width = 10:1)
identical(irl, ir2) & identical(ir2, ir3)

vV V. Vv Vv

[1] FALSE

> ir <- IRanges(c(1, 8, 14, 15, 19, 34, 40),
+ width = c(12, 6, 6, 15, 6, 2, 7))

All of the above calls construct an IRanges instance with the same ranges, using different combinations of
the start, end and width parameters.
Accessing the starts, widths and ends is supported by every Ranges implementation.

> start(ir)

[11] 1 8 14 15 19 34 40

10



> end(ir)

[1] 12 13 19 29 24 35 46
> width(ir)

[1] 12 6 615 6 2 7

For IRanges and some other Ranges derivatives, subsetting is also supported, by numeric and logical
indices.

> ir[1:4]

IRanges object with 4 ranges and O metadata columns:

start end width

<integer> <integer> <integer>

[1] 1 12 12

(2] 8 13 6

[3] 14 19 6

[4] 15 29 15

> ir[start(ir) <= 15]

IRanges object with 4 ranges and O metadata columns:

start end width
<integer> <integer> <integer>

[1] 1 12 12
(2] 8 13 6
[3] 14 19 6
[4] 15 29 15

One may think of each range as a sequence of integer ranges, and Ranges is, in fact, derived from
IntegerList.

> ir[[1]]
[1] 1 2 3 4 5 6 7 8 9 10 11 12
In order to illustrate range operations, we’ll create a function to plot ranges.

> plotRanges <- function(x, xlim = x, main = deparse(substitute(x)),
+ col = "black", sep = 0.5, ...)
+ {

+ height <- 1

+ if (is(xlim, "Ranges"))

+ x1im <- c(min(start(xlim)), max(end(xlim)))

+  bins <- disjointBins(IRanges(start(x), end(x) + 1))
+ plot.new()

+ plot.window(xlim, c(0, max(bins)*(height + sep)))

+  ybottom <- bins * (sep + height) - height

+ rect(start(x)-0.5, ybottom, end(x)+0.5, ybottom + height, col = col, ...)
+ title(main)

+ axis(1)

+

}

> plotRanges (ir)

11



Figure 2: Plot of original ranges.

reduce(ir)
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Figure 3: Plot of reduced ranges.

5.1 Normality

Sometimes, it is necessary to formally represent a subsequence, where no elements are repeated and order is
preserved. Also, it is occasionally useful to think of a Ranges object as a set, where no elements are repeated
and order does not matter. While every Ranges object, as a Vector derivative, has an implicit ordering,
one can enforce the same ordering for all such objects, so that ordering becomes inconsequential within that
context.

The NormallRanges class formally represents either a subsequence encoding or a set of integers. By
definition a Ranges object is said to be normal when its ranges are: (a) not empty (i.e. they have a non-null
width); (b) not overlapping; (c) ordered from left to right; (d) not even adjacent (i.e. there must be a non
empty gap between 2 consecutive ranges).

There are three main advantages of using a normal Ranges object: (1) it guarantees a subsequence
encoding or set of integers, (2) it is compact in terms of the number of ranges, and (3) it uniquely identifies
its information, which simplifies comparisons.

The reduce function reduces any Ranges object to a NormallRanges by merging redundant ranges.

> reduce(ir)

IRanges object with 3 ranges and O metadata columns:

start end width
<integer> <integer> <integer>

[1] 1 29 29
[2] 34 35 2
[3] 40 46 7

> plotRanges(reduce(ir))

12



5.2 Lists of Ranges objects

It is common to manipulate collections of Ranges objects during an analysis. Thus, the IRanges package
defines some specific classes for working with multiple Ranges objects.

The RangesList class asserts that each element is a Ranges object and provides convenience methods,
such as start, end and width accessors that return IntegerList objects, aligning with the RangesList object.
To explicitly construct a RangesList, use the RangesList function.

> rl <- RangesList(ir, rev(ir))
> start(rl)

IntegerList of length 2
[[1]] 1 8 14 15 19 34 40
[[2]] 40 34 19 15 14 8 1

5.3 Vector Extraction

As the elements of a Ranges object encode consecutive subsequences, they may be used directly in sequence
extraction. Note that when a normal Ranges is given as the index, the result is a subsequence, as no elements
are repeated or reordered. If the sequence is a Vector subclass (i.e. not an ordinary wvector), the canonical [
function accepts a Ranges instance.

> irextract <- IRanges(start = c (4501, 4901) , width = 100)
> xRle[irextract]

integer-Rle of length 200 with 159 runs
Lengths: 12 1 1 1 2 1 1 1 1 2 ... 1 1
Values : 0 1 0 2 0 1 0 1 O 1 ... 912
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5.4 Finding Overlapping Ranges

The function findOverlaps detects overlaps between two Ranges objects.

> ol <- findOverlaps(ir, reduce(ir))
> as.matrix(ol)

queryHits subjectHits

[1,] 1 1
[2,] 2 1
[3,] 3 1
[4,] 4 1
[5,] 5 1
[6,] 6 2
(7,1 7 3

5.5 Counting Overlapping Ranges

The function coverage counts the number of ranges over each position.
> cov <- coverage(ir)
> plotRanges(ir)

> cov <- as.vector(cov)
> mat <- cbind(seq_along(cov)-0.5, cov)

13
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Figure 4: Plot of ranges with accumulated coverage.

d <- diff(cov) != 0

mat <- rbind(cbind(mat([d,1]+1, mat[d,2]), mat)
mat <- mat[order(mat[,1]),]

lines(mat, col="red", lwd=4)

axis(2)

vV V. Vv Vv Vv

5.6 Finding Neighboring Ranges

The nearest function finds the nearest neighbor ranges (overlapping is zero distance). The precede and
follow functions find the non-overlapping nearest neighbors on a specific side.

5.7 Transforming Ranges

Utilities are available for transforming a Ranges object in a variety of ways. Some transformations, like
reduce introduced above, can be dramatic, while others are simple per-range adjustments of the starts, ends
or widths.

5.7.1 Adjusting starts, ends and widths

Perhaps the simplest transformation is to adjust the start values by a scalar offset, as performed by the
shift function. Below, we shift all ranges forward 10 positions.

> shift(ir, 10)

IRanges object with 7 ranges and O metadata columns:

start end width
<integer> <integer> <integer>

[1] 11 22 12
[2] 18 23 6
(3] 24 29 6
[4] 25 39 15
(5] 29 34 6
(6] 44 45 2
(7] 50 56 7

There are several other ways to transform ranges. These include narrow, resize, flank, reflect,
restrict, and threebands. For example narrow supports the adjustment of start, end and width values,
which should be relative to each range. These adjustments are vectorized over the ranges. As its name
suggests, the ranges can only be narrowed.

14



> narrow(ir, start=1:5, width=2)

IRanges object with 7 ranges and O metadata columns:

start end width
<integer> <integer> <integer>

[1] 1 2 2
(2] 9 10 2
(3] 16 17 2
[4] 18 19 2
(5] 23 24 2
(6] 34 35 2
(7] 41 42 2

The restrict function ensures every range falls within a set of bounds. Ranges are contracted as
necessary, and the ranges that fall completely outside of but not adjacent to the bounds are dropped, by
default.

> restrict(ir, start=2, end=3)

IRanges object with 1 range and O metadata columns:

start end width
<integer> <integer> <integer>
[1] 2 3 2

The threebands function extends narrow so that the remaining left and right regions adjacent to the
narrowed region are also returned in separate Ranges objects.

> threebands (ir, start=1:5, width=2)

$left
IRanges object with 7 ranges and O metadata columns:
start end width
<integer> <integer> <integer>
[1] 1 0 0
[2] 8 8 1
(3] 14 15 2
[4] 15 17 3
(5] 19 22 4
(6] 34 33 0
[7] 40 40 1
$middle
IRanges object with 7 ranges and O metadata columns:
start end width
<integer> <integer> <integer>
[1] 1 2 2
(2] 9 10 2
(3] 16 17 2
[4] 18 19 2
(5] 23 24 2
(6] 34 35 2
(7] 41 42 2
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$right
IRanges object with 7 ranges and O metadata columns:

start end width
<integer> <integer> <integer>

[1] 3 12 10
[2] 11 13 3
[3] 18 19 2
[4] 20 29 10
(5] 25 24 0
(el 36 35 0
[7] 43 46 4

The arithmetic operators +, - and * change both the start and the end/width by symmetrically expanding
or contracting each range. Adding or subtracting a numeric (integer) vector to a Ranges causes each range
to be expanded or contracted on each side by the corresponding value in the numeric vector.

> ir + seq_len(length(ir))

IRanges object with 7 ranges and O metadata columns:

start end width
<integer> <integer> <integer>

[1] 0 13 14
(2] 6 15 10
[3] 11 22 12
[4] 11 33 23
[5] 14 29 16
[6] 28 41 14
[7] 33 53 21

The * operator symmetrically magnifies a Ranges object by a factor, where positive contracts (zooms in)
and negative expands (zooms out).

> ir * -2 # double the width

IRanges object with 7 ranges and O metadata columns:

start end width
<integer> <integer> <integer>

[1] -5 18 24
(2] 5 16 12
[3] 11 22 12
[4] 7 36 30
(5] 16 27 12
(6] 33 36 4
(7] 36 49 14

WARNING: The semantic of these arithmetic operators might be revisited at some point. Please restrict
their use to the context of interactive visualization (where they arguably provide some convenience) but
avoid to use them programmatically.

5.7.2 Making ranges disjoint

A more complex type of operation is making a set of ranges disjoint, i.e. non-overlapping. For example,
threebands returns a disjoint set of three ranges for each input range.

The disjoin function makes a Ranges object disjoint by fragmenting it into the widest ranges where the
set of overlapping ranges is the same.
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disjoin(ir)
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Figure 5: Plot of disjoined ranges.

> disjoin(ir)

IRanges object with 10 ranges and O metadata columns:

start end width
<integer> <integer> <integer>

[1] 1 7 7
[2] 8 12 5
[3] 13 13 1
[4] 14 14 1
(5] 15 18 4
(6] 19 19 1
[7] 20 24 5
[8] 25 29 5
[9] 34 35 2
[10] 40 46 7

> plotRanges(disjoin(ir))

A variant of disjoin is disjointBins, which divides the ranges into bins, such that the ranges in each
bin are disjoint. The return value is an integer vector of the bins.

> disjointBins(ir)

[11 1212311

5.7.3 Other transformations

Other transformations include reflect and flank. The former “flips” each range within a set of common
reference bounds.

> reflect(ir, IRanges(start(ir), width=width(ir)*2))

IRanges object with 7 ranges and O metadata columns:

start end width
<integer> <integer> <integer>

[1] 13 24 12
(2] 14 19 6
[3] 20 25 6
[4] 30 44 15
(5] 25 30 6
(6] 36 37 2
[7] 47 53 7
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gaps(ir, start = 1, end = 50)
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Figure 6: Plot of gaps from ranges.

The flank returns ranges of a specified width that flank, to the left (default) or right, each input range. One
use case of this is forming promoter regions for a set of genes.

> flank(ir, width = seq_len(length(ir)))

IRanges object with 7 ranges and O metadata columns:

start end width
<integer> <integer> <integer>

[1] 0 0 1
[2] 6 7 2
(3] 11 13 3
(4] 11 14 4
(5] 14 18 5
(6] 28 33 6
(7] 33 39 7

5.8 Set Operations

Sometimes, it is useful to consider a Ranges object as a set of integers, although there is always an implicit
ordering. This is formalized by NormallRanges, above, and we now present versions of the traditional
mathematical set operations complement, union, intersect, and difference for Ranges objects. There are
two variants for each operation. The first treats each Ranges object as a set and returns a normal value,
while the other has a “parallel” semantic like pmin/pmax and performs the operation for each range pairing
separately.

The complement operation is implemented by the gaps and pgap functions. By default, gaps will return
the ranges that fall between the ranges in the (normalized) input. It is possible to specify a set of bounds,
so that flanking ranges are included.

> gaps(ir, start=1, end=50)

IRanges object with 3 ranges and O metadata columns:

start end width
<integer> <integer> <integer>

[1] 30 33 4
2] 36 39 4
(3] 47 50 4

> plotRanges(gaps(ir, start=1, end=50), c(1,50))

pgap considers each parallel pairing between two Ranges objects and finds the range, if any, between
them. Note that the function name is singular, suggesting that only one range is returned per range in the
input.
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The remaining operations, union, intersect and difference are implemented by the [p]Junion, [p]intersect
and [p]lsetdiff functions, respectively. These are relatively self-explanatory.

6 Vector Views

The IRanges package provides the virtual Views class, which stores a sequence together with an IRanges
object defining ranges on the sequence. Each range is said to represent a view onto the sequence.

Here, we will demonstrate the RleViews class, where the sequence is of class Rle. Other Views imple-
mentations exist, such as XStringViews in the Biostrings package.

6.1 Creating Views

There are two basic constructors for creating views: the Views function based on indicators and the slice
based on numeric boundaries.

> xViews <- Views(xRle, xRle >= 1)
> xViews <- slice(xRle, 1)
> xViewsList <- slice(xRleList, 1)

6.2 Aggregating Views

While sapply can be used to loop over each window, the native functions viewMaxs, viewMins, viewSums,
and viewMeans provide fast looping to calculate their respective statistical summaries.

> head(viewSums (xViews))
[1] 111112
> viewSums (xViewsList)

IntegerList of length 2
([1J] 111112112316134...126371081164511511
[[2]] 2210221081222 16 207412 ... 21226422422222

> head(viewMaxs (xViews))
[11] 111112
> viewMaxs (xViewsList)

IntegerList of length 2
([1J]1111121112121231...35
[[2]1] 2242244616 412104106 ... 4
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7 TRanges in Biological Sequence Analysis

The IRanges packages was primarily designed with biological sequence analysis in mind and Table [I| shows
how some biological sequence analysis concepts are represented in the IRanges class system.
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Biological Entity Vector Subclass

Genome browser track(s) GRanges / GRangesList
Coverage across chromosomes/contigs RleList
Mapped ranges to genome CompressedIRangesList

Data (sans ranges) across chroms/contigs | SplitDataFrameList

Table 1: Vector subclasses for Biological Sequence Analysis
> toLatex(sessionInfo())

e R version 3.3.3 (2017-03-06), x86_64-pc-linux-gnu

Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils

Other packages: BiocGenerics 0.20.0, IRanges 2.8.2, S4Vectors 0.12.2

Loaded via a namespace (and not attached): tools 3.3.3

Table 2: The output of sessionInfo on the build system after running this vignette.

8 Session Information
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