FourCSeq analysis workflow

Felix A. Klein
European Molecular Biology Laboratory (EMBL),
Heidelberg, Germany
felix.klein@embl.de

October 17, 2016

Contents
1 Introduction 1
2 Preprocessing 1
3 Initialization of the FourC object 2
4 Fragment reference 4
4.1 Adding the viewpoint information 5
4.2 Adding the viewpoint information manually oL 6
5 Counting reads at fragment ends 6
6 Detecting interactions 9
7 Detecting differences 12
8 Session Info 16

1 Introduction

This vignette shows an example workflow of a 4C sequencing analysis. In an typical setting 4C sequencing data
has been generated for different viewpoints in several replicates of multiple conditions. We focus on the analysis
of a subset of the data which was recently published [1]. The data set comprises one viewpoint in replicates of 3
conditions.

For further information on the underlying method and if you use FourCSeq
in published research please consult and cite:

Felix A. Klein, Simon Anders, Tibor Pakozdi, Yad Ghavi-Helm, Eileen E. M. Furlong, Wolfgang Huber
FourCSeq: Analysis of 4C sequencing data
Bioinformatics (2015). doi:10.1093/bioinformatics/btv335 [2]

2 Preprocessing

The analysis with FourCSeq starts from binary alignment/map (BAM)-files. If you already have seperate bam files
for each viewpoint you can skip this section, which shows a possible way how to generate these bam files.

Usually many viewpoints are multiplexed in one sequencing lane. To demultiplex or just trim off the primer sequence
the FourCSeq contains the python script "demultiplex.py” in the folder "extdata/python”. To run the python script
you have to install the HTSeq python package (http://www-huber.embl.de/users/anders/HTSeq/doc/install.html).

FourCSeq analysis workflow 2

Then you can run the command:
python pathToScriptFile/demultiplex.py --fastq YourFASTQFile --barcode YourBarcodeFile

The barcode file is a FASTA file containing the primer sequences that have been used to generate the 4C library. The
read starts are matched against these sequences and if a unique match is found the primer sequence is trimmed and
the remaining read is saved in a FASTQ file with the viewpoint name attached to the original file name, e.g. for the
FASTQ input 4c_library.fastq and a primer sequence named "viewpointl” in the primer FASTA file, the script will
generate the output file 4c_library_viewpointl.fastq for reads matching to the "viewpointl” primer sequence.

Here is an example content of a primer FASTA file, containing one sequence for the "testdata” viewpoint:

>testdata
ATTTTCTCATCCATATAAATACTA

For additional parameters that can be passed to demulitiplex.py have a look at the help documentation of the python
script by running:

python pathToScriptFile/demultiplex.py --help

If you don't know where the python script in the package is installed use the following command in R.

system.file("extdata/python/demultiplex.py", package="FourCSeq")

After demultiplexing the files can be aligned with standard alignment software generating bam output.

3 Initialization of the FourC object

As first step we need to load the required libraries.

library(FourCSeq)

To start the analysis we need to make a FourC object. The FourC object is created from a /ist metadata containing
information about the experiment and a DataFrame colData containing information about the samples. We now
look at this in more detail.

For metadata the following information is required:

projectPath, directory where the project will be saved.

fragmentDir, subdirectory of the project directory where to save the information about restriction fragments.

referenceGenomePath, path to the FASTA file of the reference genome or a BSgenome object.

reSequencel and reSequence?2, restriction enzyme recognition sequence of the first and second restriction

enzyme used in the 4C protocol, respectively.

5. primerFile, path to a FASTA file containing the primer sequences of the viewpoints used for preparing the
4C libraries (names of the primer have to match the names of the viewpoints provided in colData).

6. bamFilePath, path to a directory where the bam files are stored.

bl

For demonstration purposes example files of the ap viewpoint, containing only a small region of the first 6900 bases
on chromosome chr2L of the dm3 Drosophila genome, are saved in the FourCSeq package. Later on we load a
processed (FourC) object that contains the whole data for chr2L and chr2R (chr2R is the viewpoint chromosome of
the ap example viewpoint). We get the path to these files using the system.file function. For your own data you
have to adjust the file path to the directory where your files are stored.

referenceGenomeFile = system.file("extdata/dm3_chr2L_1-6900.fa",
package="FourCSeq")
referenceGenomeFile

[1] "/tmp/Rtmp4EAjFz/Rinst302363fd553c/FourCSeq/extdata/dm3_chr2L_1-6900.fa"

bamFilePath = system.file("extdata/bam",
package="FourCSeq")
bamFilePath

[1] "/tmp/Rtmp4EAjFz/Rinst302363fd553c/FourCSeq/extdata/bam"

FourCSeq analysis workflow 3

primerFile = system.file("extdata/primer.fa",
package="FourCSeq")
primerFile

[1] "/tmp/Rtmp4EAjFz/Rinst302363fd553c/FourCSeq/extdata/primer.fa"

We also take a look at the content of the primer file.

writeLines(readLines(primerFile))

>testdata
ATTTTCTCATCCATATAAATACTA

The primer file contains one sequence, namely for the "ap” viewpoint.

Next we create metadata using "exampleData" as directory for the projectPath and the two restriction enzyme
cutting sequences of Dpnll (GATC) and Nlalll (CATG) that were used in the experiment.

metadata <- list(projectPath = "exampleData",
fragmentDir = "re_fragments",
referenceGenomeFile = referenceGenomeFile,
reSequencel = "GATC",
reSequence2 = "CATG",
primerFile = primerFile,
bamFilePath = bamFilePath)

metadata

$projectPath

[1] "exampleData"

##

$fragmentDir

[1] "re_fragments"

##t

$referenceGenomeFile

[1] "/tmp/Rtmp4EAjFz/Rinst302363fd553c/FourCSeq/extdata/dm3_chr2L_1-6900.fa"
##

$reSequencel

[1] "GATC"
##

$reSequence2
[1] "CATG"
##

$primerFile

[1] "/tmp/Rtmp4EAjFz/Rinst302363fd553c/FourCSeq/extdata/primer.fa"
#Hit

$bamFilePath

[1] "/tmp/Rtmp4EAjFz/Rinst302363fd553c/FourCSeq/extdata/bam"

After creating metadata we now look at colData

For each library the following information has to be provided to colData:

1. viewpoint, name of the viewpoint (has to match the viewpoint names in the provided primer file in metadata).
2. condition, experimental condition.

3. replicate, replicate number.

4. bamFile, file name of the bam file.

5. sequencingPrimer, was the 4C library sequenced from the side of the first restriction enzyme cutting site or

the second. The allowed values are "first” or "second”
colData <- DataFrame(viewpoint = "testdata",
condition = factor(rep(c("WE_68h", "MESO_68h", "WE_34h"),

each=2),

FourCSeq analysis workflow 4

levels = c("WE_68h", "MES0_68h", "WE_34h")),
replicate = rep(c(1l, 2),
3),
bamFile = c("CRM_ap_ApME680_WE_6-8h_1_testdata.bam",
"CRM_ap_ApME680_WE_6-8h_2_testdata.bam",
"CRM_ap_ApME680_MESO_6-8h_1_testdata.bam",
"CRM_ap_ApME680_MESO_6-8h_2_testdata.bam",
"CRM_ap_ApME680_WE_3-4h_1_testdata.bam",
"CRM_ap_ApME680_WE_3-4h_2_testdata.bam"),
sequencingPrimer="first")
colData

DataFrame with 6 rows and 5 columns

#i#t viewpoint condition replicate bamFile
<character> <factor> <numeric> <character>
1 testdata WE_68h 1 CRM_ap_ApME680_WE_6-8h_1_testdata.bam
2 testdata WE_68h 2 CRM_ap_ApME680_WE_6-8h_2_testdata.bam
3 testdata MESO_68h 1 CRM_ap_ApME680_MESO_6-8h_1_testdata.bam
4 testdata MESO_68h 2 CRM_ap_ApME680_MESO_6-8h_2_testdata.bam
5 testdata WE_34h 1 CRM_ap_ApME680_WE_3-4h_1_testdata.bam
6 testdata WE_34h 2 CRM_ap_ApME680_WE_3-4h_2_testdata.bam

sequencingPrimer

#i# <character>
1 first
##t 2 first
3 first
##t 4 first
5 first
6 first

After having the necessary information in the required form, we create the FourC object.

fc <- FourC(colData, metadata)
fc

class: FourC

dim: 0 6

metadata(8): projectPath fragmentDir ... bamFilePath version

assays(0):

rownames: NULL

rowData names(0):

colnames(6): testdata_WE_68h_1 testdata_WE_68h_2 ... testdata_WE_34h_1
testdata_WE_34h_2

colData names(5): viewpoint condition replicate bamFile sequencingPrimer

We now have an FourC object that contains all the required metadata.

4 Fragment reference

As the next step the provided reference genome is in-silico digested using the provided restriction enzyme recognition
sequences. The resulting fragment reference is stored as rowRanges of the FourC object.

fc <- addFragments(fc)

fc

class: FourC
dim: 2 6
metadata(8): projectPath fragmentDir ... bamFilePath version

FourCSeq analysis workflow 5

assays(0):

rownames: NULL

rowData names(4): leftSize rightSize leftValid rightValid

colnames(6): testdata_WE_68h_1 testdata_WE_68h_2 ... testdata_WE_34h_1
testdata_WE_34h_2

colData names(5): viewpoint condition replicate bamFile sequencingPrimer

rowRanges (fc)

GRanges object with 2 ranges and 4 metadata columns:

#H# seqnames ranges strand | leftSize rightSize leftValid rightValid
#Hit <Rle> <IRanges> <Rle> | <numeric> <numeric> <logical> <logical>
[1] chr2L [5305, 6022] * | 160 554 1 1
[2] chr2lL [6027, 6878] * | 251 597 1 1
W -

seqinfo: 1 sequence from an unspecified genome

Now the FourC object contains a GRanges object in the rowRanges slot with the information on the fragments.

By setting save to TRUE in addFragments, the results of the in-silico digestion can be saved in the provided
fragmentDir folder in the project directory, which are both defined in metadata. The first file (valid_fragments.txt)
contains the information for all fragments of the first restriction enzyme in the following columns:

1. Chromosome

Fragment start

Fragment end

Size of the left fragment end

Size of the right fragment end

Information whether the left fragment end is valid
Information whether the right fragment end is valid

Noas~wN

The second file contains the locations of all cutting sites of the second restriction enzyme in the following columns:

1. Chromosome
2. Cutting site start
3. Cutting site end

Additionally, bedgraph files (re_sites_Seqeuncel/Sequence2.bed) are produced in the same folder for displaying the
cutting sites in a genome viewer of choice (e.g. IGV or UCSC).

4.1 Adding the viewpoint information

To find the viewpoint fragment and extract the genomic position of the viewpoint, the primers are mapped to the
reference genome and fragment reference. Because this can be time consuming for many sequences the results of
findViewpointFragments is saved in the project directory provided in metadata. In a second step this data is
loaded by addViewpointFrags and the colData of the FourC object is updated with the corresponding information
of each viewpoint.

findViewpointFragments (fc)
fc <- addViewpointFrags(fc)

The mapped primer fragments are also saved in the file " primerFragments.txt” in the provided fragmentDir folder in
project directory both defined in metadata. In contains one row per primer and the following columns:

1. Viewpoint

Chromosome

Fragment start position
Fragment end position

Width of the whole fragment
Size of the left fragment end
Size of the right fragment end

NoasrwN

FourCSeq analysis workflow 6

8. Information whether the left fragment end is valid
9. Information whether the right fragment end is valid
10. Primer start position
11. Primer end position
12. Fragment side on which the primer matches

4.2 Adding the viewpoint information manually

If the primer file is missing, this information can also be added manually. The information has to contain the viewpoint
chromosome name chr, the start position of the viewpoint fragment start, and its end position end

colData(fc)$chr = "chr2L"
colData(fc)$start = 6027
colData(fc)$end = 6878

5 Counting reads at fragment ends

To filter out non-informative reads, we use several criteria motivated by the 4C sequencing protocol. In the function
countFragmentOverlaps, only reads mapping exactly to the end of a fragment with the correct orientation are
counted and assigned to the corresponding fragment in this step (Figure 1). The counting is strand specific, taking
the orientation of the reads into account (Figure 1). The count values are stored as matrices in the assays slot of
the FourC object. They are named countsLeftFragEnd and countsRightFragEnd.

Assigning aligned sequencing
reads to restriction fragments

viewpoint primer starting at:

¥ N

first cutter second cutter
[~ [~ l > >
| | T - I

Figure 1: If the sequencing primer starts at the first restriction enzyme cutting site, reads that start at the fragment
ends and are oriented towards the fragment middle are kept for analysis (green arrows). If the sequencing primer
starts at the second restriction enzyme cutting site, reads that start directly next to the cutting site of the second
restriction enzyme and are directed towards the ends of the fragment are kept for analysis (green arrows).

If the sequence of the restriction enzyme has not been trimmed in the demultiplexing step (for viewpoints using
a primer of the first cutting site) this can be done during the following step to make sure that reads start at the
fragment’s end. In this example case we trim the first 4 bases of each read by setting trim to 4 to remove the GATC
sequence of the first restriction enzyme. (For the viewpoint primer starting from the second cutting site the reads
can be extended to overlap the cutting site, if the cutting site has been trimmed. In this case reads are counted with
the countFragmentOverlapsSecondCutter function.)

Additionally we filter out read that have a mapping quality below 30 by setting minMapq to 30.

fc <- countFragmentOverlaps(fc, trim=4, minMapqg=30)

reading bam files
calculating overlaps

The counts from both fragment end are added by using the function combineFragEnds.

FourCSeq analysis workflow 7

fc <- combineFragEnds(fc)

We take a look at the FourC object and see that it now contains 3 data matrices (called "assays”): counts,
countsLeftFragEnd and countsRightFragEnd These matrices can be accessed by the assay or assays functions.

fc

class: FourC

dim: 2 6

metadata(8): projectPath fragmentDir ... bamFilePath version
assays(3): counts countsLeftFragmentEnd countsRightFragmentEnd
rownames: NULL

rowData names(4): leftSize rightSize leftValid rightValid

colnames(6): testdata_WE_68h_1 testdata_WE_68h_2 ... testdata_WE_34h_1
testdata_WE_34h_2
colData names(21): viewpoint condition ... mappedReads mappingRatio

assays (fc)

List of length 3
names(3): counts countsLeftFragmentEnd countsRightFragmentEnd

head(assay(fc, "counts"))

testdata_WE_68h_1 testdata_WE_68h_2 testdata_MESO0_68h_1 testdata_MESO_68h_2
[1,] 0 13 4 0
[2,] 6 0 0 2
#i# testdata_WE_34h_1 testdata_WE_34h_2
[1,] 0 0
[2,] 8 0

For the rest of the vignette we now load the dataset of the "ap” viewpoint that was created for the whole chromosmes
2L and 2R of the dm3 reference genome. We adjust the project path and look at the FourC object.

data(fc)
metadata(fc)$projectPath

[1] "pathToProjectFolder"

metadata(fc)$projectPath <- "exampleData"

fc

class: FourC

dim: 57253 6

metadata(7): projectPath fragmentDir ... primerFile bamFilePath

assays(3): counts countsLeftFragmentEnd countsRightFragmentEnd

rownames: NULL

rowData names(4): leftSize rightSize leftValid rightValid

colnames(6): ap_WE_68h_1 ap_WE_68h_2 ... ap_WE_34h_1 ap_WE_34h_2

colData names(21): viewpoint condition ... mappedReads mappingRatio

assays (fc)

List of length 3
names(3): counts countsLeftFragmentEnd countsRightFragmentEnd

head(assay(fc, "counts"))

#Hit ap_WE_68h_1 ap_WE_68h_2 ap_MES0_68h_1 ap_MESO_68h_2 ap_WE_34h_1 ap_WE_34h_2
[1,] 0 13 4 0 0 0
[2,] 6 0 0 2 8 0
[3,] 7 0 0 0 0 0
[4,] 0 3 0 7 19 23
[5,] 0 4 0 0 0 0

FourCSeq analysis workflow 8

[6,] 35 0 0 3 8 39

We can see, that the dimensions of the object now represent all fragments on chromosmes 2L and 2R of the dm3
reference genome.
The content of each assay can be saved as bigWig or bedGraph files. By default the counts assay is exported.

writeTrackFiles(fc)
[1] "Successfully created bw files of the counts data."
writeTrackFiles(fc, format='bedGraph')

[1] "Successfully created bedGraph files of the counts data."

Because 4C data sometimes contains many spikes due to possible PCR artifacts, the data can be smoothed for
visualization.

fc <- smoothCounts(fc)

5 chr2L
5 chr2R

fc

class: FourC

dim: 57253 6

metadata(7): projectPath fragmentDir ... primerFile bamFilePath

assays(4): counts countsLeftFragmentEnd countsRightFragmentEnd counts_5
rownames: NULL

rowData names(4): leftSize rightSize leftValid rightValid

colnames(6): ap_WE_68h_1 ap_WE_68h_2 ... ap_WE_34h_1 ap_WE_34h_2

colData names(21): viewpoint condition ... mappedReads mappingRatio

We see that after the smoothing step there is a new assay, counts_5, of smoothed values.

Reproducibility between replicates can be assessed using a scatter plot of the count values. We therefore generate
such a scatter plot for two columns of the FourC object.

plotScatter(fc[,c("ap_WE_68h_1", "ap_WE_68h_2")],
xlab="Replicatel", ylab="Replicate2", asp=1)

heatscatter

106 —

105 —

103 —

Replicate2

100 —

10 | l ‘

T T T T T
@ < I © ~

=] =] (=] =] o

1] 1 1 1

100 —

Replicatel

They show good agreement for higher count values.

FourCSeq analysis workflow 9

6 Detecting interactions

In the following step the count values are first transformed with a variance stabilizing transformation. After this step
the variance between replicates no longer depends strongly on the average count value, thereby allowing a consistent
statistical treatment over a wide range of count values. On these transformed counts, the general decay of the 4C
signal with genomic distance from the viewpoint is fitted using a symmetric monotone fit. The residuals of the fit
are used to calculate z-scores: the z-scores are the fit residuals divided by the median absolute deviation (MAD) of
all the sample’s residuals.

This is done the getZScores function. The data is filtered so that only fragments with a median count of at least
40 count are kept for the analysis. Also fragments that are close to the viewpoint, and hence show an extremely
high count value are filtered out. If no minimum distance from the viewpoint is defined this distance is automatically
estimated by choosing the borders of the initial signal decrease around the viewpoint. For more details and information
about additional parameters that may be specified for the getZScores function type 7getZScores.

fcf <- getZScores(fc)
fcf

After calling getZScores, a new FourC object is returned that has been filtered to contain only fragments that were
kept for analysis according to the above criteria. It also contains additional information added by the getZScores
function (see ?getZScores for details).

We take a look at the distribution of z-scores, which are stored in the assay "zScores” of the FourC object.

zScore <- assay(fcf, "zScore")

hist(zScore[,"ap_MES0_68h_1"], breaks=100)
hist(zScorel[,"ap_MES0_68h_2"], breaks=100)

Histogram of zScore[, "ap_MESO_68h_1"] Histogram of zScore[, "ap_MESO_68h_2"]
o M
3 -
— |-
- o _
o
g 4 L 3
- -
) 3
e 2
(7] [
3 m =1
g g
[I 24
o]
wn
o |
N
o o J o fnm dim nm o
T T T T T T 1 T T T T 1
-8 -6 -4 -2 0 2 4 -4 -2 0 2 4
zScore[, "ap_MESO_68h_1"] zScorel, "ap_MESO_68h_2"]

For the second replicate two peaks are observed in the histogram. The peak close to -2 is due to fragments with 0
counts in the second library, which has a lower coverage. Since we are interested in finding strong interactions on
the positive side of the distribution, we can continue and capture the strongest contacts. However, if the influence
of low values would further shift the distribution to negative values this might lead to errors in the calculation of
z-scores. It is therefore important to check the distribution of values after calculating the z-scores.

In the next plots we check, whether normal assumption for calculating the p-values is justified.

qqnorm(zScore[,"ap_MES0_68h_1"],

main="Normal Q-Q Plot - ap_MESO_68h_1”)
abline(a=0, b=1)
gqgnorm(zScore[,"ap_MES0_68h_2"],

main="Normal Q-Q Plot - ap_MES0_68h_2")
abline(a=0, b=1)

FourCSeq analysis workflow 10

Normal Q-Q Plot — ap_MESO_68h_1 Normal Q-Q Plot — ap_MESO_68h_2

Sample Quantiles
2
Sample Quantiles

T T T T T T T T T T T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Theoretical Quantiles Theoretical Quantiles

As we see the approximation is satisfactory in general, even for the second replicate for which alredy observed
deviations in the histogram.

Using a conservative approach, we define interacting regions with the following thresholds: a fragment must have
z-scores larger than 3 for both replicates and an adjusted p-value of 0.01 for at least one replicate. The call to
addPeaks adds a new assay to the FourC object that contains booleans indicating whether an interaction has been
called for a fragment or not.

fcf <- addPeaks(fcf, zScoreThresh=3, fdrThresh=0.01)
head(assay(fcf, "peaks"))

#it ap_WE_68h_1 ap_WE_68h_2 ap_MESO0_68h_1 ap_MESO_68h_2 ap_WE_34h_1 ap_WE_34h_2
[1,] FALSE FALSE FALSE FALSE FALSE FALSE
[2,] FALSE FALSE FALSE FALSE FALSE FALSE
[3,] FALSE FALSE FALSE FALSE FALSE FALSE
[4,] FALSE FALSE FALSE FALSE FALSE FALSE
[5,] FALSE FALSE FALSE FALSE FALSE FALSE
[6,] FALSE FALSE FALSE FALSE FALSE FALSE

Next we take a look at the fit for the first sample.

plotFits(fcf[,1], main="")

4 7 4
10" - 10* -
x — —
— c = c
- =] — =]
38 S
L2 = F3d o
(] (5]
2 3 N 2 3 N
c - o = c - o =
2 v - T8
© 7 o -
ro g ro a
Q 5]
g g
100 m® g 100 o5
~ = ~ =
10 10
1. 1
T T T T T T T T
© 5] < [y) < (5] © ~
o o o o o o (=} o o
— — — — — - — — —

Distance from viewpoint [nt] Distance from viewpoint [nt]

FourCSeq analysis workflow 11

10* ™
~
o 2
[g
o
s R
(5]
2 4 N
5 10 -3S 3
5] 8
(@] 7]
L e @
o
g
100 e 5
'\>
10
1

Distance from viewpoint [nt]

The points show the count values for the individual fragments. The red line is the fit and the blue dashed line is
the fit plus (z-score threshold)*MAD for the given library, where the z-score threshold has been defined by the call
to addPeaks. If addPeaks has not been called yet, a default z-score threshold of 2 is used. The first plot show the
data left of the viewpoint, the second plot right of the viewpoint and for the last plot both sides have been combined
by using the absolute distance from the viewpoint.

The plotZScores function produces plots to display the results. To include gene annotation, we load the TxDb.Dmelanogaster.UCS
package that contains transcript information for the dm3 genome. It can be passed as an argument to the
plotZScores function.

library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)
plotZScores(fcf[,c("ap_WE_68h_1", "ap_WE_68h_2")],
txdb=TxDb.Dmelanogaster.UCSC.dm3.ensGene)

[1] IIapll
Successfully plotted results.

12 12
o i o z
g 2101 g 210
w e w e
BI % gl %
g 8 s § 8s

6 6

12 12
NI *(7)' NI ‘t?)
= > = >
$| 10~ g| =10 -
w W | ae--meomTTT RSN R -
s % S % ----
g O 84 & O 8 2

6 6 o« -o-ee et
| —
S S

1500000 1550000 1600000 1650000 170000C 500000 1000000 1500000 2000000 2500000

Genomic position Genomic position

The plot shows the results for two different window sizes around the viewpoint. The fit is shown as green line and
the dashed blue lines span the interval of + (z-score threshold)*MAD, where the z-score threshold has been defined
by the call to addPeaks. If addPeaks has not been called yet, a default z-score threshold of 2 is used. Red points
represent fragments that have been called as interactions.

FourCSeq analysis workflow 12

7 Detecting differences

In addition to detecting interactions within a sample, one might be interested in finding differences of interaction
frequencies between samples from different experimental conditions.

Here we show how to detect differences between conditions. In our case the conditions are whole embryo tissue at
3-4 h and 6-8 h and mesoderm specific tissue at 6-8 h. The distance dependence, which varies between viewpoints
is taken into account by calculating normalizationFactors.

fcf <- getDifferences(fcft,
referenceCondition="WE_68h")

[1] ||ap||
fctf

class: FourC
dim: 1872 6

metadata(9): projectPath fragmentDir ... parameter peakParameter

assays(13): counts countsLeftFragmentEnd ... normalizationFactors cooks
rownames: NULL

rowData names(45): leftSize rightSize ... deviance maxCooks

colnames(6): ap_WE_68h_1 ap_WE_68h_2 ... ap_WE_34h_1 ap_WE_34h_2

colData names(22): viewpoint condition ... mappingRatio sd

After calling getDifferences, the FourC object contains additional information about the differential test (see ?getD-
ifferences for details.)

First we take a look at the dispersion fit calculated in the analysis to check if the fit worked, especially since a warning
was thrown. As we can see the red fit nicely captures the trend of the black dots. The blue dots are the shrunken
dispersion estimates for each fragment that are used in the differential test as measure for the variability of the data
(see DESeq2 vignette and [3] for details).

plotDispEsts(fcf)

1e+00
|

le-02

dispersion
le-04

(<}

< —

o

- + gene-est

© « fitted

? e e e .. « final

3 I — [— I —
50 100 500 2000 10000

mean of normalized counts

We also take a look at the estimated values of the normalization factors plotted against the distance from the
viewpoint. The horizontal lines represent the size factors of the different libraries.

FourCSeq analysis workflow 13

plotNormalizationFactors(fcf)

- ap_WE_68h_1
- ap_WE_68h_2
O_ J . EILMESO,GSEJ
N Jk\ ap_WE_34h_1
—_— | - ap WE_34h 2
=
S
S o —
<7
=
i)
=
<
N I/
R
E o
=
S
2
N
(=}

T T T T T
0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07

Distance from viewpoint

Compared to single size factors for the library size correction these values are shifted, especially in the region close
to the viewpoint, where they span a range from approximately 0.3 to 3.

Next we generate an MA plot using the method from the DESeq2 package (for details see ?plotMA and choose
DESeq2). The MA plot shows the log fold changes between conditions plotted over the base mean values across
samples. Red dots represent fragments with an adjusted p-value below the significance level of 0.01.

plotMA(results(fcf, contrast=c("condition", "WE_68h", "MESO_68h")),
alpha=0.01,
xlab="Mean 4C signal",
ylab="log2 fold change",
ylim=c(-3.1,3.1))

log2 fold change
0
|

T T T T T T T T T
50 100 500 2000 10000

Mean 4C signal

To take a look at the results of the differential test we use the getAl1Results function.

results <- getAllResults(fcf)
dim(results)

[1] 1872 16

head(results) [,1:6]

FourCSeq analysis workflow 14

DataFrame with 6 rows and 6 columns
baseMean log2FoldChange WE_68h_MESO_68h 1fcSE_WE_68h_MES0_68h stat_WE_68h_MES0_68h

#i# <numeric> <numeric> <numeric> <numeric>
1 48.28132 0.2510168 0.6460191 0.3885595
2 101.02485 0.6566106 0.6672390 0.9840710
3 130.67834 0.2198873 0.6062826 0.3626812
4 128.70542 0.8025527 0.5923631 1.3548324
5 56.21784 0.8302131 0.6720395 1.2353636
6 52.95743 -0.6992268 0.6542326 -1.0687739
pvalue_WE_68h_MESO_68h padj_WE_68h_MESO_68h
<numeric> <numeric>
##t 1 0.6976021 0.9970092
2 0.3250806 0.9809934
3 0.7168431 0.9970092
##t 4 0.1754710 0.9065930
5 0.2166952 0.9582553
6 0.2851716 0.9809934

The table shows the base mean for the given fragment in the first column. Then, for every combination of conditions,
5 columns are shown. We only look at the results of the first combination by selecting the first 6 columns. The
second column shows the estimated log2 fold change between the two conditions, the third the estimated standard
error of the log2 fold change, the fourth the Wald test statistic, the fifth the corresponding p-value and the sixth the
adjusted p-value.

The results can be visualized by creating plots with the plotDifferences function.

plotDifferences(fcf,
txdb=TxDb.Dmelanogaster.UCSC.dm3.ensGene,
plotWindows = 1e+05,
textsize=16)

[l] llapll

E_68h_1
2
n

N
o

Count (vst)
b

ap_W

-
N

WE_68h_2

Count (vst)
5

ap

p_MESO_68h_1
b

MESO_68h_2 a
t

®
| 212
%10—
I O 8
& 6
S
c
g2 %
S a. 2 -..'l-.. 0% e &0 o, o, 1 o, e T o ot e
S 9. % Cy . " Vo0l o e g oo o et 0 3 % alo’e 00 000 ol e tSoeee gu %80 *%, oo .
° \r-..:’. ~y I '. ; .~.l.....) ;OOk;{.-:o vy gl 1‘.:—.3-. g " ...‘...- _'.....’.’ ._'.. ...- p ..,:*.';‘ R
e .
g

genes

i Ui LETI i [L | —

1500000 1550000 1600000 1650000 1700000
Genomic position

Successfully plotted results.

The plot shows the results for the comparison of the two conditions. The upper two tracks show the variance

FourCSeq analysis workflow 15

stabilized counts of the first condition. The fit is shown as green line and the dashed blue lines span the interval of
+ (z-score threshold)*MAD, where the z-score threshold has been defined by the call to addPeaks. If addPeaks has
not been called yet, a default z-score threshold of 2 is used. Red points represent fragments that have been called as
interactions, blue points represent points that show significant changes between conditions and orange points fulfill
both criteria. The fifth track shows a color representation of differential interactions. A green bar means that the
interaction is stronger in the first condition compared to the second and a red bar represents the opposite case. The
log2 fold changes are shown also on top of a gene model track (lower panel).

We now integrate the results with known gene annotation for the apterous (ap) gene, which is the closest gene
contacted by the viewpoint. We extract the log2 fold change of the signal at the ap promoter. The flybase gene id
of the ap gene is "FBgn0000099”. The genes function return a GRanges object with the genomic coordinates of
the gene.

apId <- "FBgn0000099"

apGene <- genes(TxDb.Dmelanogaster.UCSC.dm3.ensGene,
filter=1list(gene_id=apId))

apGene

GRanges object with 1 range and 1 metadata column:

#i# seqnames ranges strand | gene_id
<Rle> <IRanges> <Rle> | <character>
FBgn0000099 chr2R [1593707, 1614335] - | FBgn0000099
#o -

seqinfo: 15 sequences (1 circular) from dm3 genome

The promoters function extends the transcription start site (TSS) in both directions and returns a GRanges object
with the resulting genomic coordinates.

apPromotor <- promoters(apGene, upstream = 500, downstream=100)
apPromotor

GRanges object with 1 range and 1 metadata column:

#i#t seqnames ranges strand | gene_id
<Rle> <IRanges> <Rle> | <character>
FBgn0000099 chr2R [1614236, 1614835] - | FBgn0000099
#Wo -

seqinfo: 15 sequences (1 circular) from dm3 genome

We now want to find the results for the fragment that overlaps with the ap promoter. Therefore we get the genomic
coordinates of the fragments stored in the FourC object with rowRanges and find the overlap with findOverlaps.

frags <- rowRanges(fcf)

if (length(frags) != nrow(results))
stop("Number of rows is not the same for the fragment data and results table.")

ov <- findOverlaps(apPromotor, frags)
ov

Hits object with 1 hit and O metadata columns:

#it queryHits subjectHits
#i#t <integer> <integer>
#i# [1] 1 743
-

queryLength: 1 / subjectLength: 1872

The overlap shows which fragments (subjectHits) overlaps the ap promoter (queryHits).

Finally we look at the results of the fragment overlapping the ap promoter by subsetting results using the subjectHits
function and look only at the first comparison of 6-8h whole embryo and mesoderm specific tissue.

FourCSeq analysis workflow

results[subjectHits(ov),1:6]

16

DataFrame with 1 row and 6 columns

#i#
##
##
##
#it
#it

baseMean log2FoldChange WE_68h_MESO_68h 1fcSE_WE_68h_MESO_68h stat_WE_68h_MESO_68h

<numeric> <numeric> <numeric> <numeric>

1 13899.69 -1.169039 0.1112226 -10.51081
pvalue_WE_68h_MESO_68h padj_WE_68h_MES0_68h
<numeric> <numeric>
1 7.703058e-26 1.442012e-22

We can see that from comparison of these conditions that there is a significant log2 fold change of —1.1690393.

8 Session Info

sessionInfo()

##
#it
#it
#it
##
##
##t
#it
#i#
##
##
##t
#it
#i#
##
##
##
#it
#it
#it
##
##
##t
#it
#i#t
##
##
##
#it
#i#
##
##
##
#t
#it
#it
##
##
##t
#i#t
#i#

R version 3.3.1 (2016-06-21)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.1 LTS

locale:

[1]
(4]
(7]
[10]

LC_CTYPE=en_US.UTF-8
LC_COLLATE=C
LC_PAPER=en_US.UTF-8
LC_TELEPHONE=C

attached base packages:

[1]
(9]

splines parallel stats4d
methods base

other attached packages:
TxDb.Dmelanogaster.UCSC.dm3.ensGene_3.2.2 GenomicFeatures_1.26.0

[1]
(3]
(5]
(7]
(9]
[11]
[13]

AnnotationDbi_1.36.0
LSD_3.0
SummarizedExperiment_1.4.0
ggplot2_2.1.0
GenomeInfoDb_1.10.0
S4Vectors_0.12.0

LC_NUMERIC=C LC_TIME=en_US.UTF-8
LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
LC_NAME=C LC_ADDRESS=C

LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

stats graphics grDevices utils datasets

FourCSeq_1.8.0
DESeq2_1.14.0
Biobase_2.34.0
GenomicRanges_1.26.0
TRanges_2.8.0
BiocGenerics_0.20.0

loaded via a namespace (and not attached):

[1]

(3]

(5]

[7]

[9]
[11]
[13]
[15]
[17]
[19]
[21]
[23]
[25]
[27]
[29]
[31]
[33]

httr_1.2.1
gtools_3.5.0
shiny_0.14.1
highr_0.6
RBGL_1.50.0
Rsamtools_1.26.0
lattice_0.20-34
chron_2.3-47
RColorBrewer_1.1-
colorspace_1.2-7
htmltools_0.3.5
Matrix_1.2-7.1
OrganismDbi_1.16.0
biomaRt_2.30.0
genefilter_1.56.0
xtable_1.8-2
BiocParallel_1.8.0

2

AnnotationHub_2.6.0
Formula_1.2-1
interactiveDisplayBase_1.12.0
latticeExtra_0.6-28
BSgenome_1.42.0
RSQLite_1.0.0
biovizBase_1.22.0
digest_0.6.10
XVector_0.14.0
ggbio_1.22.0
httpuv_1.3.3
plyr_1.8.4
XML_3.98-1.4
fda_2.4.4
zlibbioc_1.20.0
scales_0.4.0
annotate_1.52.0

FourCSeq analysis workflow 17

[35] nnet_7.3-12 survival_2.39-5
[37] magrittr_1.5 mime_0.5

[39] evaluate_0.10 GGally_1.2.0

[41] foreign_0.8-67 graph_1.52.0

[43] BiocInstaller_1.24.0 tools_3.3.1

[45] data.table_1.9.6 BiocStyle_2.2.0
[47] formatR_1.4 stringr_1.1.0

[49] munsell_0.4.3 locfit_1.5-9.1
[61] cluster_2.0.5 ensembldb_1.6.0
[563] Biostrings_2.42.0 @eiel 3.8, il

[55] RCurl_1.95-4.8 dichromat_2.0-0
[57] VariantAnnotation_1.20.0 labeling_ 0.3

[59] bitops_1.0-6 codetools_0.2-15
[61] gtable_0.2.0 DBI_0.5-1

[63] reshape_0.8.5 reshape2_1.4.1
[65] R6_.2.2.0 GenomicAlignments_1.10.0
[67] gridExtra_2.2.1 knitr_1.14

[69] rtracklayer_1.34.0 Hmisc_3.17-4

[71] stringi_1.1.2 Rcpp_0.12.7

[73] geneplotter_1.52.0 rpart_4.1-10

[75] acepack_1.3-3.3

References

[1] Yad Ghavi-Helm, Felix a. Klein, Tibor Pakozdi, Lucia Ciglar, Daan Noordermeer, Wolfgang Huber, and Eileen
E. M. Furlong. Enhancer loops appear stable during development and are associated with paused polymerase.
Nature, 512(7512):96-100, July 2014. URL: http://www.nature.com/doifinder/10.1038 /naturel3417, doi:10.
1038/nature13417

[2] Felix A. Klein, Tibor Pakozdi, Simon Anders, Yad Ghavi-Helm, Eileen E. M. Furlong, and Wolf-
gang Huber. Fourcseq: Analysis of 4c sequencing data. Bioinformatics, 2015. URL: http:
//bioinformatics.oxfordjournals.org/content /early/2015/05/30/bioinformatics.btv335.abstract, arXiv:http:
//bioinformatics.oxfordjournals.org/content/early/2015/05/30/bioinformatics.btv335.full.
pdf+html, doi:10.1093/bioinformatics/btv335

[3] Mike I. Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold change and dispersion for
RNA-Seq data with DESeq2. bioRxiv preprint, 2014. doi:10.1101/002832.

http://www.nature.com/doifinder/10.1038/nature13417
http://dx.doi.org/10.1038/nature13417
http://dx.doi.org/10.1038/nature13417
http://bioinformatics.oxfordjournals.org/content/early/2015/05/30/bioinformatics.btv335.abstract
http://bioinformatics.oxfordjournals.org/content/early/2015/05/30/bioinformatics.btv335.abstract
http://arxiv.org/abs/http://bioinformatics.oxfordjournals.org/content/early/2015/05/30/bioinformatics.btv335.full.pdf+html
http://arxiv.org/abs/http://bioinformatics.oxfordjournals.org/content/early/2015/05/30/bioinformatics.btv335.full.pdf+html
http://arxiv.org/abs/http://bioinformatics.oxfordjournals.org/content/early/2015/05/30/bioinformatics.btv335.full.pdf+html
http://dx.doi.org/10.1093/bioinformatics/btv335
http://dx.doi.org/10.1101/002832

	1 Introduction
	2 Preprocessing
	3 Initialization of the FourC object
	4 Fragment reference
	4.1 Adding the viewpoint information
	4.2 Adding the viewpoint information manually

	5 Counting reads at fragment ends
	6 Detecting interactions
	7 Detecting differences
	8 Session Info

