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1 Introduction

EBSeq may be used to identify differentially expressed (DE) genes and isoforms in an RNA-Seq experiment.
As detailed in Leng et al., 2013 [3], EBSeq is an empirical Bayesian approach that models a number of
features observed in RNA-seq data. Importantly, for isoform level inference, EBSeq directly accommodates
isoform expression estimation uncertainty by modeling the differential variability observed in distinct groups
of isoforms. Consider Figure 1, where we have plotted variance against mean for all isoforms using RNA-Seq
expression data from Leng et al., 2013 [3]. Also shown is the fit within three sub-groups of isoforms defined
by the number of constituent isoforms of the parent gene. An isoform of gene g is assigned to the I, = k
group, where k = 1,2, 3, if the total number of isoforms from gene ¢ is k (the I, = 3 group contains all
isoforms from genes having 3 or more isoforms). As shown in Figure 1, there is decreased variability in the
1, =1 group, but increased variability in the others, due to the relative increase in uncertainty inherent in
estimating isoform expression when multiple isoforms of a given gene are present. If this structure is not
accommodated, there is reduced power for identifying isoforms in the I, = 1 group (since the true variances
in that group are lower, on average, than that derived from the full collection of isoforms) as well as increased
false discoveries in the I, = 2 and I, = 3 groups (since the true variances are higher, on average, than those
derived from the full collection). EBSeq directly models differential variability as a function of I, providing
a powerful approach for isoform level inference. As shown in Leng et al., 2013 [3], the model is also useful
for identifying DE genes. We will briefly detail the model in Section [3] and then describe the flow of analysis
in Section [4] for both isoform and gene-level inference.

2 Citing this software

Please cite the following article when reporting results from the software.

Leng, N., J.A. Dawson, J.A. Thomson, V. Ruotti, A.I. Rissman, B.M.G. Smits, J.D. Haag, M.N. Gould,
R.M. Stewart, and C. Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq
experiments, Bioinformatics, 2013.
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Figure 1: Empirical variance vs. mean for each isoform profiled in the ESCs vs iPSCs experiment detailed
in the Case Study section of Leng et al., 2013 [3]. A spline fit to all isoforms is shown in red with splines fit
within the I, =1, I, = 2, and I; = 3 isoform groups shown in yellow, pink, and green, respectively.

3 The Model

3.1 Two conditions

We let Xgl =Xy, 1,Xg,2, ..., Xg,,5, denote data from condition 1 and ng = Xy (5141) Xgi,(S142)1 -+ Xgi,8
data from condition 2. We assume that counts within condition C are distributed as Negative Binomial:
Xg,sh"gi,sv ng; ~ NB(rgi,Sa qQC;) where

X ivs T Tgis — 1
P(Xgi,3|'r9i,8ﬂq96;) = ( I X .

Gi,S

)(1 S (g W

and S o =rg, (1 —q5)/45; (05 )% =14,.s(1 —q5)/(45)%.

We assume a prior distribution on qg: qg:|a, Bls ~ Beta(a, ﬁlg). The hyperparameter « is shared by all
the isoforms and A% is I 4 specific (note this is an index, not a power). We further assume that 7y, ¢ = 74, ols,
where 74, o is an isoform specific parameter common across conditions and rg, s depends on it through the
sample-specific normalization factor l5. Of interest in this two group comparison is distinguishing between
two cases, or what we will refer to subsequently as two patterns of expression, namely equivalent expression
(EE) and differential expression (DE):

Ho (EE) : ¢5* = ¢€2 vs Hy (DE) : ¢S # ¢C2.

Under the null hypothesis (EE), the data X g 1L,O2 — Xgl, X 9622 arises from the prior predictive distribution
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Alternatively (in a DE scenario), X g(’; L2 follows the prior predictive distribution fllg (X 51702):
I I I
1g(XgC;1’C2) = og(le) og(XgC,-Q) (3)

Let the latent variable Z,, be defined so that Z,, = 1 indicates that isoform g; is DE and Z,, = 0 indicates
isoform g¢; is EE, and Z,, ~ Bernoulli(p). Then, the marginal distribution of chzl’CQ and Z, is:

Ig s I4 s
(1=p)fo" (X5 2) +pfi" (X5 %) (4)
The posterior probability of being DE at isoform g; is obtained by Bayes’ rule:
I
pfi’ (chzl’C?)
I, 1,02 I4 C1,C2
(1-p)fo’ (X ) +pfi’(Xg, )

()

3.2 More than two conditions

EBSeq naturally accommodates multiple condition comparisons. For example, in a study with 3 conditions,
there are K=5 possible expression patterns (P1,...,P5), or ways in which latent levels of expression may vary
across conditions:

P1: qgl = qu = qg?’

P2: g0t = g5 # 457

P3: ng"I _ qu ” qcz

P4: qgl 7é qu - qu

P5: g0 # 457 # a5 and ¢! # q5°

The prior predictive distributions for these are given, respectively, by:

g{g (ch?,cz,c:a) _ folq (XCl ,C2, 03)

ggg (Xgl,cz,c:a) _ fég (XCl cz) ( )

gég (ch:,cz,cg) _ fég (Xc1 03) (Xcz)

g1” (XG0 = for (G fo* (X2)

g5° (XM = for (XD fo" (XS fo (X7)

where fOI ¢ is the same as in equation [2| Then the marginal distribution in equation [4| becomes:

Zpkgk XCl C2, CS) (6)

where 22:1 pr = 1. Thus, the posterior probability of isoform g; coming from pattern K is readily obtained
by:

ng (X01 ,O2, CS)

Zk 1 pkgk

(XC1 ,C2, 03) (7)



3.3 Getting a false discovery rate (FDR) controlled list of genes or isoforms

To obtain a list of DE genes with false discovery rate (FDR) controlled at « in an experiment comparing two
biological conditions, the genes with posterior probability of being DE (PPDE) greater than 1 - « should be
used. For example, the genes with PPDE>=0.95 make up the list of DE genes with target FDR controlled
at 5%. With more than two biological conditions, there are multiple DE patterns (see Section . To
obtain a list of genes in a specific DE pattern with target FDR «, a user should take the genes with posterior
probability of being in that pattern greater than 1 - «. Isoform-based lists are obtained in the same way.



4 Quick Start

Before analysis can proceed, the EBSeq package must be loaded into the working space:

> library(EBSeq)

4.1 Gene level DE analysis (two conditions)
4.1.1 Required input

Data: The object Data should be a G — by — S matrix containing the expression values for each gene and
each sample, where G is the number of genes and S is the number of samples. These values should exhibit
raw counts, without normalization across samples. Counts of this nature may be obtained from RSEM [4],
Cufflinks [6], or a similar approach.

Conditions: The object Conditions should be a Factor vector of length S that indicates to which
condition each sample belongs. For example, if there are two conditions and three samples in each, S = 6
and Conditions may be given by

as .factor(c(llclll s llClll , "Cl" s "CQ" s ||C2|l s ||C2I|))

The object GeneMat is a simulated data matrix containing 1,000 rows of genes and 10 columns of samples.
The genes are named Gene_1, Gene_2 ...

> data(GeneMat)
> str(GeneMat)

num [1:1000, 1:10] 1879 24 3291 97 485 ...

- attr(*, "dimnames")=List of 2
..$ : chr [1:1000] "Gene_1" "Gene_2" "Gene_3" "Gene_4"
..$ : NULL

4.1.2 Library size factor

As detailed in Section [3] EBSeq requires the library size factor [ for each sample s. Here, [ may be obtained
via the function MedianNorm, which reproduces the median normalization approach in DESeq [1J.

> Sizes=MedianNorm(GeneMat)

If quantile normalization is preferred, Is may be obtained via the function QuantileNorm. (e.g. QuantileNorm(GeneMat, .75)
for Upper-Quantile Normalization in [2])

4.1.3 Running EBSeq on gene expression estimates

The function EBTest is used to detect DE genes. For gene-level data, we don’t need to specify the parameter
NgVector since there are no differences in I, structure among the different genes. Here, we simulated the
first five samples to be in condition 1 and the other five in condition 2, so define:
Conditions=as.factor(rep(c("C1","C2"),each=5))

sizeFactors is used to define the library size factor of each sample. It could be obtained by summing up
the total number of reads within each sample, Median Normalization [I], scaling normalization [5], Upper-
Quantile Normalization [2], or some other such approach. These in hand, we run the EM algorithm, setting
the number of iterations to five via maxround=5 for demonstration purposes. However, we note that in
practice, additional iterations are usually required. Convergence should always be checked (see Section
for details). Please note this may take several minutes:

> EBOut=EBTest (Data=GeneMat,
+ Conditions=as.factor(rep(c("C1","C2"),each=5)),sizeFactors=Sizes, maxround=5)



The list of DE genes and the posterior probabilities of being DE are obtained as follows

> EBDERes=GetDEResults (EBOut, FDR=0.05)
> str (EBDERes$DEfound)

chr [1:95] "Gene_1" "Gene_2" "Gene_3" "Gene_4" "Gene_5"

> head (EBDERes$PPMat)

PPEE PPDE
Gene_1 0.000000e+00 1
Gene_2 0.000000e+00 1
Gene_3 0.000000e+00 1
Gene_4 0.000000e+00 1
Gene_5 0.000000e+00 1
Gene_6 4.850156e-10 1

> str (EBDERes$Status)

NaIIled Chr [1 : 1000] |IDEII lIDElI IIDEII IIDEII |IDEII IIDEll llDEII IIDEll .
- attr(*, "names")= chr [1:1000] "Gene_1" "Gene_2" "Gene_3" "Gene_4"

EBDERes$DEfound is a list of genes identified with 5% FDR. EBSeq found 95 genes. The matrix EBDERes$PPMat
contains two columns PPEE and PPDE, corresponding to the posterior probabilities of being EE or DE for

each gene. EBDERes$Status contains each gene’s status called by EBSeq.

Note the GetDEResults () was incorporated in EBSeq since version 1.7.1. By using the default settings, the

number of genes identified in any given analysis may differ slightly from the previous version. The updated

algorithm is more robust to outliers and transcripts with low variance. To obtain results that are comparable

to results from earlier versions of EBSeq (< 1.7.0), a user may set Method="classic" in GetDEResults()

function, or use the GetPPMat () function.

4.2 Isoform level DE analysis (two conditions)
4.2.1 Required inputs

Data: The object Data should be a I — by — S matrix containing the expression values for each isoform
and each sample, where [ is the number of isoforms and S is the number of sample. As in the gene-level
analysis, these values should exhibit raw data, without normalization across samples.

Conditions: The object Conditions should be a vector with length S to indicate the condition of each
sample.

IsoformNames: The object IsoformNames should be a vector with length I to indicate the isoform names.

IsosGeneNames: The object IsosGeneNames should be a vector with length I to indicate the gene name
of each isoform. (in the same order as IsoformNames.)

IsoList contains 1,200 simulated isoforms. In which IsoList$IsoMat is a data matrix containing 1,200 rows
of isoforms and 10 columns of samples; IsoList$IsoNames contains the isoform names; IsoList$IsosGeneNames
contains the names of the genes the isoforms belong to.

> data(IsoList)
> str(IsolList)



List of 3
$ IsoMat : num [1:1200, 1:10] 176 789 1300 474 1061
..— attr(*, "dimnames")=List of 2
..$ : chr [1:1200] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4"
..$ : NULL
$ IsoNames : chr [1:1200] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4"
$ IsosGeneNames: chr [1:1200] "Gene_1" "Gene_2" "Gene_3" "Gene_4"

> IsoMat=IsoList$IsoMat
> str(IsoMat)

num [1:1200, 1:10] 176 789 1300 474 1061

- attr(*, "dimnames")=List of 2
..$ : chr [1:1200] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4"
..$ : NULL

> IsoNames=IsoList$IsoNames
> IsosGeneNames=IsoList$IsosGeneNames

4.2.2 Library size factor

Similar to the gene-level analysis presented above, we may obtain the isoform-level library size factors via
MedianNorm:

> IsoSizes=MedianNorm(IsoMat)

4.2.3 The I, vector

While working on isoform level data, EBSeq fits different prior parameters for different uncertainty groups
(defined as I, groups). The default setting to define the uncertainty groups consists of using the number of
isoforms the host gene contains (Ny) for each isoform. The default settings will provide three uncertainty
groups:

I, =1 group: Isoforms with N, = 1;

I, = 2 group: Isoforms with N, = 2;

I, = 3 group: Isoforms with N, > 3.

The N4 and I, group assignment can be obtained using the function GetNg. The required inputs of GetNg
are the isoform names (IsoformNames) and their corresponding gene names (IsosGeneNames).

> NgList=GetNg(IsoNames, IsosGeneNames)
> IsoNgTrun=NgList$IsoformNgTrun
> IsoNgTrun[c(1:3,201:203,601:603)]

Iso_1_1 Iso_1_2 Iso_1_3 Iso_2_1 Iso0_2_2 Is0_2_3 Iso_3_1 Iso_3_2 Iso_3_3
1 1 1 2 2 2 3 3 3

More details could be found in Section [5.21

4.2.4 Running EBSeq on isoform expression estimates

The EBTest function is also used to run EBSeq for two condition comparisons on isoform-level data. Below
we use 5 iterations to demonstrate. However, as in the gene level analysis, we advise that additional iterations
will likely be required in practice (see Section for details).



IsoEBOut=EBTest (Data=IsoMat, NgVector=IsoNgTrun,
Conditions=as.factor(rep(c("C1","C2"),each=5)),sizeFactors=IsoSizes, maxround=5)
IsoEBDERes=GetDEResults (IsoEBOut, FDR=0.05)

str(IsoEBDERes$DEfound)

vV VvV + Vv

chr [1:104] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4" "Iso_1_5"

> head (IsoEBDERes$PPMat)

PPEE PPDE
Iso_1_1 0 1
Iso_1_2 0 1
Iso_1_3 0 1
Iso_1_4 0 1
Iso_1_5 0 1
Iso_1_6 0 1

> str(IsoEBDERes$Status)

Na.[ned Chr [1:1200] IIDEII IIDEII IIDEII IIDEII IIDEII |IDEI| IIDEH IIDEII
- attr(*, "names")= chr [1:1200] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4"

We see that EBSeq found 104 DE isoforms at the target FDR of 0.05.

Note the GetDEResults() was incorporated in EBSeq since version 1.7.1. By using the default settings,
the number of transcripts identified in any given analysis may differ slightly from the previous version. The
updated algorithm is more robust to outliers and transcripts with low variance. To obtain results that
are comparable to results from earlier versions of EBSeq (< 1.7.0), a user may set Method="classic" in
GetDEResults () function, or use the GetPPMat () function.

4.3 Gene level DE analysis (more than two conditions)

The object MultiGeneMat is a matrix containing 500 simulated genes with 6 samples: the first two samples
are from condition 1; the second and the third sample are from condition 2; the last two samples are from
condition 3.

> data(MultiGeneMat)
> str(MultiGeneMat)

num [1:500, 1:6] 411 268 768 1853 878 ...

- attr(*, "dimnames")=List of 2
..$ : chr [1:500] "Gene_1" "Gene_3" "Gene_5" "Gene_T7"
..$ : NULL

In analysis where the data are spread over more than two conditions, the set of possible patterns for each gene
is more complicated than simply EE and DE. As noted in Section [3| when we have 3 conditions, there are
5 expression patterns to consider. In the simulated data, we have 6 samples, 2 in each of 3 conditions. The
function GetPatterns allows the user to generate all possible patterns given the conditions. For example:

> COHditiOHS=C(”C1 u’ "oy u, nc2n, IIC2H’ IICBII’ HC31I)
> PosParti=GetPatterns (Conditions)
> PosParti



C1 C2 C3

Patternl 1 1 1
Pattern2 1 1 2
Patternd 1 2 1
Patternd 1 2 2
Patternb 1 2 3

where the first row means all three conditions have the same latent mean expression level; the second row
means C1 and C2 have the same latent mean expression level but that of C3 is different; and the last row
corresponds to the case where the three conditions all have different latent mean expression levels. The user
may use all or only some of these possible patterns as an input to EBMultiTest. For example, if we were
interested in Patterns 1, 2, 4 and 5 only, we’d define:

> Parti=PosParti[-3,]
> Parti

Cl1 C2 C3
Patternl 1 1 1
Pattern2 1 1 2
Patternd 1 2 2
Patternb5 1 2 3

Moving on to the analysis, MedianNorm or one of its competitors should be used to determine the nor-
malization factors. Once this is done, the formal test is performed by EBMultiTest.

> MultiSize=MedianNorm(MultiGeneMat)
> MultiOut=EBMultiTest (MultiGeneMat,NgVector=NULL,Conditions=Conditions,
+ AllParti=Parti, sizeFactors=MultiSize, maxround=5)

The posterior probability of being in each pattern for every gene is obtained by using the function GetMultiPP:

> MultiPP=GetMultiPP (MultiOut)
> names (MultiPP)

(1] "pp" "MAP" "Patterns"

> MultiPP$PP[1:10,]

Patternl Pattern2 Pattern4  Patternb
Gene_1 8.574912e-94 0.3989333 5.103008e-72 0.60106672
Gene_3 9.716720e-164 0.9694232 6.670885e-109 0.03057680
Gene_5 6.282756e-26 0.9336809 6.342497e-20 0.06631906
Gene_7 0.000000e+00 0.5563573 0.000000e+00 0.44364273
Gene_9 5.044830e-16 0.9437746 2.008227e-15 0.05622539
Gene_11 1.956384e-11 0.9369721 2.157793e-12 0.06302785
Gene_13 1.429796e-08 0.7296838 6.389130e-10 0.27031623
Gene_15 3.504222e-47 0.9691736 8.501776e-41 0.03082640
Gene_17 3.354675e-184 0.6564080 4.546629e-133 0.34359199
Gene_19 1.754055e-37 0.9044564 1.309553e-24 0.09554364
> MultiPP$MAP[1:10]

Gene_1 Gene_3 Gene_b Gene_7 Gene_9 Gene_11 Gene_13

"Pattern5" "Pattern2" "Pattern2" "Pattern2" "Pattern2" "Pattern2" "Pattern2"
Gene_15 Gene_17 Gene_19
"Pattern2" "Pattern2" "Pattern2"

10



> MultiPP$Patterns

Cl1 C2 C3
Patternl 1 1 1
Pattern2 1 1 2
Patternd 1 2 2
Pattern5 1 2 3

where MultiPP$PP provides the posterior probability of being in each pattern for every gene. MultiPP$MAP
provides the most likely pattern of each gene based on the posterior probabilities. MultiPP$Patterns
provides the details of the patterns.

4.4 Isoform level DE analysis (more than two conditions)

Similar to IsoList, the object IsoMultiList is an object containing the isoform expression estimates matrix,
the isoform names, and the gene names of the isoforms’ host genes. IsoMultiList$IsoMultiMat contains
300 simulated isoforms with 8 samples. The first two samples are from condition 1; the second and the third
sample are from condition 2; the fifth and sixth sample are from condition 3; the last two samples are from
condition 4. Similar to Section[4.2] the function MedianNorm and GetNg could be used for normalization and
calculating the Ny’s.

data(IsoMultiList)

IsoMultiMat=IsoMultiList[[1]]
IsoNames.Multi=IsoMultiList$IsoNames
IsosGeneNames.Multi=IsoMultiList$IsosGeneNames
IsoMultiSize=MedianNorm(IsoMultiMat)
NgList.Multi=GetNg(IsoNames.Multi, IsosGeneNames.Multi)
IsoNgTrun.Multi=NgList.Multi$IsoformNgTrun
Conditions=c("C1","C1","C2","C2","C3","C3","C4","C4")

V VVVVVVYV

Here we have 4 conditions, there are 15 expression patterns to consider. The function GetPatterns allows
the user to generate all possible patterns given the conditions. For example:

> PosParti.4Cond=GetPatterns (Conditions)
> PosParti.4Cond

Cl1 C2 C3 C4
Patternl 1 1 1 1
Pattern2 1 1 1 2
Pattern3 1 1 2 1
Patternd 1 1 2 2
Patternb 1 2 1 1
Pattern6 1 2 1 2
Pattern7 1 2 2 1
Pattern8 1 2 2 2
Pattern9 1 1 2 3
Patterni0 1 2 1 3
Patternil 1 2 2 3
Pattern1i2 1 2 3 1
Pattern1i3 1 2 3 2
Pattern14 1 2 3 3
Patternl5 1 2 3 4

If we were interested in Patterns 1, 2, 3, 8 and 15 only, we’d define:

11



> Parti.4Cond=PosParti.4Cond[c(1,2,3,8,15),]
> Parti.4Cond

Cl C2 C3 C4
Patternl 1 1 1 1
Pattern2 11 1 2
Pattern3 1 1 2 1
Pattern8 1 2 2 2
Patternl5 1 2 3 4

Moving on to the analysis, EBMultiTest could be used to perform the test:

> IsoMultiOut=EBMultiTest (IsoMultiMat,

+ NgVector=IsoNgTrun.Multi,Conditions=Conditions,
+ AllParti=Parti.4Cond, sizeFactors=IsoMultiSize,
+ maxround=>5)

The posterior probability of being in each pattern for every gene is obtained by using the function GetMultiPP:

> IsoMultiPP=GetMultiPP(IsoMultiOut)

> names (MultiPP)
[1]
> IsoMultiPP$PP[1:10,]

IIPPII IIMAPII

Patternl

Iso_1_1 3.533233e-32
Iso_1_2 4.231331e-14
Iso_1_3 5.633772e-47
Iso_1_4 4.248398e-35
Iso_1_5 0.000000e+00
Iso_1_6 1.509151e-232
Iso_1_7 2.835263e-138
Iso_1_8 9.654898e-139
Iso_1_9 1.947187e-47
Iso_1_10 7.904509e-08
> IsoMultiPP$MAP[1:10]
Iso_1_1 Iso_1_2
"Pattern2" "Pattern2"
Iso_1_7 Iso_1_8
"Pattern2" "Pattern2"

> IsoMultiPP$Patterns

Cl1 C2 C3 C4
Patternl 11 1 1
Pattern2 1 1 1 2
Pattern3 1 1 2 1
Pattern8 1 2 2 2
Patternl5 1 2 3 4

where MultiPP$PP provides the posterior probability of being in each pattern for every gene. MultiPP$MAP
provides the most likely pattern of each gene based on the posterior probabilities.

"Patterns"

Pattern2

.999882138
.999826487
.992627423
.998959777
.000000000
.002646919
.999439469
.963893542
.9567423511
.999790300

Iso_1_3
"Pattern2"
Iso_1_9
"Pattern2"

provides the details of the patterns.

Pattern3
3.408808e-33
1.573392e-16
5.963569e-42
1.983567e-30
0.000000e+00

3.147566e-220
7.548859e-133
3.709303e-105
1.073683e-50
9.178739e-10

Iso_1_4
"Pattern2"
Iso_1_10
"Pattern2"
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Pattern8 Patternlb
2.143838e-34 1.178620e-04
5.848567e-18 1.735129e-04
5.644910e-50 7.372577e-03
5.054181e-33 1.040223e-03
0.000000e+00 1.584343e-41

6.720686e-188 9.973531e-01
1.613556e-128 5.605313e-04
5.626105e-120 3.610646e-02
3.868129e-46 4.257649e-02
9.386672e-10 2.096196e-04
Iso_1_5 Iso_1_6
"Pattern2" "Patternlb5"

MultiPP$Patterns



5 More detailed examples

5.1 Gene level DE analysis (two conditions)
5.1.1 Running EBSeq on simulated gene expression estimates

EBSeq is applied as described in Section [£.1.3]

data(GeneMat)

Sizes=MedianNorm(GeneMat)

EBOut=EBTest (Data=GeneMat,
Conditions=as.factor(rep(c("C1","C2"),each=5)),sizeFactors=Sizes, maxround=5)
EBDERes=GetDEResults (EBOut, FDR=0.05)

vV + Vv VvV

v

EBDERes=GetDEResults (EBOut, FDR=0.05)
str (EBDERes$DEfound)

v

chr [1:95] "Gene_1" "Gene_2" "Gene_3" "Gene_4" "Gene_5"

> head (EBDERes$PPMat)

PPEE PPDE
Gene_1 0.000000e+00 1
Gene_2 0.000000e+00 1
Gene_3 0.000000e+00 1
Gene_4 0.000000e+00 1
Gene_5 0.000000e+00 1
Gene_6 4.850156e-10 1

> str (EBDERes$Status)

Na.IIled Chr [1:1000] |IDEII llDElI IIDEII IIDEII |IDEII lIDElI llDEII IIDEll
- attr(*, "names")= chr [1:1000] "Gene_1" "Gene_2" "Gene_3" "Gene_4"

EBSeq found 95 DE genes at a target FDR of 0.05.

5.1.2 Calculating FC

The function PostFC may be used to calculate the Fold Change (FC) of the raw data as well as the posterior
FC of the normalized data. Figure |2 shows the FC vs. Posterior FC on 1,000 gene expression estimates.
The genes are ranked by their cross-condition mean (adjusted by the normalization factors). The posterior
FC tends to shrink genes with low expressions (small rank); in this case the differences are minor.
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> GeneFC=PostFC(EBOut)
> str(GeneFC)

List of 3
$ PostFC : Named num [1:1000] 0.237 0.241 4.127 4.245 3.91
..— attr(x, "names")= chr [1:1000] "Gene_1" "Gene_2" "Gene_3" "Gene_4"
$ RealFC : Named num [1:1000] 0.237 0.239 4.128 4.28 3.918 ...

..— attr(x, "names")= chr [1:1000] "Gene_1" "Gene_2" "Gene_3" "Gene_4"
$ Direction: chr "C1 Over C2"

> PlotPostVsRawFC (EBOut,GeneFC)
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I I I I I
02 05 10 20 50

Posterior FC Rank

Figure 2: FC vs. Posterior FC for 1,000 gene expression estimates

5.1.3 Checking convergence

As detailed in Section |3 we assume the prior distribution of qgc is Beta(a, 8). The EM algorithm is used
to estimate the hyper-parameters «a, 8 and the mixture parameter p. The optimized parameters at each
iteration may be obtained as follows (recall we are using 5 iterations for demonstration purposes):
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> EBOut$Alpha

[,1]
iterl 0.8101264
iter2 0.8076690
iter3 0.8071266
iter4 0.8074156
iter5 0.8065706

> EBOut$Beta

Ng1
iterl 1.569830
iter2 1.580238
iter3 1.577823
iterd4 1.579587
iter5 1.575817
> EBOut$P

[,1]

iterl 0.1715152
iter2 0.1323722
iter3 0.1266082
iter4 0.1260407
iterb5 0.1258774

In this case the differences between the 4th and 5th iterations are always less than 0.01.

5.1.4 Checking the model fit and other diagnostics

As noted in Leng et al., 2013 [3], EBSeq relies on parametric assumptions that should be checked following
each analysis. The QQP function may be used to assess prior assumptions. In practice, QQP generates the
Q-Q plot of the empirical ¢’s vs. the simulated ¢’s from the Beta prior distribution with estimated hyper-
parameters. Figure |3 shows that the data points lie on the y = z line for both conditions, which indicates
that the Beta prior is appropriate.
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> par(mfrow=c(1,2))
> QQP(EBOut)

igl1C1 lgl1C2
o | o |
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> >
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« N « (QV]
o o
o o
o | o |
T T T T 1 T T T T 1
0.0 0.4 0.8 0.0 0.4 0.8
estimated g's estimated g's

Figure 3: QQ-plots for checking the assumption of a Beta prior (upper panels) as well as the model fit using
data from condition 1 and condition 2 (lower panels)

Likewise, the DenNHist function may be used to check the density plot of empirical ¢’s vs the simulated ¢’s
from the fitted Beta prior distribution. Figure[d]also shows our estimated distribution fits the data very well.
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> par(mfrow=c(1,2))
> DenNHist (EBOut)

igl1C1 igl1C?2
— Data < — || — Data
Fitted density Fitted density
m _
m pa—
2 2
g o~ 3
) s O 7
o o
— — - —
o - o -
1 1T T 71 1 1 1T T 71 1
0.0 0.4 0.8 0.0 0.4 0.8
Q alpha=0.81 beta=1.58 Q alpha=0.81 beta=1.58

Figure 4: Density plots for checking the model fit using data from condition 1 and condition 2

5.2 Isoform level DE analysis (two conditions)
5.2.1 The I, vector

Since EBSeq fits rely on I,, we need to obtain the I, for each isoform. This can be done using the function
GetNg. The required inputs of GetNg are the isoform names (IsoformNames) and their corresponding gene
names (IsosGeneNames), described above. In the simulated data, we assume that the isoforms in the
I, = 1 group belong to genes Gene_1, ... , Gene_200; The isoforms in the I, = 2 group belong to
genes Gene_201, ..., Gene_400; and isoforms in the I, = 3 group belong to Gene_401, ..., Gene_600.

> data(IsoList)

> IsoMat=IsoList$IsoMat

> IsoNames=IsoList$IsoNames

> IsosGeneNames=IsoList$IsosGeneNames

> NgList=GetNg(IsoNames, IsosGeneNames, TrunThre=3)
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> names (NgList)
[1] "GeneNg" "GeneNgTrun" "IsoformNg" "IsoformNgTrun"

> IsoNgTrun=NgList$IsoformNgTrun
> IsoNgTrun[c(1:3,201:203,601:603)]

Iso_1_1 Iso_1_2 Iso_1_3 Iso_2_1 Iso_2_2 Iso0_2_3 Iso_3_1 Iso_3_2 Iso_3_3
1 1 1 2 2 2 3 3 3

The output of GetNg contains 4 vectors. GeneNg (IsoformNg) provides the number of isoforms N,
within each gene (within each isoform’s host gene). GeneNgTrun (IsoformNgTrun) provides the I, group
assignments. The default number of groups is 3, which means the isoforms with N, greater than 3 will be
assigned to I, = 3 group. We use 3 in the case studies since the number of isoforms with N, larger than 3
is relatively small and the small sample size may induce poor parameter fitting if we treat them as separate
groups. In practice, if there is evidence that the N, = 4,5,6... groups should be treated as separate groups,
a user can change TrunThre to define a different truncation threshold.

5.2.2 Using mappability ambiguity clusters instead of the I, vector when the gene-isoform
relationship is unknown

When working with a de-novo assembled transcriptome, in which case the gene-isoform relationship is un-
known, a user can use read mapping ambiguity cluster information instead of Ng, as provided by RSEM [4]
in the output file output_name.ngvec. The file contains a vector with the same length as the total number
of transcripts. Each transcript has been assigned to one of 3 levels (1, 2, or 3) to indicate the mapping un-
certainty level of that transcript. The mapping ambiguity clusters are partitioned via a k-means algorithm
on the unmapability scores that are provided by RSEM. A user can read in the mapping ambiguity cluster
information using:

> IsoNgTrun = scan(file="output_name.ngvec", what=0, sep="\n")

Where "output_name.ngvec" is the output file obtained from RSEM function rsem-generate-ngvector. More
details on using the RSEM-EBSeq pipeline on de novo assembled transcriptomes can be found at http:
//deweylab.biostat.wisc.edu/rsem/README. html#de.

Other unmappability scores and other cluster methods (e.g. Gaussian Mixed Model) could also be used
to form the uncertainty clusters.

5.2.3 Running EBSeq on simulated isoform expression estimates

EBSeq can be applied as described in Section [4.2.4]

> IsoSizes=MedianNorm(IsoMat)

> IsoEBOut=EBTest (Data=IsoMat, NgVector=IsoNgTrun,

+ Conditions=as.factor(rep(c("C1","C2"),each=5)),sizeFactors=IsoSizes, maxround=5)
> IsoEBDERes=GetDEResults (IsoEBOut, FDR=0.05)

> str(IsoEBDERes)

List of 3

$ DEfound: chr [1:104] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4"
$ PPMat : num [1:1200, 1:21 0 0 0 0 O ...
..— attr(*, "dimnames")=List of 2
..$ : chr [1:1200] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4"
..$ : chr [1:2] "PPEE" "PPDE"
$ Status : Named chr [1:1200] "DE" "DE" "DE" "DE"
..— attr(x, "nmames")= chr [1:1200] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4"
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We see that EBSeq found 104 DE isoforms at a target FDR of 0.05. The function PostFC could also be used
here to calculate the Fold Change (FC) as well as the posterior FC on the normalization factor adjusted
data.

> IsoFC=PostFC(IsoEBOut)
> str(IsoFC)

List of 3
$ PostFC : Named num [1:1200] 0.286 0.281 3.554 0.305 3.756 ...
..— attr(x, "names")= chr [1:1200] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4"
$ RealFC : Named num [1:1200] 0.285 0.281 3.556 0.305 3.759 ...

..— attr(*x, "names")= chr [1:1200] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4"
$ Direction: chr "C1 Over C2"

5.2.4 Checking convergence

For isoform level data, we assume the prior distribution of qgci is Beta(a, 8%9). As in Section the
optimized parameters at each iteration may be obtained as follows (recall we are using 5 iterations for
demonstration purposes):

> IsoEBOut$Alpha

[,1]
iterl 0.7060900
iter2 0.7126779
iter3 0.7112128
iter4 0.7103945
iter5 0.7101250

> IsoEBOut$Beta

Ngi Ng2 Ng3
iterl 1.592741 2.285690 2.952408
iter2 1.630033 2.394687 3.115835

iter4d 1.637340 2.386478 3.107970

1
1
iter3 1.636704 2.392290 3.111714
1
iterb 1.633741 2.383986 3.105093

> IsoEBOut$P

[,1]
iterl 0.2107669
iter2 0.1628520
iter3 0.1503443
iterd4 0.1465272
iter5 0.1457991

Here we have 3 (’s in each iteration corresponding to fs=1, 31s=2 3Ls=3  We see that parameters are
changing less than 1072 or 10~3. In practice, we require changes less than 10~2 to declare convergence.

5.2.5 Checking the model fit and other diagnostics

In Leng et al., 2013[3], we showed the mean-variance differences across different isoform groups on multiple
data sets. In practice, if it is of interest to check differences among isoform groups defined by truncated I,
(such as those shown here in Figure 1), the function PolyFitPlot may be used. The following code generates
the three panels shown in Figure [5| (if condition 2 is of interest, a user could change each C1 to C2.):
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par (mfrow=c(2,2))

PolyFitValue=vector("list",3)

for(i in 1:3)
PolyFitValue[[i]]=PolyFitPlot (IsoEBOut$CiMean[[i]],
IsoEBOut$C1EstVar[[i]],5)
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Figure 5: The mean-variance fitting plot for each Ng group

Superimposing all I, groups using the code below will generate the figure (shown here in Figu1re|§[)7 which
is similar in structure to Figure 1:
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PolyAll=PolyFitPlot (unlist (IsoEBOut$C1Mean), unlist (IsoEBOut$C1EstVar),5)
lines(1log10(IsoEBOut$CiMean[[1]] [PolyFitValue[[1]]$sort]),
PolyFitValue[[1]]$fit[PolyFitValue[[1]]$sort],col="yellow",lwd=2)
lines(1og10(IsoEBOut$C1iMean[[2]] [PolyFitValue[[2]]$sort]),
PolyFitValue[[2]]$fit [PolyFitValue[[2]]$sort],col="pink",lwd=2)

lines (1og10(IsoEBOut$C1Mean[[3]] [PolyFitValue[[3]]$sort]),
PolyFitValue[[3]]$fit[PolyFitValue[[3]]$sort],col="green",lwd=2)
legend("topleft",c("All Isoforms","Ng = 1","Ng = 2","Ng = 3"),
col=c("red", "yellow", "pink", "green"),lty=1,1wd=3,box.1lwd=2)
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Figure 6: The mean-variance plot for each Ng group

To generate a QQ-plot of the fitted Beta prior distribution and the ¢©’s within condition, a user may use
the following code to generate 6 panels (as shown in Figure E[)
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> par(mfrow=c(2,3))
> QQP(IsoEBOut)
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Figure 7: QQ-plots of the fitted prior distributions within each condition and each Ig group

And in order to produce the plot of the fitted Beta prior densities and the histograms of ¢©’s within each
condition, the following may be used (it generates Figure :
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> par(mfrow=c(2,3))
> DenNHist (IsoEBOut)
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Figure 8: Prior distribution fit within each condition and each Ig group. (Note only a small set of isoforms
are considered here for demonstration. Better fitting should be expected while using full set of isoforms.)
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5.3 Gene level DE analysis (more than two conditions)

As described in Section [4:3] the function GetPatterns allows the user to generate all possible patterns given
the conditions. To visualize the patterns, the function PlotPattern may be used.

> Conditions=c(”C1 n’ noq n, HCQH’ HC2H’ ”C3H’ HCBH)
> PosParti=GetPatterns (Conditions)
> PosParti

Cl1 C2 C3
Pattern1 1 1 1
Pattern2 1 1 2
Patternd 1 2 1
Patternd 1 2 2
Patternb 1 2 3

> PlotPattern(PosParti)

Pattern5

Pattern4

Pattern3

Pattern?

Patternl

Figure 9: All possible patterns
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If we were interested in Patterns 1, 2, 4 and 5 only, we’d define:

> Parti=PosParti[-3,]
> Parti

Cl1 C2 C3
Patternl 1 1 1
Pattern2
Pattern4d
Patternb

= e

1 2
2 2
2 3

Moving on to the analysis, MedianNorm or one of its competitors should be used to determine the normal-
ization factors. Once this is done, the formal test is performed by EBMultiTest.

data(MultiGeneMat)
MultiSize=MedianNorm(MultiGeneMat)
MultiOut=EBMultiTest (MultiGeneMat,
NgVector=NULL, Conditions=Conditions,
AllParti=Parti, sizeFactors=MultiSize,
maxround=5)

+ + + VvV VvV

The posterior probability of being in each pattern for every gene is obtained using the function GetMultiPP:

> MultiPP=GetMultiPP(MultiOut)
> names (MultiPP)

(11 "pp" "MAP" "Patterns"

> MultiPP$PP[1:10,]

Patternl Pattern2 Pattern4d Patternb
Gene_1 8.574912e-94 0.3989333 5.103008e-72 0.60106672
Gene_3 9.716720e-164 0.9694232 6.670885e-109 0.03057680
Gene_5 6.282756e-26 0.9336809 6.342497e-20 0.06631906
Gene_7 0.000000e+00 0.5563573 0.000000e+00 0.44364273
Gene_9 5.044830e-16 0.9437746 2.008227e-15 0.05622539
Gene_11 1.956384e-11 0.9369721 2.157793e-12 0.06302785
Gene_13 1.429796e-08 0.7296838 6.389130e-10 0.27031623
Gene_15 3.504222e-47 0.9691736 8.501776e-41 0.03082640
Gene_17 3.354675e-184 0.6564080 4.546629e-133 0.34359199
Gene_19 1.754055e-37 0.9044564 1.309553e-24 0.09554364
> MultiPP$MAP[1:10]

Gene_1 Gene_3 Gene_b Gene_7 Gene_9 Gene_11 Gene_13

"Patternb5" "Pattern2" "Pattern2" "Pattern2" "Pattern2" "Pattern2" "Pattern2"
Gene_15 Gene_17 Gene_19
"Pattern2" "Pattern2" "Pattern2"

> MultiPP$Patterns

Cl1 C2 C3
Patternl 1 1 1
Pattern2
Pattern4d
Patternb

o=

1 2
2 2
2 3
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where MultiPP$PP provides the posterior probability of being in each pattern for every gene. MultiPP$MAP
provides the most likely pattern of each gene based on the posterior probabilities. MultiPP$Patterns
provides the details of the patterns. The FC and posterior FC for multiple condition data can be obtained
by the function GetMultiFC:

> MultiFC=GetMultiFC(MultiOut)
> str(MultiFC)

List of 6
$ FCMat : num [1:500, 1:3] 1.217 0.951 1.069 0.923 0.983 ...

..— attr(*, "dimnames")=List of 2
..$ : chr [1:500] "Gene_1" "Gene_3" "Gene_5" "Gene_T7"
..$ : chr [1:3] "C10verC2" "C10verC3" "C20verC3"

$ Log2FCMat : num [1:500, 1:3] 0.2828 -0.0724 0.0969 -0.1151 -0.0251

..— attr(*, "dimnames")=List of 2
..$ : chr [1:500] "Gene_1" "Gene_3" "Gene_5" "Gene_T7"
..$ : chr [1:3] "Ci0OverC2" "C10OverC3" "C20verC3"

$ PostFCMat : num [1:500, 1:3] 1.216 0.951 1.069 0.923 0.983 ...

..— attr(x, "dimnames")=List of 2
..$ : chr [1:500] "Gene_1" "Gene_3" "Gene_5" "Gene_7"

.. ..%$ : chr [1:3] "C10verC2" "C10verC3" "C20verC3"

$ Log2PostFCMat : num [1:500, 1:3] 0.2819 -0.072 0.0967 -0.115 -0.0251 ...

..— attr(*, "dimnames")=List of 2
..$ : chr [1:500] "Gene_1" "Gene_3" "Gene_5" "Gene_7"

.. ..$ : chr [1:3] "C1i0verC2" "C10verC3" "C20verC3"

$ CondMeans : num [1:500, 1:3] 499 253 813 1843 753 ...

..— attr(*, "dimnames")=List of 2
..$ : chr [1:500] "Gene_1" "Gene_3" "Gene_5" "Gene_7"
..$ : chr [1:3] "Cc1i" "c2" "C3"

$ ConditionOrder: Named chr [1:3] "Ci" "C2" "C3"
..— attr(*, "names")= chr [1:3] "Conditionl" "Condition2" "Condition3"

To generate a QQ-plot of the fitted Beta prior distribution and the ¢’s within condition, a user could also
use function DenNHist and QQP.
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> par(mfrow=c(2,2))
> QQP(MultiOut)
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Figure 10: QQ-plots of the fitted prior distributions within each condition and each Ig group
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> par(mfrow=c(2,2))
> DenNHist (MultiOut)
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Figure 11: Prior distributions fit within each condition. (Note only a small set of genes are considered here
for demonstration. Better fitting should be expected while using full set of genes.)
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5.4 Isoform level DE analysis (more than two conditions)

Similar to Section the function GetPatterns allows a user to generate all possible patterns given the
conditions. To visualize the patterns, the function PlotPattern may be used.

> Conditions=c(’lcl ll’ HCl ”’ HC2H, IIC2H’ ”CBH’ HCB”’ HC4H, IIC4H)
> PosParti.4Cond=GetPatterns (Conditions)
> PosParti.4Cond

Cl1 C2 C3 C4
Patternl 11 1 1
Pattern2 1 1 1 2
Pattern3 1 1 2 1
Patternd 1 1 2 2
Patternb 1 2 1 1
Pattern6 1 2 1 2
Pattern7 1 2 2 1
Pattern8 1 2 2 2
Pattern9 1 1 2 3
Patternl0 1 2 1 3
Patternil 1 2 2 3
Pattern1i2 1 2 3 1
Pattern1i3 1 2 3 2
Pattern1i4 1 2 3 3
Patternl5 1 2 3 4
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> PlotPattern(PosParti.4Cond)
> Parti.4Cond=PosParti.4Cond[c(1,2,3,8,15),]
> Parti.4Cond

Cl1 C2 C3 C4
Patternl 1 1 1 1
Pattern2 1 1 1 2
Pattern3 1 1 2 1
Pattern8 1 2 2 2
Patternl5 1 2 3 4

Pattern14
Pattern13
_ Pattern12
Pattern1l
Pattern10
Pattern9
Pattern8
Pattern7
Pattern6
Pattern5
Pattern4
Pattern3
Pattern2
Patternl

C4

Figure 12: All possible patterns for 4 conditions
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data(IsoMultilList)

AllParti=Parti.4Cond,

vV + +VVVVVVVY

v

names (MultiPP)

[1] "pp" "MAP"

> IsoMultiPP$PP[1:10,]

Patternl

Iso_1_1 3.533233e-32
Iso_1_2 4.231331e-14
Iso_1_3 5.633772e-47
Iso_1_4 4.248398e-35
Iso_1_5 0.000000e+00
Iso_1_6 1.509151e-232
Iso_1_7 2.835263e-138
Iso_1_8 9.654898e-139
Iso_1_9 1.947187e-47
Iso_1_10 7.904509e-08
> IsoMultiPP$MAP[1:10]
Iso_1_1 Iso_1_2
"Pattern2" "Pattern2"
Iso_1_7 Iso_1_8
"Pattern2" "Pattern2"

> IsoMultiPP$Patterns

Cl1 C2 C3 C4
Patternl 1 1 1 1
Pattern?2 1 1 1 2
Pattern3 1 1 2 1
Pattern8 1 2 2 2
Patternl5 1 2 3 4

IsoMultiMat=IsoMultiList[[1]]
IsoNames.Multi=IsoMultilList$IsoNames

IsosGeneNames.Multi=IsoMultiList$IsosGeneNames
IsoMultiSize=MedianNorm(IsoMultiMat)

NgList.Multi=GetNg(IsoNames.Multi, IsosGeneNames.Multi)
IsoNgTrun.Multi=NgList.Multi$IsoformNgTrun
IsoMultiOut=EBMultiTest (IsoMultiMat,NgVector=IsoNgTrun.Multi,Conditions=Conditions,

"Patterns"

Pattern2

.999882138
.999826487
.992627423
.998959777
.000000000
.002646919
.999439469
.963893542
.957423511
.999790300

Iso_1_3
"Pattern2"
Iso_1_9
"Pattern2"

> IsoMultiFC=GetMultiFC(IsoMultiOut)

The FC and posterior FC for multiple condition data can be obtained by the function GetMultiFC:
To generate a QQ-plot of the fitted Beta prior distribution and the ¢¢’s within condition, a user could also

use the functions DenNHist and QQP.

sizeFactors=IsoMultiSize, maxround=5)
IsoMultiPP=GetMultiPP (IsoMultiOut)

Pattern3
3.408808e-33
1.573392e-16
5.963569e-42
1.983567e-30
0.000000e+00

3.147566e-220
7.548859e-133
3.709303e-105

1.073683e-50
9.178739%e-10

Iso_1_4
"Pattern2"
Iso_1_10
"Pattern2"
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Pattern8
2.143838e-34
5.848567e-18
5.644910e-50
5.054181e-33
0.000000e+00

6.720686e-188
1.613556e-128
5.626105e-120
3.868129e-46
9.386672e-10

Iso_1_5

NP> WO RPN~ =

Patternlb
.178620e-04
.735129e-04
.372577e-03
.040223e-03
.584343e-41
.973531e-01
.605313e-04
.610646e-02
.257649e-02
.096196e-04

Iso_1_6

"Pattern2" "Patternlb"



> par(mfrow=c(3,4))
> QQEP(IsoMultiOut)
>

g IglC1 g Igl1C2 o Ig1C3 o Igl1C4
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Qo Qo Qo Qo
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Figure 13: QQ-plots of the fitted prior distributions within each condition and Ig group. (Note only a small
set of isoforms are considered here for demonstration. Better fitting should be expected while using full set
of isoforms.)
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> par(mfrow=c(3,4))
> DenNHist (IsoMultiOut)

Igl1C1 Igl1C2
N
- o~ | [oe]
— ta
i 7 i o) ©
%‘ © density %‘ o ttled density %‘ %‘
g g g 5 <
[ o < - a v s
7]
o It o i1 o o
0.0 04 0.8 0.0 04 0.8 0.0 04 0.8 0.0 04 0.8
Q alpha=0.84 beta=1.94 Q alpha=0.84 beta=1.94 Q alpha=0.84 beta=1.94 Q alpha=0.84 beta=1.94
Ig2C4
© © ta
z z z 2  © -fiited density
7] 7] [ 7]
c c c c <
[ [ [ [
[a} [a} 0 o o o
© CTrrrrTil
0.0 04 0.8 0.0 04 0.8 0.0 04 0.8 0.0 04 0.8
Q alpha=0.84 beta=1.59 Q alpha=0.84 beta=1.59 Q alpha=0.84 beta=1.59 Q alpha=0.84 beta=1.59
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Q alpha=0.84 beta=1.56 Q alpha=0.84 beta=1.56 Q alpha=0.84 beta=1.56 Q alpha=0.84 beta=1.56

Figure 14: Prior distributions fit within each condition and Ig group. (Note only a small set of isoforms are
considered here for demonstration. Better fitting should be expected while using full set of isoforms.)
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5.5 Working without replicates

When replicates are not available, it is difficult to estimate the transcript specific variance. In this case,
EBSeq estimates the variance by pooling similar genes together. Specifically, we take genes with FC in the
25% - 75% quantile of all FC’s as candidate genes. By defining NumBin = 1000 (default in EBTest), EBSeq
will group genes with similar means into 1,000 bins. For each candidate gene, we use the across-condition
variance estimate as its variance estimate. For each bin, the bin-wise variance estimation is taken to be
the median of the across-condition variance estimates of the candidate genes within that bin. For each
non-candidate gene, we use the bin-wise variance estimate of the host bin (the bin containing this gene) as
its variance estimate. This approach works well when there are no more than 50% DE genes in the data set.

5.5.1 Gene counts with two conditions

To generate a data set with no replicates, we take the first sample of each condition. For example, using
the data from Section we take sample 1 from condition 1 and sample 6 from condition 2. Functions
MedianNorm, GetDEResults and PostFC may be used on data without replicates.

> data(GeneMat)

> GeneMat.norep=GeneMat[,c(1,6)]

> Sizes.norep=MedianNorm(GeneMat.norep)

> EBOut.norep=EBTest (Data=GeneMat.norep,

+ Conditions=as.factor (rep(c("C1","C2"))),
+ sizeFactors=Sizes.norep, maxround=5)

Removing transcripts with 100 th quantile < = 0
999 transcripts will be tested

> EBDERes.norep=GetDEResults (EBOut.norep)
> GeneFC.norep=PostFC(EBOut.norep)

5.5.2 Isoform counts with two conditions

To generate an isoform level data set with no replicates, we also take sample 1 and sample 6 in the data we
used in Section Example codes are shown below.

data(IsoList)

IsoMat=IsoList$IsoMat
IsoNames=IsoList$IsoNames
IsosGeneNames=IsoList$IsosGeneNames
NgList=GetNg(IsoNames, IsosGeneNames)
IsoNgTrun=NgList$IsoformNgTrun
IsoMat.norep=IsoMat[,c(1,6)]
IsoSizes.norep=MedianNorm(IsoMat.norep)
IsoEBOut.norep=EBTest (Data=IsoMat.norep, NgVector=IsoNgTrun,
Conditions=as.factor(c("C1","C2")),
sizeFactors=IsoSizes.norep, maxround=5)

+ + VVVVVVVVYV

Removing transcripts with 100 th quantile < = 0
1192 transcripts will be tested

> IsoEBDERes.norep=GetDEResults(IsoEBOut.norep)
> IsoFC.norep=PostFC(IsoEBOut.norep)
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5.5.3 Gene counts with more than two conditions

To generate a data set with multiple conditions and no replicates, we take the first sample from each condition
(sample 1, 3 and 5) in the data we used in Section Example codes are shown below.

data(MultiGeneMat)
MultiGeneMat.norep=MultiGeneMat[,c(1,3,5)]
Conditions=c("C1","C2","C3")
PosParti=GetPatterns (Conditions)
Parti=PosParti[-3,]
MultiSize.norep=MedianNorm(MultiGeneMat.norep)
MultiOut.norep=EBMultiTest (MultiGeneMat.norep,
NgVector=NULL, Conditions=Conditions,
AllParti=Parti, sizeFactors=MultiSize.norep,
maxround=>5)
MultiPP.norep=GetMultiPP(MultiOut.norep)
MultiFC.norep=GetMultiFC(MultiOut.norep)

VV+ + +VVVVYVVYV

5.5.4 Isoform counts with more than two conditions

To generate an isoform level data set with multiple conditions and no replicates, we take the first sample
from each condition (sample 1, 3, 5 and 7) in the data we used in Section Example codes are shown
below.

> data(IsoMultiList)
> IsoMultiMat=IsoMultiList[[1]]
> IsoNames.Multi=IsoMultiList$IsoNames
> IsosGeneNames.Multi=IsoMultiList$IsosGeneNames
> IsoMultiMat.norep=IsoMultiMat[,c(1,3,5,7)]
> IsoMultiSize.norep=MedianNorm(IsoMultiMat.norep)
> NgList.Multi=GetNg(IsoNames.Multi, IsosGeneNames.Multi)
> IsoNgTrun.Multi=NgList.Multi$IsoformNgTrun
> Conditions=c("C1","C2","C3","C4")
> PosParti.4Cond=GetPatterns (Conditions)
> PosParti.4Cond
Cl1 C2 C3 C4
Patternl 1 1 1 1
Pattern2 1 1 1 2
Pattern3 1 1 2 1
Pattern4d 1 1 2 2
Patternb 1 2 1 1
Pattern6 1 2 1 2
Pattern7 1 2 2 1
Pattern8 1 2 2 2
Pattern9 1 1 2 3
Patternl0 1 2 1 3
Patternlil 1 2 2 3
Patterni2 1 2 3 1
Pattern1i3 1 2 3 2
Pattern14 1 2 3 3
Patternl5 1 2 3 4
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> Parti.4Cond=PosParti.4Cond[c(1,2,3,8,15),]
> Parti.4Cond

Cl1 C2 C3 C4
Patternl 1 1 1 1
Pattern2 1 1 1 2
Pattern3 11 2 1
Pattern8 1 2 2 2
Patternl5 1 2 3 4

IsoMultiOut.norep=EBMultiTest (IsoMultiMat.norep,
NgVector=IsoNgTrun.Multi,Conditions=Conditions,
AllParti=Parti.4Cond, sizeFactors=IsoMultiSize.norep,
maxround=5)
IsoMultiPP.norep=GetMultiPP(IsoMultiOut.norep)
IsoMultiFC.norep=GetMultiFC(IsoMultiOut.norep)

VV + 4+ +V

6 EBSeq pipelines and extensions

6.1 RSEM-EBSeq pipeline: from raw reads to differential expression analysis
results

EBSeq is coupled with RSEM [4] as an RSEM-EBSeq pipeline which provides quantification and DE testing
on both gene and isoform levels.
For more details, see http://deweylab.biostat.wisc.edu/rsem/README. html#de

6.2 EBSeq interface: A user-friendly graphical interface for differetial expres-
sion analysis
EBSeq interface provides a graphical interface implementation for users who are not familiar with the R

programming language. It takes .xls, .xlsx and .csv files as input. Additional packages need be downloaded;
they may be found at http://www.biostat.wisc.edu/ "ningleng/EBSeq_Package/EBSeq_Interface/

6.3 EBSeq Galaxy tool shed

EBSeq tool shed contains EBSeq wrappers for a local Galaxy implementation. For more details, see http:
//www.biostat.wisc.edu/ "ningleng/EBSeq_Package/EBSeq_Galaxy_toolshed/
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8 News

2014-1-30: In EBSeq 1.3.3, the default setting of EBTest function will remove low expressed genes (genes
whose 75th quantile of normalized counts is less than 10) before identifying DE genes. These two thresholds
can be changed in EBTest function. Because low expressed genes are disproportionately noisy, removing these
genes prior to downstream analyses can improve model fitting and increase robustness (e.g. by removing
outliers).

2014-5-22: In EBSeq 1.5.2, numerical approximations are implemented to deal with underflow. The
underflow is likely due to large number of samples.
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2015-1-29: In EBSeq 1.7.1, EBSeq incorporates a new function GetDEResults() which may be used to
obtain a list of transcripts under a target FDR in a two-condition experiment. The results obtained by
applying this function with its default setting will be more robust to transcripts with low variance and
potential outliers. By using the default settings in this function, the number of genes identified in any
given analysis may differ slightly from the previous version (1.7.0 or order). To obtain results that are
comparable to results from earlier versions of EBSeq (1.7.0 or older), a user may set Method="classic” in
GetDEResults() function, or use the original GetPPMat() function. The GeneDEResults() function also
allows a user to modify thresholds to target genes/isoforms with a pre-specified posterior fold change.

Also, in EBSeq 1.7.1, the default settings in EBTest() and EBMultiTest() function will only remove
transcripts with all 0’s (instead of removing transcripts with 75th quantile less than 10 in version 1.3.3-
1.7.0). To obtain a list of transcripts comparable to the results generated by EBSeq version 1.3.3-1.7.0, a
user may change Qtrm = 0.75 and QtrmCut = 10 when applying EBTest() or EBMultiTest() function.

9 Common Q and A

9.1 Read in data

csv file:
In=read.csv("FileName", stringsAsFactors=F, row.names=1, header=T)
Data=data.matrix(In)
txt file:
In=read.table("FileName", stringsAsFactors=F, row.names=1, header=T)
Data=data.matrix(In)
Check str(Data) and make sure it is a matrix instead of data frame. You may need to play around with
the row.names and header option depends on how the input file was generated.

9.2 GetDEResults() function not found

You may on an earlier version of EBSeq. The GetDEResults function was introduced since version 1.7.1.
The latest release version could be found at:
http://www.bioconductor.org/packages/release/bioc/html/EBSeq.html
The latest devel version:
http://www.bioconductor.org/packages/devel/bioc/html/EBSeq.html
And you may check your package version by typing packageVersion("EBSeq").

9.3 Visualizing DE genes/isoforms

To generate a heatmap, you may consider the heatmap.2 function in gplots package. For example, you may
run

heatmap.2(NormalizedMatrix [GenesOf Interest,], scale="row", trace="none", Colv=F)

The normalized matrix may be obtained from GetNormalizedMat () function.

9.4 My favorite gene/isoform has NA in PP (status "NoTest”)

The NoTest status comes from two sources:

1) In version 1.3.3-1.7.0, using the default parameter settings of EBMultiTest(), the function will not test
on genes with more than 75% values < 10 to ensure better model fitting. To disable this filter, you may set
Qtrm=1 and QtrmCut=0.

2) numerical over /underflow in R. That happens when the within condition variance is extremely large or
small. we did implemented a numerical approximation step to calculate the approximated PP for these genes
with over/underflow. Here we use 1071° to approximate the parameter p in the NB distribution for these
genes (we set it to a small value since we want to cover more over /underflow genes with low within-condition
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variation). You may try to tune this value (to a larger value) in the approximation by setting ApproxVal in
EBTest () or EBMultiTest () function.
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