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Abstract

This vignette introduces the use of the Bioconductor package DSS (Dispersion Shrinkage for Sequencing data),

which is designed for differential analysis based on high-throughput sequencing data. It performs differential expression

analyses for RNA-seq, and differential methylation analyses for bisulfite sequencing (BS-seq) data. The core of DSS is

a procedure based on Bayesian hierarchical model to estimate and shrink gene- or CpG site-specific dispersions, then

conduct Wald tests for detecting differential expression/methylation.
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1 Introduction

Recent advances in various high-throughput sequencing technologies have revolutionized genomics research. Among

them, RNA-seq is designed to measure the the abundance of RNA products, and Bisulfite sequencing (BS-seq) is for

measuring DNA methylation. A fundamental question in functional genomics research is whether gene expression or DNA

methylation vary under different biological contexts. Thus, identifying differential expression genes (DEGs) or differential

methylation loci/regions (DML/DMRs) are key tasks in RNA-seq or BS-seq data analyses.

The differential expression (DE) or differential methylation (DM) analyses are often based on gene- or CpG-specific

statistical test. A key limitation in RNA- or BS-seq experiments is that the number of biological replicates is usually

limited due to cost constraints. This can lead to unstable estimation of within group variance, and subsequently undesirable

results from hypothesis testing. Variance shrinkage methods have been widely applied in DE analyses in microarray data

to improve the estimation of gene-specific within group variances. These methods are typically based on a Bayesian

hierarchical model, with a prior imposed on the gene-specific variances to provide a basis for information sharing across

all genes.

A distinct feature of RNA-seq or BS-seq data is that the measurements are in the form of counts and have to be modeld

by discrete distributions. Unlike continuous distributions (such as Gaussian), the variances depend on means in these

discrete distributions. This implies that the sample variances do not account for biological variation, and shrinkage cannot

be applied on variances directly. In DSS, we assume that the count data are from the Gamma-Poisson (for RNA-seq) or

Beta-Binomial (for BS-seq) distribution. We then parameterize the distributions by a mean and a dispersion parameters.

The dispersion parameters, which represent the biological variation for replicates within a treatment group, play a central

role in the differential analyses.

DSS implements a series of DE/DM detection algorithms based on the dispersion shrinkage method followed by Wald

statistical test to test each gene/CpG site for differential expression/methylation. It provides functions for RNA-seq DE

analysis for both two group comparision and multi-factor design, BS-seq DM analysis for two group comparision, multi-

factor design, and data without biological replicate. Simulation and real data results show that the methods provides

excellent performance compared to existing methods, especially when the overall dispersion level is high or the number

of replicates is small.

For more details of the data model, the shrinkage method, and test procedures, please read [4] for differential expression

from RNA-seq, [1] for differential methylation for two-group comparison from BS-seq, [2] for differential methylation for

data without biological replicate, and [3] for differential methylation for general experimental design.

2 Using DSS for differential expression analysis

2.1 Input data preparation

DSS requires a count table (a matrix of integers) for gene expression values (rows are for genes and columns are

for samples). This is different from the isoform expression based analysis such as in cufflink/cuffdiff, where the gene

expressions are represented as non-integers values. There are a number of ways to obtain the count table from raw
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sequencing data (fastq file), here we provide some example codes using several Bioconductor packages (the codes require

installation of GenomicFeatures, Rsamtools, and GenomicRanges packages).

1. Sequence alignment. There are several RNA-seq aligner, for example, tophat or STAR. Assume the alignment

result is saved in a BAM file data.bam.

2. Choose a gene annotation. GenomicFeatures package provides a convenient way to access different gene anno-

tations. For example, if one wants to use RefSeq annotation for human genome build hg19, one can use following

codes:

> library(GenomicFeatures)

> txdb = makeTranscriptDbFromUCSC(genom="hg19",tablename="refGene")

> genes = genes(txdb)

3. Obtain count table based on the alignment results and gene annotation. This can be done in several steps. First

read in the BAM file using the Rsamtools package:

> bam=scanBam("data.bam")

Next, create GRanges object for the aligned sequence reads.

> IRange.reads=GRanges(seqnames=Rle(bam$rname), ranges=IRanges(bam$pos, width=bam$qwidth))

Finally, use the countOverlaps function in GenomicRanges function to obtain the read counts overlap each gene.

> counts = countOverlaps(genes, IRange.reads)

There are other ways to obtain the counts, for example, using QuasR or easyRNASeq Bioconductor package. Please refer

to the package vignettes for more details.

2.2 Single factor experiment

In single factor RNA-seq experiment, DSS also requires a vector representing experimental designs. The length of the

design vector must match the number of columns of the count table. Optionally, normalization factors or additional

annotation for genes can be supplied.

The basic data container in the package is SeqCountSet class, which is directly inherited from ExpressionSet class

defined in Biobase. An object of the class contains all necessary information for a DE analysis: gene expression values,

experimental designs, and additional annotations.

A typical DE analysis contains the following simple steps.

1. Create a SeqCountSet object using newSeqCountSet.

2. Estimate normalization factor using estNormFactors.

3. Estimate and shrink gene-wise dispersion using estDispersion

4. Two-group comparison using waldTest.

The usage of DSS is demonstrated in the simple simulation below.

1. First load in the library, and make a SeqCountSet object from some counts for 2000 genes and 6 samples.

> library(DSS)

> counts1=matrix(rnbinom(300, mu=10, size=10), ncol=3)

> counts2=matrix(rnbinom(300, mu=50, size=10), ncol=3)

> X1=cbind(counts1, counts2) ## these are 100 DE genes
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> X2=matrix(rnbinom(11400, mu=10, size=10), ncol=6)

> X=rbind(X1,X2)

> designs=c(0,0,0,1,1,1)

> seqData=newSeqCountSet(X, designs)

> seqData

SeqCountSet (storageMode: lockedEnvironment)

assayData: 2000 features, 6 samples

element names: exprs

protocolData: none

phenoData

sampleNames: 1 2 ... 6 (6 total)

varLabels: designs

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

Annotation:

2. Estimate normalization factor.

> seqData=estNormFactors(seqData)

3. Estimate and shrink gene-wise dispersions

> seqData=estDispersion(seqData)

4. With the normalization factors and dispersions ready, the two-group comparison can be conducted via a Wald test:

> result=waldTest(seqData, 0, 1)

> head(result,5)

geneIndex muA muB lfc difExpr stats pval local.fdr

46 46 8.333333 69.77778 -2.073923 -61.44444 -5.745911 9.142750e-09 6.311273e-05

54 54 7.666667 65.90303 -2.095682 -58.23636 -5.731582 9.949833e-09 6.311273e-05

66 66 5.333333 53.70505 -2.229185 -48.37172 -5.728543 1.012967e-08 6.311273e-05

5 5 4.333333 49.05455 -2.327538 -44.72121 -5.705159 1.162344e-08 6.365709e-05

95 95 3.666667 44.35152 -2.376241 -40.68485 -5.671783 1.413185e-08 7.183876e-05

fdr

46 6.311273e-05

54 6.311273e-05

66 6.311273e-05

5 6.311273e-05

95 6.311273e-05

A higher level wrapper function DSS.DE is provided for simple RNA-seq DE analysis in a two-group comparison. User

only needs to provide a count matrix and a vector of 0’s and 1’s representing the design, and get DE test results in one

line. A simple example is listed below:

> counts = matrix(rpois(600, 10), ncol=6)

> designs = c(0,0,0,1,1,1)

> result = DSS.DE(counts, designs)
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> head(result)

geneIndex muA muB lfc difExpr stats pval local.fdr

66 66 12.666667 5.982193 0.7086294 6.684473 2.407593 0.01605807 0.3575555

96 96 8.666667 14.555080 -0.4961417 -5.888413 -1.873248 0.06103413 0.6955445

23 23 13.000000 7.984330 0.4644688 5.015670 1.695238 0.09003029 1.0000000

54 54 13.666667 8.542497 0.4489565 5.124170 1.674618 0.09400919 1.0000000

90 90 11.000000 6.631054 0.4778880 4.368946 1.636723 0.10168835 1.0000000

44 44 7.333333 11.774690 -0.4491513 -4.441357 -1.590703 0.11167642 0.6869399

fdr

66 0.3575555

96 0.7329983

23 0.7642020

54 0.7725718

90 0.7739964

44 0.7725718

2.3 Multifactor experiment

DSS provides functionalities for dispersion shrinkage for multifactor experimental designs. Downstream model fitting

(through genearlized linear model) and hypothesis testing can be performed using other packages such as edgeR, with

the dispersions estimated from DSS.

Below is an example, based a simple simulation, to illustrate the DE analysis of a crossed design.

1. First simulate data for a 2x2 crossed experiments. Note the counts are randomly generated.

> library(DSS)

> library(edgeR)

> counts=matrix(rpois(800, 10), ncol=8)

> design=data.frame(gender=c(rep("M",4), rep("F",4)), strain=rep(c("WT", "Mutant"),4))

> X=model.matrix(~gender+strain, data=design)

2. make SeqCountSet, then estimate size factors and dispersion

> seqData=newSeqCountSet(counts, as.data.frame(X))

> seqData=estNormFactors(seqData)

> seqData=estDispersion(seqData)

3. Using edgeR’s function to do glm model fitting, but plugging in the estimated size factors and dispersion from

DSS.

> fit.edgeR <- glmFit(counts, X, lib.size=normalizationFactor(seqData),

+ dispersion=dispersion(seqData))

4. Using edgeR’s function to do hypothesis testing on the second parameter of the model (gender).

> lrt.edgeR <- glmLRT(glmfit=fit.edgeR, coef=2)

> head(lrt.edgeR$table)

logFC logCPM LR PValue
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1 0.178865387 21.25400 2.498957e-01 0.6171485

2 -0.178334349 21.02475 2.114130e-01 0.6456622

3 -0.478846041 21.13138 1.564911e+00 0.2109475

4 -0.172443332 20.86399 1.773499e-01 0.6736606

5 -0.098105851 21.08778 6.474474e-02 0.7991480

6 0.001844588 21.29552 2.627074e-05 0.9959105

3 Using DSS for differential methylation analysis

3.1 Overview

To detect differential methylation, statistical tests are conducted at each CpG site, and then the differential methylation

loci (DML) or differential methylation regions (DMR) are called based on user specified threshold. A rigorous statistical

tests should account for biological variations among replicates and the sequencing depth. Most existing methods for DM

analysis are based on ad hoc methods. For example, using Fisher’s exact ignores the biological variations, using t-test

on estimated methylation levels ignores the sequencing depth. Sometimes arbitrary filtering are implemented: loci with

depth lower than an arbitrary threshold are filtered out, which results in information loss

The DM detection procedure implemented in DSS is based on a rigorous Wald test for beta-binomial distributions.

The test statistics depend on the biological variations (characterized by dispersion parameter) as well as the sequencing

depth. An important part of the algorithm is the estimation of dispersion parameter, which is achieved through a

shrinkage estimator based on a Bayesian hierarchical model [1]. An advantage of DSS is that the test can be performed

even when there is no biological replicates. That’s because by smoothing, the neighboring CpG sites can be viewed as

“pseudo-replicates”, and the dispersion can still be estimated with reasonable precision.

DSS also works for general experimental design, based on a beta-binomial regression model with “arcsine” link function.

Model fitting is performed on transformed data with generalized least square method, which achieves much improved

computational performance compared with methods based on generalized linear model.

DSS depends on bsseq Bioconductor package, which has neat definition of data structures and many useful utility

functions. In order to use the DM detection functionalities, bsseq needs to be pre-installed.

3.2 Input data preparation

DSS requires data from each BS-seq experiment to be summarized into following information for each CG position:

chromosome number, genomic coordinate, total number of reads, and number of reads showing methylation. For a

sample, this information are saved in a simple text file, with each row representing a CpG site. Below shows an example

of a small part of such a file:

chr pos N X

chr18 3014904 26 2

chr18 3031032 33 12

chr18 3031044 33 13
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chr18 3031065 48 24

One can follow below steps to obtain such data from raw sequence file (fastq file), using bismark (version 0.10.0, com-

mands for newer versions could be different) for BS-seq alignment and count extraction. These steps require installation

of bowtie or bowtie2, bismark, and the fasta file for reference genome.

1. Prepare Bisulfite reference genome. This can be done using the bismark_genome_preparation function (details

in bismark manual). Example command is:

bismark_genome_preparation -path_to_bowtie /usr/local/bowtie/ -verbose /path/to/refgenomes/

2. BS-seq alignment. Example command is:

bismark -q -n 1 -l 50 -path_to_bowtie /path/bowtie/ BS-refGenome reads.fastq

This step will produce two text files reads.fastq_bismark.sam and reads.fastq_bismark_SE_report.txt.

3. Extract methylation counts using bismark_methylation_extractor function:

bismark_methylation_extractor -s -bedGraph reads.fastq_bismark.sam. This will create multiple txt

files to summarize methylation call and cytosine context, a bedGraph file to display methylation percentage,

and a coverage file containing counts information. The count file contain following columns:chr, start, end,

methylation%, count methylated, count unmethylated. This file can be modified to make the input file

for DSS.

A typical DML detection contains two simple steps. First one conduct DM test at each CpG site, then DML/DMR are

called based on the test result and user specified threshold.

3.3 DML/DMR detection from two-group comparison

Below are the steps to call DML or DMR for BS-seq data in two-group comparison setting.

1. Load in library. Read in text files and create an object of BSseq class, which is defined in bsseq Bioconductor

package. This step requires bsseq Bioconductor package. BSseq class is defined in that package.

> library(DSS)

> require(bsseq)

> path <- file.path(system.file(package="DSS"), "extdata")

> dat1.1 <- read.table(file.path(path, "cond1_1.txt"), header=TRUE)

> dat1.2 <- read.table(file.path(path, "cond1_2.txt"), header=TRUE)

> dat2.1 <- read.table(file.path(path, "cond2_1.txt"), header=TRUE)

> dat2.2 <- read.table(file.path(path, "cond2_2.txt"), header=TRUE)

> BSobj <- makeBSseqData( list(dat1.1, dat1.2, dat2.1, dat2.2),

+ c("C1","C2", "N1", "N2") )[1:10000,]

> BSobj

An object of type 'BSseq' with

10000 methylation loci

4 samples

has not been smoothed

2. Perform statistical test for DML by calling DMLtest function. This function basically performs following steps: (1)

estimate mean methylation levels for all CpG site; (2) estimate dispersions at each CpG sites; (3) conduct Wald
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test. For the first step, there’s an option for smoothing or not. Because the methylation levels show strong spatial

correlations, smoothing can help obtain better estimates of mean methylation when the CpG sites are dense in

the data (such as from the whole-genome BS-seq). However for data with sparse CpG, such as from RRBS or

hydroxyl-methylation, smoothing is not recommended.

To perform DML test without smoothing, do:

> dmlTest <- DMLtest(BSobj, group1=c("C1", "C2"), group2=c("N1", "N2"))

Estimating dispersion for each CpG site, this will take a while ...

> head(dmlTest)

chr pos mu1 mu2 diff diff.se stat phi1

1 chr18 3014904 0.3850276 0.4623677 -0.07734011 0.24899738 -0.3106061 0.286610813

2 chr18 3031032 0.3384423 0.1416667 0.19677555 0.11402507 1.7257217 0.009525212

3 chr18 3031044 0.3436302 0.3299846 0.01364560 0.12508174 0.1090935 0.010959806

4 chr18 3031065 0.4372540 0.3646882 0.07256585 0.10435917 0.6953471 0.010846613

5 chr18 3031069 0.2939132 0.5397749 -0.24586172 0.13554689 -1.8138499 0.012965376

6 chr18 3031082 0.3529066 0.3903499 -0.03744333 0.08197055 -0.4567900 0.008246131

phi2 pval fdr

1 0.01964971 0.75610007 0.9999077

2 0.05282909 0.08439748 0.7175525

3 0.02285714 0.91312835 0.9999077

4 0.01849672 0.48683778 0.9999077

5 0.02658296 0.06970083 0.6313442

6 0.01338446 0.64782202 0.9999077

To perform statistical test for DML with smoothing, do:

> dmlTest.sm <- DMLtest(BSobj, group1=c("C1", "C2"), group2=c("N1", "N2"), smoothing=TRUE)

Smoothing ...

Estimating dispersion for each CpG site, this will take a while ...

There are two options for smoothing: a simple moving average, or the BSmooth method implemented in bsseq

package. The BSmooth method produces much smoother curve, which is good for visualization purpose. However,

it is very computationally intensive, and the results are not very different from moving average in terms of DMR

calling. So we recommend using moving average. Smoothing span is an important parameter in smoothing

procedure and have non-trivial impact on DMR calling. We use 500 bp as default, and think that it performs well

in real data tests.

3. With the test results, one can call DML by using callDML function. The results DMLs are sorted by the significance.

> dmls <- callDML(dmlTest, p.threshold=0.001)

> head(dmls)

chr pos mu1 mu2 diff diff.se stat phi1

450 chr18 3976129 0.01048590 0.93773387 -0.9272480 0.06785915 -13.664303 0.04319795

451 chr18 3976138 0.01048590 0.93773387 -0.9272480 0.06785915 -13.664303 0.04319795

582 chr18 4340682 0.96365233 0.03162952 0.9320228 0.09947722 9.369209 0.06181184

583 chr18 4340709 0.96365233 0.03162952 0.9320228 0.09947722 9.369209 0.06181184

638 chr18 4431501 0.01325735 0.94195478 -0.9286974 0.09390549 -9.889704 0.04380187

639 chr18 4431511 0.01321013 0.94195478 -0.9287446 0.09387324 -9.893604 0.04377619
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phi2 pval fdr postprob.overThreshold

450 0.02756948 0 0 1

451 0.02756948 0 0 1

582 0.05147878 0 0 1

583 0.05147878 0 0 1

638 0.08184949 0 0 1

639 0.08184949 0 0 1

By default, the test is based on the null hypothesis that the difference in methylation levels is 0. Alternatively,

users can specify a threshold for difference. For example, to detect loci with difference greater than 0.1, do:

> dmls2 <- callDML(dmlTest, delta=0.1, p.threshold=0.001)

> head(dmls2)

chr pos mu1 mu2 diff diff.se stat phi1

450 chr18 3976129 0.01048590 0.93773387 -0.9272480 0.06785915 -13.664303 0.04319795

451 chr18 3976138 0.01048590 0.93773387 -0.9272480 0.06785915 -13.664303 0.04319795

582 chr18 4340682 0.96365233 0.03162952 0.9320228 0.09947722 9.369209 0.06181184

583 chr18 4340709 0.96365233 0.03162952 0.9320228 0.09947722 9.369209 0.06181184

638 chr18 4431501 0.01325735 0.94195478 -0.9286974 0.09390549 -9.889704 0.04380187

639 chr18 4431511 0.01321013 0.94195478 -0.9287446 0.09387324 -9.893604 0.04377619

phi2 pval fdr postprob.overThreshold

450 0.02756948 0 0 1

451 0.02756948 0 0 1

582 0.05147878 0 0 1

583 0.05147878 0 0 1

638 0.08184949 0 0 1

639 0.08184949 0 0 1

When delta is specified, the function will compute the posterior probability that the difference of the means is

greater than delta. So technically speaking, the threshold for p-value here actually refers to the threshold for

1-posterior probability, or the local FDR. Here we use the same parameter name for the sake of the consistence of

function syntax.

4. DMR detection is also Based on the DML test results, by calling callDMR function. Regions with many statistically

significant CpG sites are identified as DMRs. Some restrictions are provided by users, including the minimum

length, minimum number of CpG sites, percentage of CpG site being significant in the region, etc. There are some

post hoc procedures to merge nearby DMRs into longer ones.

> dmrs <- callDMR(dmlTest, p.threshold=0.01)

> head(dmrs)

chr start end length nCG meanMethy1 meanMethy2 diff.Methy areaStat

142 chr18 13131705 13131880 176 6 0.9689797 0.06107942 0.9079003 68.741081

26 chr18 4657576 4657639 64 4 0.5084704 0.31870495 0.1897655 14.421382

30 chr18 5027578 5027743 166 4 0.7045195 0.38058436 0.3239352 9.109377

Here the DMRs are sorted by“areaStat”, which is defined in bsseq as the sum of the test statistics of all CpG sites

within the DMR.

Similarly, users can specify a threshold for difference. For example, to detect regions with difference greater than
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0.1, do:

> dmrs2 <- callDMR(dmlTest, delta=0.1, p.threshold=0.05)

> head(dmrs2)

chr start end length nCG meanMethy1 meanMethy2 diff.Methy areaStat

175 chr18 13131705 13131880 176 6 0.9689797 0.06107942 0.90790031 68.74108

29 chr18 4657576 4657639 64 4 0.5084704 0.31870495 0.18976548 14.42138

277 chr18 23100427 23100601 175 4 0.5329967 0.43403678 0.09895989 12.76449

18 chr18 4222533 4222608 76 4 0.7882151 0.36126847 0.42694665 12.66181

33 chr18 5027549 5027743 195 5 0.6696348 0.32605410 0.34358066 11.42014

Note that the distribution of test statistics (and p-values) depends on the differences in methylation levels and

biological variations, as well as technical factors such as coverage depth. It is very difficulty to select a natural and

rigorous threshold for defining DMRs. We recommend users try different thresholds in order to obtain satisfactory

results.

5. The DMRs can be visualized using showOneDMR function, This function provides more information than the

plotRegion function in bsseq. It plots the methylation percentages as well as the coverage depths at each

CpG sites, instead of just the smoothed curve. So the coverage depth information will be available in the figure.

To use the function, do

> showOneDMR(dmrs[1,], BSobj)

The result figure looks like the following. Note that the figure below is not generated from the above

example. The example data are from RRBS experiment so the DMRs are much shorter.
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3.4 DML/DMR detection from general experimental design

In DSS, BS-seq data from a general experimental design (such as crossed experiment, or experiment with covariates) is

modeled through a generalized linear model framework. We use“arcsine” link function instead of the typical logit link for

it better deals with data at boundaries (methylation levels close to 0 or 1). Linear model fitting is done through ordinary

least square on transformed methylation levels. Standard errors for the estimates are derived with consideration of count

data distribution and transformation. A Wald test is applied to perform hypothesis testing.

1. Load in data distributed with DSS. This is a small portion of a set of RRBS experiments. There are 5000 CpG sites

and 16 samples. The experiment is a 2 design (2 cases and 2 cell types). There are 4 replicates in each case:cell

combination.
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> data(RRBS)

> RRBS

An object of type 'BSseq' with

5000 methylation loci

16 samples

has not been smoothed

> design

case cell

1 HC rN

2 HC rN

3 HC rN

4 SLE aN

5 SLE rN

6 SLE aN

7 SLE rN

8 SLE aN

9 SLE rN

10 SLE aN

11 SLE rN

12 HC aN

13 HC aN

14 HC aN

15 HC aN

16 HC rN

2. Fit a linear model using DMLfit.multiFactor function, include case, cell, and case:cell interaction.

> DMLfit = DMLfit.multiFactor(RRBS, design=design, formula=~case+cell+case:cell)

Fitting DML model for CpG site:

3. Use DMLtest.multiFactor function to test the cell effect. It is important to note that the coef parame-

ter is the index of the coefficient to be tested for being 0. Because the model (as specified by formula in

DMLfit.multiFactor) include intercept, the cell effect is the 3rd column in the design matrix, so we use coef=3

here.

> DMLtest.cell = DMLtest.multiFactor(DMLfit, coef=3)

Result from this step is a data frame with chromosome number, CpG site position, test statistics, p-values (from

normal distribution), and FDR. Rows are sorted by chromosome/position of the CpG sites. To obtain top ranked

CpG sites, one can sort the data frame using following codes:

> ix=sort(DMLtest.cell[,"pvals"], index.return=TRUE)$ix

> head(DMLtest.cell[ix,])

chr pos stat pvals fdrs

1273 chr1 2930315 5.280301 1.289720e-07 0.0006448599

4706 chr1 3321251 5.037839 4.708164e-07 0.0011770409

3276 chr1 3143987 4.910412 9.088510e-07 0.0015147517

2547 chr1 3069876 4.754812 1.986316e-06 0.0024828953
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3061 chr1 3121473 4.675736 2.929010e-06 0.0029290097

527 chr1 2817715 4.441198 8.945925e-06 0.0065858325

Below is a figure showing the distributions of test statistics and p-values from this example dataset

> par(mfrow=c(1,2))

> hist(DMLtest.cell$stat, 50, main="test statistics", xlab="")

> hist(DMLtest.cell$pvals, 50, main="P values", xlab="")
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These procedures are computationally very efficient. For a typical RRBS dataset with 4 million CpG sites, it takes around

20 minutes. In comparison, other methods such as RADMeth or BiSeq takes at least 10 times longer.
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4 Session Info

> sessionInfo()

R version 3.3.1 (2016-06-21)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 16.04.1 LTS

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8

[4] LC_COLLATE=C LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] splines stats4 parallel stats graphics grDevices utils datasets

[9] methods base

other attached packages:

[1] edgeR_3.16.0 DSS_2.14.0 bsseq_1.10.0

[4] limma_3.30.0 SummarizedExperiment_1.4.0 GenomicRanges_1.26.0

[7] GenomeInfoDb_1.10.0 IRanges_2.8.0 S4Vectors_0.12.0

[10] Biobase_2.34.0 BiocGenerics_0.20.0

loaded via a namespace (and not attached):

[1] Rcpp_0.12.7 XVector_0.14.0 zlibbioc_1.20.0 munsell_0.4.3

[5] colorspace_1.2-7 lattice_0.20-34 plyr_1.8.4 tools_3.3.1

[9] grid_3.3.1 data.table_1.9.6 R.oo_1.20.0 gtools_3.5.0

[13] matrixStats_0.51.0 permute_0.9-4 Matrix_1.2-7.1 R.utils_2.4.0

[17] R.methodsS3_1.7.1 scales_0.4.0 locfit_1.5-9.1 BiocStyle_2.2.0

[21] chron_2.3-47
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