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Abstract

A basic task in the analysis of count data from RNA-seq is the detection of differ-
entially expressed genes. The count data are presented as a table which reports, for
each sample, the number of sequence fragments that have been assigned to each
gene. Analogous data also arise for other assay types, including comparative ChlP-
Seq, HiC, shRNA screening, mass spectrometry. An important analysis question is
the quantification and statistical inference of systematic changes between condi-
tions, as compared to within-condition variability. The package DESeq2 provides
methods to test for differential expression by use of negative binomial generalized
linear models; the estimates of dispersion and logarithmic fold changes incorpo-
rate data-driven prior distributions®. This vignette explains the use of the package  !Other Bioconductor
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Standard workflow

1.1

1.2

1.3

1.3.1

Quick start

Here we show the most basic steps for a differential expression analysis. These
steps require you have a RangedSummarizedExperiment object se which contains
the counts and information about samples. The design indicates that we want to
measure the effect of condition, controlling for batch differences. The two factor
variables batch and condition should be columns of colData(se).

dds <- DESegDataSet(se, design = ~ batch + condition)
dds <- DESeq(dds)
res <- results(dds, contrast=c("condition","trt","con"))

If you have a count matrix and sample information table, the first line would use
DESegDataSetFromMatrix instead of DESeqDataSet, as shown in Section 1.3.3.

How to get help

All DESeq2 questions should be posted to the Bioconductor support site: https:
//support.bioconductor.org, which serves as a repository of questions and answers.
See the first question in the list of Frequently Asked Questions (Section 5) for more
information about how to construct an informative post.

Input data

Why un-normalized counts?

As input, the DESeq2 package expects count data as obtained, e. g., from RNA-
seq or another high-throughput sequencing experiment, in the form of a matrix of
integer values. The value in the i-th row and the j-th column of the matrix tells
how many reads can be assigned to gene i in sample j. Analogously, for other
types of assays, the rows of the matrix might correspond e. g. to binding regions
(with ChIP-Seq) or peptide sequences (with quantitative mass spectrometry). We
will list method for obtaining count matrices in sections below.

The values in the matrix should be un-normalized counts of sequencing reads
(for single-end RNA-seq) or fragments (for paired-end RNA-seq). The RNA-seq
workflow describes multiple techniques for preparing such count matrices. It is
important to provide count matrices as input for DESeq2's statistical model [1] to
hold, as only the count values allow assessing the measurement precision correctly.
The DESeq2 model internally corrects for library size, so transformed or normalized
values such as counts scaled by library size should not be used as input.


https://support.bioconductor.org
https://support.bioconductor.org
http://www.bioconductor.org/help/workflows/rnaseqGene/
http://www.bioconductor.org/help/workflows/rnaseqGene/

Differential analysis of count data — the DESeq2 package

1.3.2

SummarizedExperiment input

The class used by the DESeq2 package to store the read counts is DESeqDataSet
which extends the RangedSummarizedExperiment class of the SummarizedExperi-
ment package. This facilitates preparation steps and also downstream exploration
of results. For counting aligned reads in genes, the summarizeOverlaps function
of GenomicAlignments with mode="Union" is encouraged, resulting in a Ranged-
SummarizedExperiment object. Other methods for obtaining count matrices are
described in the next section.

An example of the steps to produce a RangedSummarizedExperiment can be found
in an RNA-seq workflow on the Bioconductor website: http://www.bioconductor.
org/help/workflows /rnaseqGene/ and in the vignette for the data package airway.
Here we load the RangedSummarizedExperiment from that package in order to
build a DESeqDataSet.

library("airway")
data("airway")
se <- airway

A DESeqDataSet object must have an associated design formula. The design for-
mula expresses the variables which will be used in modeling. The formula should
be a tilde (~) followed by the variables with plus signs between them (it will be
coerced into an formula if it is not already). An intercept is included, represent-
ing the base mean of counts. The design can be changed later, however then
all differential analysis steps should be repeated, as the design formula is used
to estimate the dispersions and to estimate the log2 fold changes of the model.
The constructor function below shows the generation of a DESeqDataSet from a
RangedSummarizedExperiment se.

Note: In order to benefit from the default settings of the package, you should put
the variable of interest at the end of the formula and make sure the control level
is the first level.

library("DESeq2")
ddsSE <- DESegDataSet(se, design = ~ cell + dex)
ddsSE

## class: DESeqDataSet

## dim: 64102 8

## metadata(2): '' version

## assays(l): counts

## rownames (64102): ENSGOO000000003 ENSGOOOOOOO0005 ... LRG_98
##  LRG_99

## rowData names(0):

## colnames(8): SRR1039508 SRR1039509 ... SRR1039520

##  SRR1039521

## colData names(9): SampleName cell ... Sample BioSample
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Count matrix input

Alternatively, the function DESegDataSetFromMatrix can be used if you already
have a matrix of read counts prepared from another source. Another method
for quickly producing count matrices from alignment files is the featureCounts
function in the Rsubread package. To use DESegDataSetFromMatrix, the user
should provide the counts matrix, the information about the samples (the columns
of the count matrix) as a DataFrame or data.frame, and the design formula.

To demonstate the use of DESeqDataSetFromMatrix, we will read in count data
from the pasilla package. We read in a count matrix, which we will name count
Data, and the sample information table, which we will name colData. Further
below we describe how to extract these objects from, e.g. featureCounts output.

library("pasilla")

pasCts <- system.file("extdata", "pasilla_gene_counts.tsv",
package="pasilla", mustWork=TRUE)
pasAnno <- system.file("extdata", "pasilla_sample_annotation.csv",

package="pasilla", mustWork=TRUE)
countData <- as.matrix(read.csv(pasCts,sep="\t", row.names="gene id"))
colData <- read.csv(pasAnno, row.names=1)
colData <- colDatal,c("condition","type")]

We examine the count matrix and column data to see if they are consisent:

head (countData)

## untreatedl untreated2 untreated3 untreated4 treatedl
## FBgn0000003 0 0 0 0 0
## FBgn0000008 92 161 76 70 140
## FBgn0000014 5 1 0 0 4
## FBgn0000015 0 2 1 2 1
## FBgn0000017 4664 8714 3564 3150 6205
## FBgn0000018 583 761 245 310 722
## treated2 treated3

## FBgn0000003 0 1

## FBgn0000008 88 70

## FBgn0000014 0 0

## FBgn0000015 0 0

## FBgn00O0017 3072 3334

## FBgn0000018 299 308

head(colData)

#i#t condition type

## treatedlfb treated single-read

## treated2fb treated paired-end

## treated3fb treated paired-end

## untreatedlfb untreated single-read
## untreated2fb untreated single-read
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## untreated3fb untreated paired-end

Note that these are not in the same order with respect to samples! It is critical
that the columns of the count matrix and the rows of the column data (information
about samples) are in the same order.. We should re-arrange one or the other so
that they are consistent in terms of sample order (if we do not, later functions
would produce an error). We additionally need to chop off the "fb" of the row
names of colData, so the naming is consistent.

rownames (colData) <- sub("fb","", rownames(colData))
all(rownames(colData) %in% colnames (countData))

## [1] TRUE

countData <- countData[, rownames(colData)]
all(rownames(colData) == colnames(countData))
## [1] TRUE

If you have used the featureCounts function in the Rsubread package, the matrix
of read counts can be directly provided from the "counts" element in the list
output. The count matrix and column data can typically be read into R from flat
files using base R functions such as read.csv or read.delim. For HTSeq count
files, see the dedicated input function below.

With the count matrix, countData, and the sample information, colData, we can
construct a DESeqDataSet:

dds <- DESeqgDataSetFromMatrix(countData = countData,
colData = colData,
design = ~ condition)
dds

## class: DESeqDataSet

## dim: 14599 7

## metadata(l): version

## assays(1l): counts

## rownames (14599): FBgn0000003 FBgnOOOOOO8 ... FBgn0261574
##  FBgn0261575

## rowData names(0):

## colnames(7): treatedl treated2 ... untreated3 untreated4
## colData names(2): condition type

If you have additional feature data, it can be added to the DESeqDataSet by adding
to the metadata columns of a newly constructed object. (Here we add redundant
data just for demonstration, as the gene names are already the rownames of the
dds.)
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featureData <- data.frame(gene=rownames (countData))
(mcols(dds) <- DataFrame(mcols(dds), featureData))

## DataFrame with 14599 rows and 1 column

#i#t gene
#i#t <factor>
## 1 FBgn0000003
## 2 FBgn0000008
## 3 FBgn0000014
## 4 FBgn0000015
## 5 FBgn0000017
##

## 14595 FBgn0261571
## 14596 FBgn0261572
## 14597 FBgn0261573
## 14598 FBgn0261574
## 14599 FBgn0261575

tximport: transcript abundance summarized to gene-level

Users can create gene-level count matrices for use with DESeq2 by importing
information using the tximport package. This workflow allows users to import
transcript abundance estimates from a variety of external software, including the
following methods:

= Sailfish [2]
= Salmon [3]
= kallisto [4]
« RSEM [5]

Some advantages of using the above methods for transcript abundance estimation
are: (i) this approach corrects for potential changes in gene length across samples
(e.g. from differential isoform usage) [6], (i) some of these methods (Sailfish,
Salmon, kallisto) are substantially faster and require less memory and disk usage
compared to alignment-based methods that require creation and storage of BAM
files, and (iii) it is possible to avoid discarding those fragments that can align to
multiple genes with homologous sequence, thus increasing sensitivity [7].

Full details on the motivation and methods for importing transcript level abundance
and count estimates, summarizing to gene-level count matrices and producing an
offset which corrects for potential changes in average transcript length across sam-
ples are described in [8]. The tximport— DESeq2 approach uses rounded estimated
gene counts (but not normalized) instead of the raw count of fragments which can
be unambiguously assigned to a gene.

Here, we demonstrate how to import transcript abundances and construct of a
gene-level DESeqDataSet object from Sailfish quant.sf files, which are stored in
the tximportData package. Note that, instead of locating dir using system.file,


http://bioconductor.org/packages/tximport
http://www.cs.cmu.edu/~ckingsf/software/sailfish/
http://combine-lab.github.io/salmon/
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Differential analysis of count data — the DESeq2 package

1.3.5

a user would typically just provide a path, e.g. /path/to/quant/files. For further
details on use of tximport, including the construction of the tx2gene table for
linking transcripts to genes, please refer to the tximport package vignette.

library("tximport")

library("readr")

library("tximportData")

dir <- system.file("extdata", package="tximportData")

samples <- read.table(file.path(dir,"samples.txt"), header=TRUE)

files <- file.path(dir,"salmon", samples$run, "quant.sf")

names (files) <- pasteO("sample",1:6)

tx2gene <- read.csv(file.path(dir, "tx2gene.csv"))

txi <- tximport(files, type="salmon", tx2gene=tx2gene, reader=read_tsv)

Next we create an condition vector to demonstrate building an DESegDataSet. For
a typical use, this information would already be present as a column of the sam
ples table. The best practice is to read colData from a CSV or TSV file, and to
construct files from a column of colData, as shown in the code chunk above.

coldata <- data.frame(condition=factor(rep(c("A","B"),each=3)))

rownames (coldata) <- colnames (txi$counts)

ddsTxi <- DESeqgDataSetFromTximport(txi, colData=coldata,
design=~ condition)

The ddsTxi object can then be used as dds in the following analysis steps.

HTSeq input

You can use the function DESeqDataSetFromHTSeqCount if you have htseq-count
from the HTSeq python package3. For an example of using the python scripts, see
the pasilla data package. First you will want to specify a variable which points to
the directory in which the HTSeq output files are located.

directory <- "/path/to/your/files/"

However, for demonstration purposes only, the following line of code points to the
directory for the demo HTSeq output files packages for the pasilla package.

directory <- system.file("extdata", package="pasilla", mustWork=TRUE)

We specify which files to read in using list.files, and select those files which
contain the string "treated" using grep. The sub function is used to chop up the
sample filename to obtain the condition status, or you might alternatively read in
a phenotypic table using read.table.

sampleFiles <- grep("treated",list.files(directory),value=TRUE)
sampleCondition <- sub("(.*treated).x","\\1",sampleFiles)

3available from http:

//www-huber.embl.de/

users/anders/HTSeq
described in [9]

10


http://www-huber.embl.de/users/anders/HTSeq
http://www-huber.embl.de/users/anders/HTSeq
http://www-huber.embl.de/users/anders/HTSeq
http://bioconductor.org/packages/tximport
http://bioconductor.org/packages/pasilla
http://bioconductor.org/packages/pasilla

Differential analysis of count data — the DESeq2 package

1.3.6

1.3.7

sampleTable <- data.frame(sampleName = sampleFiles,
fileName = sampleFiles,
condition = sampleCondition)
ddsHTSeq <- DESeqDataSetFromHTSeqCount(sampleTable = sampleTable,
directory = directory,
design= ~ condition)
ddsHTSeq

## class: DESeqDataSet

## dim: 70463 7

## metadata(l): version

## assays(l): counts

## rownames(70463): FBgn0000003:001 FBgno000008:001 ...
##  FBgn0261575:001 FBgn0261575:002

## rowData names(0):

## colnames(7): treatedlfb.txt treated2fb.txt

## untreated3fb.txt untreated4fb.txt

## colData names(1l): condition

Pre-filtering

While it is not necessary to pre-filter low count genes before running the DESeq2
functions, there are two reasons which make pre-filtering useful: by removing rows
in which there are no reads or nearly no reads, we reduce the memory size of
the dds data object and we increase the speed of the transformation and testing
functions within DESeq2. Here we perform a minimal pre-filtering to remove rows
that have only 0 or 1 read. Note that more strict filtering to increase power is
automatically applied via independent filtering on the mean of normalized counts
within the results function, which will be discussed in Section 3.8.

dds <- dds[ rowSums(counts(dds)) > 1, ]

Note on factor levels

By default, R will choose a reference level for factors based on alphabetical order.
Then, if you never tell the DESeq2 functions which level you want to compare
against (e.g. which level represents the control group), the comparisons will be
based on the alphabetical order of the levels. There are two solutions: you can
either explicitly tell results which comparison to make using the contrast argu-
ment (this will be shown later), or you can explicitly set the factors levels. Setting
the factor levels can be done in two ways, either using factor:

dds$condition <- factor(dds$condition, levels=c("untreated","treated"))

...or using relevel, just specifying the reference level:

11
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1.3.9

1.4

dds$condition <- relevel(dds$condition, ref="untreated")

If you need to subset the columns of a DESeqDataSet, i.e., when removing certain
samples from the analysis, it is possible that all the samples for one or more levels
of a variable in the design formula would be removed. In this case, the droplevels
function can be used to remove those levels which do not have samples in the
current DESeqDataSet:

dds$condition <- droplevels(dds$condition)

Collapsing technical replicates

DESeq2 provides a function collapseReplicates which can assist in combining
the counts from technical replicates into single columns of the count matrix. The
term “technical replicate” implies multiple sequencing runs of the same library. You
should not collapse biological replicates using this function. See the manual page
for an example of the use of collapseReplicates.

About the pasilla dataset

We continue with the pasilla data constructed from the count matrix method above.
This data set is from an experiment on Drosophila melanogaster cell cultures and
investigated the effect of RNAi knock-down of the splicing factor pasilla [10]. The
detailed transcript of the production of the pasilla data is provided in the vignette
of the data package pasilla.

Differential expression analysis

The standard differential expression analysis steps are wrapped into a single func-
tion, DESeq. The estimation steps performed by this function are described in
Section 4.1, in the manual page for ?DESeq and in the Methods section of the
DESeq2 publication [1]. The individual sub-functions which are called by DESeq
are still available, described in Section 3.1.

Results tables are generated using the function results, which extracts a results
table with log2 fold changes, p values and adjusted p values. With no arguments
to results, the results will be for the last variable in the design formula, and if
this is a factor, the comparison will be the last level of this variable over the first
level. Details about the comparison are printed to the console. The text, condi
tion treatedvsuntreated, tells you that the estimates are of the logarithmic fold
change log, (treated /untreated).

dds <- DESeq(dds)
res <- results(dds)

12
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res

## log2 fold change (MAP): condition treated vs untreated
## Wald test p-value: condition treated vs untreated
## DataFrame with 11638 rows and 6 columns

## baseMean log2FoldChange 1fcSE stat pvalue
## <numeric> <numeric> <numeric> <numeric> <numeric>
## FBgn0000008 95.144 0.00175 0.1825 0.0096 0.9923
## FBgn0000014 1.057 -0.02335 0.0983 -0.2375 0.8123
## FBgn0000015 0.847 -0.09134 0.1022 -0.8940 0.3713
## FBgn0000017 4352.593 -0.22390 0.1176 -1.9043 0.0569
## FBgn0000018 418.615 -0.09532 0.1348 -0.7069 0.4796
##H ... C C C A C
## FBgn0261570 3208.4 0.2753 0.118 2.326 0.020
## FBgn0261572 6.2 -0.2556 0.211 -1.213 0.225
## FBgn0261573 2241.0 0.0119 0.107 0.112 0.911
## FBgn0261574 4857.7 0.0131 0.165 0.079 0.937
## FBgn0261575 10.7 0.0338 0.188 0.180 0.857
#i# padj
## <numeric>
## FBgn0000008 0.997
## FBgn0000014 NA
## FBgn0000015 NA
## FBgn00000O17 0.286
## FBgn0000018 0.828
##H ... C
## FBgn0261570 0.142
## FBgn0261572 0.622
## FBgn0261573 0.983
## FBgn0261574 0.989
## FBgn0261575 0.968

These steps should take less than 30 seconds for most analyses. For experiments
with many samples (e.g. 100 samples), one can take advantage of parallelized
computation. Both of the above functions have an argument parallel which
if set to TRUE can be used to distribute computation across cores specified by
the register function of BiocParallel. For example, the following chunk (not
evaluated here), would register 4 cores, and then the two functions above, with
parallel=TRUE, would split computation over these cores.

library("BiocParallel")
register(MulticoreParam(4))

We can order our results table by the smallest adjusted p value:

resOrdered <- res[order(res$padj), ]

We can summarize some basic tallies using the summary function.

13
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summary (res)

##
## out of 11638 with nonzero total read count
## adjusted p-value < 0.1

## LFC > 0 (up) : 516, 4.4%
## LFC < 0 (down) : 538, 4.6%
## outliers [1] : 14, 0.12%
## low counts [2] : 3152, 27%

## (mean count < 6)
## [1] see 'cooksCutoff' argument of ?results
## [2] see 'independentFiltering' argument of ?results

How many adjusted p-values were less than 0.17

sum(res$padj < 0.1, na.rm=TRUE)

## [1] 1054

The results function contains a number of arguments to customize the results
table which is generated. Note that the results function automatically performs
independent filtering based on the mean of normalized counts for each gene, op-
timizing the number of genes which will have an adjusted p value below a given
FDR cutoff, alpha. Independent filtering is further discussed in Section 3.8. By
default the argument alpha is set to 0.1. If the adjusted p value cutoff will be a
value other than 0.1, alpha should be set to that value:

res05 <- results(dds, alpha=0.05)
summary (res05)

##
## out of 11638 with nonzero total read count
## adjusted p-value < 0.05

## LFC > 0 (up) : 408, 3.5%
## LFC < 0 (down) 1 431, 3.7%
## outliers [1] : 14, 0.12%
## low counts [2] : 3152, 27%

## (mean count < 6)
## [1] see 'cooksCutoff' argument of ?results
## [2] see 'independentFiltering' argument of ?results

sum(res@5%$padj < 0.05, na.rm=TRUE)
## [1] 839

A generalization of the idea of p value filtering is to weight hypotheses to optimize
power. A new Bioconductor package, /HWW, is now available that implements the
method of Independent Hypothesis Weighting [11]. Here we show the use of IHW
for p value adjustment of DESeq2 results. For more details, please see the vignette
of the IHW package. Note that the /IHW result object is stored in the metadata.
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library ("IHW")
resIHW <- results(dds, filterFun=ihw)
summary (resIHW)

##
## out of 11638 with nonzero total read count
## adjusted p-value < 0.1

## LFC > 0 (up) : 510, 4.4%
## LFC < 0 (down) : 548, 4.7%
## outliers [1] : 14, 0.12%

## [1] see 'cooksCutoff' argument of ?results
## [2] see metadata(res)$ihwResult on hypothesis weighting

sum(resIHW$padj < 0.1, na.rm=TRUE)
## [1] 1058
metadata(resIHW)$ihwResult

## ihwResult object with 11638 hypothesis tests
## Nominal FDR control level: 0.1
## Split into 7 bins, based on an ordinal covariate

If a multi-factor design is used, or if the variable in the design formula has more
than two levels, the contrast argument of results can be used to extract different
comparisons from the DESeqDataSet returned by DESeq. Multi-factor designs are
discussed further in Section 1.6, and the use of the contrast argument is dicussed
in Section 3.2.

For advanced users, note that all the values calculated by the DESeq2 package
are stored in the DESeqDataSet object, and access to these values is discussed in
Section 3.10.

Exploring and exporting results

MA-plot

In DESeq2, the function plotMA shows the log2 fold changes attributable to a
given variable over the mean of normalized counts. Points will be colored red if the
adjusted p value is less than 0.1. Points which fall out of the window are plotted
as open triangles pointing either up or down.

plotMA(res, main="DESeq2", ylim=c(-2,2))
After calling plotMA, one can use the function identify to interactively detect the

row number of individual genes by clicking on the plot. One can then recover the
gene identifiers by saving the resulting indices:
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Figure 1: MA-plot. These plots show the log2 fold changes from the treatment over the mean
of normalized counts, i.e. the average of counts normalized by size factors. The left plot shows
the “unshrunken” log2 fold changes, while the right plot, produced by the code above, shows
the shrinkage of log2 fold changes resulting from the incorporation of zero-centered normal
prior. The shrinkage is greater for the log2 fold change estimates from genes with low counts
and high dispersion, as can be seen by the narrowing of spread of leftmost points in the right

plot.

idx <- identify(res$baseMean, res$log2FoldChange)
rownames (res) [idx]

The MA-plot of log2 fold changes returned by DESeq2 allows us to see how the
shrinkage of fold changes works for genes with low counts. You can still obtain
results tables which include the “unshrunken” log2 fold changes (for a simple com-
parison, the ratio of the mean normalized counts in the two groups). A column
LfcMLE with the unshrunken maximum likelihood estimate (MLE) for the log2 fold
change will be added with an additional argument to results:

resMLE <- results(dds, addMLE=TRUE)
head(resMLE, 4)

## log2 fold change (MAP): condition treated vs untreated
## Wald test p-value: condition treated vs untreated
## DataFrame with 4 rows and 7 columns

## baseMean log2FoldChange 1fcMLE 1fcSE stat
##t <numeric> <numeric> <numeric> <numeric> <numeric>
## FBgn0000008 95.144 0.00175 0.00215 0.1825 0.0096
## FBgn0000014 1.057 -0.02335 -0.49669 0.0983 -0.2375
## FBgn0000015 0.847 -0.09134 -1.88276 0.1022 -0.8940
## FBgn0000017 4352.593 -0.22390 -0.24003 0.1176 -1.9043
## pvalue padj
## <numeric> <numeric>
## FBgn0000008 0.9923 0.997
## FBgn0000014 0.8123 NA
## FBgn0000015 0.3713 NA
## FBgn00O0017 0.0569 0.286
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One can make an MA-plot of the unshrunken estimates like so:

plotMA(resMLE, MLE=TRUE, main="unshrunken LFC", ylim=c(-2,2))

Plot counts

It can also be useful to examine the counts of reads for a single gene across the
groups. A simple function for making this plot is plotCounts, which normalizes
counts by sequencing depth and adds a pseudocount of % to allow for log scale
plotting. The counts are grouped by the variables in intgroup, where more than
one variable can be specified. Here we specify the gene which had the smallest
p value from the results table created above. You can select the gene to plot by
rowname or by numeric index.

plotCounts(dds, gene=which.min(res$padj), intgroup="condition")

For customized plotting, an argument returnData specifies that the function should
only return a data.frame for plotting with ggplot.

d <- plotCounts(dds, gene=which.min(res$padj), intgroup="condition",
returnData=TRUE)
library("ggplot2")
ggplot(d, aes(x=condition, y=count)) +
geom_point(position=position_jitter(w=0.1,h=0)) +
scale_y_logl0(breaks=c(25,100,400))
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Figure 2: Plot of counts for one gene. The plot of normalized counts (plus a pseudocount

of %) either made using the plotCounts function (left) or using another plotting library (right,

using ggplot2).

17


http://cran.fhcrc.org/web/packages/ggplot2/index.html

Differential analysis of count data — the DESeq2 package

1.5.3

1.5.4

More information on results columns

Information about which variables and tests were used can be found by calling the
function mcols on the results object.

mcols(res)$description

## [1] "mean of normalized counts for all samples"

## [2] "log2 fold change (MAP): condition treated vs untreated"
## [3] "standard error: condition treated vs untreated"

## [4] "Wald statistic: condition treated vs untreated"

## [5] "Wald test p-value: condition treated vs untreated"

## [6] "BH adjusted p-values"

For a particular gene, a log2 fold change of —1 for conditiontreatedvsuntreated
means that the treatment induces a multiplicative change in observed gene ex-
pression level of 271 = 0.5 compared to the untreated condition. If the variable
of interest is continuous-valued, then the reported log2 fold change is per unit of
change of that variable.

Note on p-values set to NA: some values in the results table can be set to NA
for one of the following reasons:

1. If within a row, all samples have zero counts, the baseMean column will be
zero, and the log2 fold change estimates, p value and adjusted p value will
all be set to NA.

2. If a row contains a sample with an extreme count outlier then the p value
and adjusted p value will be set to NA. These outlier counts are detected
by Cook's distance. Customization of this outlier filtering and description of
functionality for replacement of outlier counts and refitting is described in
Section 3.6,

3. If a row is filtered by automatic independent filtering, for having a low mean
normalized count, then only the adjusted p value will be set to NA. Description
and customization of independent filtering is described in Section 3.8.

Rich visualization and reporting of results

ReportingTools. An HTML report of the results with plots and sortable/filterable
columns can be generated using the Reporting Tools package on a DESeqDataSet
that has been processed by the DESeq function. For a code example, see the “RNA-
seq differential expression” vignette at the Reporting Tools page, or the manual page
for the publish method for the DESeqDataSet class.

regionReport. An HTML and PDF summary of the results with plots can also
be generated using the regionReport package. The DESeq2Report function should
be run on a DESeqDataSet that has been processed by the DESeq function. For
more details see the manual page for DESeq2Report and an example vignette in the
regionReport package.
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Glimma. Interactive visualization of DESeq2 output, including MA-plots (also
called MD-plot) can be generated using the Glimma package. See the manual
page for glMDPlot.DESeqResults.

pcaExplorer. Interactive visualization of DESeq2 output, including PCA plots,
boxplots of counts and other useful summaries can be generated using the pca-
Explorer package. See the “Launching the application” section of the package
vignette.

Exporting results to CSV files

A plain-text file of the results can be exported using the base R functions write.csv
or write.delim. We suggest using a descriptive file name indicating the variable
and levels which were tested.

write.csv(as.data.frame(resOrdered),
file="condition_treated_results.csv")

Exporting only the results which pass an adjusted p value threshold can be accom-
plished with the subset function, followed by the write.csv function.

resSig <- subset(resOrdered, padj < 0.1)
resSig

## log2 fold change (MAP): condition treated vs untreated
## Wald test p-value: condition treated vs untreated
## DataFrame with 1054 rows and 6 columns

## baseMean log2FoldChange 1fcSE stat pvalue
##t <numeric> <numeric> <numeric> <numeric> <numeric>
## FBgn0039155 731 -4.10 0.143 -28.7 2.90e-181
## FBgn0025111 1501 2.70 0.118 22.9 5.16e-116
## FBgn0029167 3706 -2.11 0.093 -22.7 1.04e-113
## FBgn0003360 4343 -2.90 0.131 -22.2 6.88e-109
## FBgn0039827 262 -3.37 0.176 -19.1 1.20e-81
## ... . . . . s
## FBgn0032900 29.5 -0.561 0.224 -2.51 0.0122
## FBgn0030026 212.2 0.460 0.184 2.50 0.0123
## FBgn0031183 428.5 -0.319 0.128 -2.50 0.0124
## FBgn0038874 103.8 -0.509 0.204 -2.50 0.0124
## FBgn0053329 602.6 -0.423 0.169 -2.50 0.0124
## padj

## <numeric>

## FBgn0039155 2.46e-177
## FBgn0025111 2.19%e-112
## FBgn0029167 2.95e-110
## FBgn0003360 1.46e-105
## FBgn0039827 2.04e-78
#Ho... 500
## FBgn0032900 0.0988
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## FBgn0030026 0.0991
## FBgn0031183 0.0996
## FBgn0038874 0.0996
## FBgn0053329 0.0996

Multi-factor designs

Experiments with more than one factor influencing the counts can be analyzed using
design formula that include the additional variables. By adding these to the design,
one can control for additional variation in the counts. For example, if the condition
samples are balanced across experimental batches, by including the batch factor to
the design, one can increase the sensitivity for finding differences due to condition.
There are multiple ways to analyze experiments when the additional variables are
of interest and not just controlling factors (see Section 3.3 on interactions).

The data in the pasilla package have a condition of interest (the column condi
tion), as well as information on the type of sequencing which was performed (the
column type), as we can see below:

colData(dds)

## DataFrame with 7 rows and 3 columns

#i# condition type sizeFactor
#it <factor> <factor> <numeric>
## treatedl treated single-read 1.636
## treated2 treated paired-end 0.761
## treated3 treated paired-end 0.833
## untreatedl untreated single-read 1.138
## untreated2 untreated single-read 1.793
## untreated3 untreated paired-end 0.650
## untreated4 untreated paired-end 0.752

We create a copy of the DESeqDataSet, so that we can rerun the analysis using a
multi-factor design.

ddsMF <- dds

We can account for the different types of sequencing, and get a clearer picture
of the differences attributable to the treatment. As condition is the variable of
interest, we put it at the end of the formula. Thus the results function will by
default pull the condition results unless contrast or name arguments are specified.
Then we can re-run DESeq:

design(ddsMF) <- formula(~ type + condition)
ddsMF <- DESeq(ddsMF)

Again, we access the results using the results function.
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resMF <- results(ddsMF)
head (resMF)

## log2 fold change (MAP): condition treated vs untreated
## Wald test p-value: condition treated vs untreated
## DataFrame with 6 rows and 6 columns

## baseMean log2FoldChange 1fcSE stat pvalue
## <numeric> <numeric> <numeric> <numeric> <numeric>
## FBgn0000008 95.144 -0.0238 0.1790 -0.133 0.8940
## FBgn0000014 1.057 -0.0239 0.0979 -0.244 0.8071
## FBgn0000015 0.847 -0.0791 0.0928 -0.853 0.3937
## FBgn0000017 4352.593 -0.2405 0.1053 -2.283 0.0224
## FBgn0000018 418.615 -0.0639 0.1213 -0.527 0.5984
## FBgn0000024 6.406 0.0634 0.2026 0.313 0.7542
#i# padj
#i#t <numeric>
## FBgn0000008 0.963
## FBgn0000014 NA
## FBgn0000015 NA
## FBgn00000O17 0.128
## FBgn0000018 0.849
## FBgn0000024 0.914

It is also possible to retrieve the log2 fold changes, p values and adjusted p values
of the type variable. The contrast argument of the function results takes a
character vector of length three: the name of the variable, the name of the factor
level for the numerator of the log2 ratio, and the name of the factor level for the
denominator. The contrast argument can also take other forms, as described in
the help page for results and in Section 3.2.

resMFType <- results(ddsMF,
contrast=c("type", "single-read", "paired-end"))
head (resMFType)

## log2 fold change (MAP): type single-read vs paired-end
## Wald test p-value: type single-read vs paired-end
## DataFrame with 6 rows and 6 columns

#i#t baseMean log2FoldChange 1fcSE stat pvalue
#it <numeric> <numeric> <numeric> <numeric> <numeric>
## FBgn0000008 95.144 -0.1926 0.1621 -1.188 0.2348
## FBgn0000014 1.057 0.1016 0.0654 1.552 0.1207
## FBgn0000015 0.847 -0.0219 0.0619 -0.353 0.7241
## FBgn0000017 4352.593 -0.0893 0.1022 -0.873 0.3824
## FBgn0000018 418.615 0.2046 0.1159 1.766 0.0775
## FBgn0000024 6.406 0.0465 0.1463 0.318 0.7506
## padj

## <numeric>

## FBgn0000008 0.531
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## FBgn0000014 NA
## FBgn0000015 NA
## FBgn00O0017 0.679
## FBgn0000018 0.281
## FBgn0000024 NA

If the variable is continuous or an interaction term (see Section 3.3) then the results
can be extracted using the name argument to results, where the name is one of
elements returned by resultsNames(dds).
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Data transformations and visualization

2.1
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Count data transformations

In order to test for differential expression, we operate on raw counts and use
discrete distributions as described in the previous Section 1.4. However for other
downstream analyses — e.g. for visualization or clustering — it might be useful to
work with transformed versions of the count data.

Maybe the most obvious choice of transformation is the logarithm. Since count
values for a gene can be zero in some conditions (and non-zero in others), some
advocate the use of pseudocounts, i.e. transformations of the form

y =logy(n +1) or more generally, y =logy(n+ ng),

where n represents the count values and ng is a positive constant.

In this section, we discuss two alternative approaches that offer more theoretical
justification and a rational way of choosing the parameter equivalent to ng above.
The regularized logarithm or rlog incorporates a prior on the sample differences
[1], and the other uses the concept of variance stabilizing transformations (VST)
[12, 13, 14]. Both transformations produce transformed data on the log, scale
which has been normalized with respect to library size.

The point of these two transformations, the rlog and the VST, is to remove the
dependence of the variance on the mean, particularly the high variance of the
logarithm of count data when the mean is low. Both rlog and VST use the
experiment-wide trend of variance over mean, in order to transform the data to
remove the experiment-wide trend. Note that we do not require or desire that all
the genes have exactly the same variance after transformation. Indeed, in Figure 4
below, you will see that after the transformations the genes with the same mean
do not have exactly the same standard deviations, but that the experiment-wide
trend has flattened. It is those genes with row variance above the trend which will
allow us to cluster samples into interesting groups.

Note on running time: if you have many samples (e.g. 100s), the rlog function
might take too long, and the varianceStabilizingTransformation is a faster
choice. The rlog and VST have similar properties, but the rlog requires fitting a
shrinkage term for each sample and each gene which takes time. See the DESeq2
paper for more discussion on the differences [1]. In addition, a new function vst
provides an even faster version of the varianceStabilizingTransformation but
calculating the global dispersion trend on a subset of the genes (default 1000). vst
may be attractive for interactive EDA.

Blind dispersion estimation

The two functions, rlog and varianceStabilizingTransformation, have an argu-
ment blind, for whether the transformation should be blind to the sample infor-
mation specified by the design formula. When blind equals TRUE (the default), the
functions will re-estimate the dispersions using only an intercept (design formula
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~ 1). This setting should be used in order to compare samples in a manner wholly
unbiased by the information about experimental groups, for example to perform
sample QA (quality assurance) as demonstrated below.

However, blind dispersion estimation is not the appropriate choice if one expects
that many or the majority of genes (rows) will have large differences in counts which
are explainable by the experimental design, and one wishes to transform the data
for downstream analysis. In this case, using blind dispersion estimation will lead
to large estimates of dispersion, as it attributes differences due to experimental
design as unwanted “noise”, and will result in overly shrinking the transformed
values towards each other. By setting blind to FALSE, the dispersions already
estimated will be used to perform transformations, or if not present, they will be
estimated using the current design formula. Note that only the fitted dispersion
estimates from mean-dispersion trend line are used in the transformation (the global
dependence of dispersion on mean for the entire experiment). So setting blind to
FALSE is still for the most part not using the information about which samples were
in which experimental group in applying the transformation.

Extracting transformed values

These functions return an object of class DESeq Transform which is a subclass of
RangedSummarizedExperiment. For ~ 20 samples, running on a newly created
DESeqDataSet, rlog may take 30 seconds, varianceStabilizingTransformation
may take 5 seconds, and vst less than 1 second (by subsetting to 1000 genes for
calculating the global dispersion trend). However, the running times are shorter
and more similar with blind=FALSE and if the function DESeq has already been run,
because then it is not necessary to re-estimate the dispersion values. The assay
function is used to extract the matrix of normalized values.

rld <- rlog(dds, blind=FALSE)

vsd <- varianceStabilizingTransformation(dds, blind=FALSE)
vsd.fast <- vst(dds, blind=FALSE)

head(assay(rld), 3)

## treatedl treated2 treated3 untreatedl untreated2
## FBgn0000008 6.505 6.670 6.500 6.478 6.531
## FBgn0000014 0.178 0.149 0.149 0.200 0.154
## FBgn0000015 -0.287 -0.294 -0.294 -0.295 -0.280
## untreated3 untreated4
## FBgn0000008 6.674 6.552
## FBgn0000014 0.150 0.149
## FBgn0000015 -0.277 -0.264

Regularized log transformation

The function rlog, stands for regularized log, transforming the original count data
to the log2 scale by fitting a model with a term for each sample and a prior
distribution on the coefficients which is estimated from the data. This is the same
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Figure 3: VST and log2. Graphs of the variance stabilizing transformation for sample 1, in
blue, and of the transformation f(n) = logy(n/s1), in black. n are the counts and s; is the
size factor for the first sample.

kind of shrinkage (sometimes referred to as regularization, or moderation) of log
fold changes used by the DESeq and nbinomWaldTest, as seen in Figure 1. The
resulting data contains elements defined as:

log,(qij) = Bio + Bij

where g;; is a parameter proportional to the expected true concentration of frag-
ments for gene i and sample j (see Section 4.1), B;o is an intercept which does not
undergo shrinkage, and 3;; is the sample-specific effect which is shrunk toward zero
based on the dispersion-mean trend over the entire dataset. The trend typically
captures high dispersions for low counts, and therefore these genes exhibit higher
shrinkage from therlog.

Note that, as g;; represents the part of the mean value p;; after the size factor s;
has been divided out, it is clear that the rlog transformation inherently accounts for
differences in sequencing depth. Without priors, this design matrix would lead to a
non-unique solution, however the addition of a prior on non-intercept betas allows
for a unique solution to be found. The regularized log transformation is preferable
to the variance stabilizing transformation if the size factors vary widely.

2.1.4 Variance stabilizing transformation

Above, we used a parametric fit for the dispersion. In this case, the closed-form
expression for the variance stabilizing transformation is used by varianceStabiliz
ingTransformation, which is derived in the file vst.pdf, that is distributed in the
package alongside this vignette. If a local fit is used (option fitType="locfit" to
estimateDispersions) a numerical integration is used instead.

The resulting variance stabilizing transformation is shown in Figure 3. The code
that produces the figure is hidden from this vignette for the sake of brevity, but can
be seen in the .Rnw or .R source file. Note that the vertical axis in such plots is the
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Figure 4: Per-gene standard deviation (taken across samples), against the rank of the
mean. (a) for the shifted logarithm log,(n + 1), the regularized log transformation (b) and the

variance stabilizing transformation (c).

square root of the variance over all samples, so including the variance due to the
experimental conditions. While a flat curve of the square root of variance over the
mean may seem like the goal of such transformations, this may be unreasonable in
the case of datasets with many true differences due to the experimental conditions.

Effects of transformations on the variance

Figure 4 plots the standard deviation of the transformed data, across samples,
against the mean, using the shifted logarithm transformation [, the regularized log
transformation and the variance stabilizing transformation. The shifted logarithm
has elevated standard deviation in the lower count range, and the regularized log
to a lesser extent, while for the variance stabilized data the standard deviation is
roughly constant along the whole dynamic range.

library("vsn")

notAllZero <- (rowSums(counts(dds))>0)

meanSdPlot (log2(counts(dds,normalized=TRUE) [notAllZero,] + 1))
meanSdPlot (assay(rld[notAllZero,]))

meanSdPlot (assay(vsd[notAllZero,]))

Data quality assessment by sample clustering and vi-
sualization

Data quality assessment and quality control (i. e. the removal of insufficiently good
data) are essential steps of any data analysis. These steps should typically be
performed very early in the analysis of a new data set, preceding or in parallel to
the differential expression testing.

We define the term quality as fitness for purpose*. Our purpose is the detection of
differentially expressed genes, and we are looking in particular for samples whose
experimental treatment suffered from an anormality that renders the data points
obtained from these particular samples detrimental to our purpose.

4http://en.wikipedia.
org/wiki/Quality__
%?28business%29
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Heatmap of the count matrix

To explore a count matrix, it is often instructive to look at it as a heatmap. Below
we show how to produce such a heatmap for various transformations of the data.

library("pheatmap")
select <- order(rowMeans(counts(dds,normalized=TRUE)),
decreasing=TRUE)[1:20]

nt <- normTransform(dds) # defaults to log2(x+1)

log2.norm.counts <- assay(nt)[select,]

df <- as.data.frame(colData(dds)[,c("condition", "type")])

pheatmap(log2.norm.counts, cluster_rows=FALSE, show_rownames=FALSE,
cluster_cols=FALSE, annotation_col=df)

pheatmap(assay(rld)[select,], cluster_rows=FALSE, show_rownames=FALSE,
cluster_cols=FALSE, annotation_col=df)

pheatmap (assay(vsd) [select,], cluster_rows=FALSE, show_rownames=FALSE,
cluster_cols=FALSE, annotation_col=df)
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Figure 5: Heatmaps showing the expression data of the 20 most highly expressed genes.

The data is of log2 normalized counts (left), from regularized log transformation (center) and
from variance stabilizing transformation (right).

Heatmap of the sample-to-sample distances

Another use of the transformed data is sample clustering. Here, we apply the dist
function to the transpose of the transformed count matrix to get sample-to-sample
distances. We could alternatively use the variance stabilized transformation here.

sampleDists <- dist(t(assay(rld)))
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Figure 6: Sample-to-sample distances. Heatmap showing the Euclidean distances between

the samples as calculated from the regularized log transformation.

A heatmap of this distance matrix gives us an overview over similarities and dissimi-
larities between samples (Figure 6): We have to provide a hierarchical clustering hc
to the heatmap function based on the sample distances, or else the heatmap func-
tion would calculate a clustering based on the distances between the rows/columns
of the distance matrix.

library("RColorBrewer")
sampleDistMatrix <- as.matrix(sampleDists)
rownames (sampleDistMatrix) <- paste(rld$condition, rld$type, sep="-")
colnames (sampleDistMatrix) <- NULL
colors <- colorRampPalette( rev(brewer.pal(9, "Blues")) )(255)
pheatmap (sampleDistMatrix,

clustering_distance_rows=sampleDists,

clustering distance_cols=sampleDists,

col=colors)

Principal component plot of the samples

Related to the distance matrix of Section 2.2.2 is the PCA plot of the samples,
which we obtain as follows (Figure 7).

plotPCA(rld, intgroup=c("condition", "type"))

It is also possible to customize the PCA plot using the ggplot function.

data <- plotPCA(rld, intgroup=c("condition", "type"), returnData=TRUE)
percentVar <- round(100 * attr(data, "percentVar"))
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Figure 7: PCA plot. PCA plot. The 7 samples shown in the 2D plane spanned by their first
two principal components. This type of plot is useful for visualizing the overall effect of experi-

mental covariates and batch effects.

ggplot(data, aes(PCl, PC2, color=condition, shape=type)) +
geom_point(size=3) +
xlab(paste@("PCl: ",percentVar[1l],"% variance")) +
ylab(paste@("PC2: ",percentVar[2],"% variance")) +
coord_fixed()
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Figure 8: PCA plot. PCA plot customized using the ggplot2 library.
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Variations to the standard workflow

3.1

3.2

3.3

Wald test individual steps

The function DESeq runs the following functions in order:

dds <- estimateSizeFactors(dds)
dds <- estimateDispersions(dds)
dds <- nbinomWaldTest(dds)

Contrasts

A contrast is a linear combination of estimated log2 fold changes, which can be
used to test if differences between groups are equal to zero. The simplest use case
for contrasts is an experimental design containing a factor with three levels, say A,
B and C. Contrasts enable the user to generate results for all 3 possible differences:
log2 fold change of B vs A, of C vs A, and of C vs B. The contrast argument of
results function is used to extract test results of log2 fold changes of interest, for
example:

results(dds, contrast=c("condition","C","B"))

Log2 fold changes can also be added and subtracted by providing a list to the
contrast argument which has two elements: the names of the log2 fold changes
to add, and the names of the log2 fold changes to subtract. The names used in
the list should come from resultsNames (dds).

Alternatively, a numeric vector of the length of resultsNames (dds) can be provided,
for manually specifying the linear combination of terms. Demonstrations of the use
of contrasts for various designs can be found in the examples section of the help
page for the results function. The mathematical formula that is used to generate
the contrasts can be found in Section 4.5.

Interactions

Interaction terms can be added to the design formula, in order to test, for example,
if the log2 fold change attributable to a given condition is different based on another
factor, for example if the condition effect differs across genotype.

Many users begin to add interaction terms to the design formula, when in fact
a much simpler approach would give all the results tables that are desired. We
will explain this approach first, because it is much simpler to perform. If the
comparisons of interest are, for example, the effect of a condition for different
sets of samples, a simpler approach than adding interaction terms explicitly to the
design formula is to perform the following steps:
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1. combine the factors of interest into a single factor with all combinations of
the original factors

2. change the design to include just this factor, e.g. ~group

Using this design is similar to adding an interaction term, in that it models multiple
condition effects which can be easily extracted with results. Suppose we have
two factors genotype (with values I, Il, and Ill) and condition (with values A and
B), and we want to extract the condition effect specifically for each genotype. We
could use the following approach to obtain, e.g. the condition effect for genotype

dds$group <- factor(pasteO(dds$genotype, dds$condition))
design(dds) <- ~ group

dds <- DESeq(dds)

resultsNames (dds)

results(dds, contrast=c("group", "IB", "IA"))
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Figure 9: Genotype-specific condition effects. Here, the y-axis represents log, (counts +
1), and each group has 20 samples (black dots). A red line connects the mean of the groups
within each genotype. On the left side (Gene 1), note that the condition effect is consistent
across genotypes. Although condition A has a different baseline for I,1l, and Ill, the condition
effect is a log2 fold change of about 2 for each genotype. Using a model with an interaction
term genotype:condition, the interaction terms for genotype Il and genotype Il will be nearly
0. On the right side (Gene 2), we can see that the condition effect is not consistent across
genotype. Here the main condition effect (the effect for the reference genotype 1) is again 2.
However, this time the interaction terms will be around 1 for genotype Il and -4 for genotype
I1l. This is because the condition effect is higher by 1 for genotype |l compared to genotype I,
and lower by 4 for genotype Ill compared to genotype |. The condition effect for genotype Il (or
I11) is obtained by adding the main condition effect and the interaction term for that genotype.
Such a plot can be made using the plotCounts function (Section 1.5.2).

Now we will continue to explain the use of interactions in order to test for differences
in condition effects. We continue with the example of condition effects across three
genotypes (I, I, and Ill). For a diagram of how interactions might look across
genotypes please refer to Figure 9.

The key point to remember about designs with interaction terms is that, unlike for a
design ~genotype+condition, where the condition effect represents the overall ef-
fect controlling for differences due to genotype, by adding genotype: condition, the

31



Differential analysis of count data — the DESeq2 package

3.4

3.5

main condition effect only represents the effect of condition for the reference level
of genotype (I, or whichever level was defined by the user as the reference level).
The interaction terms genotypeII.conditionB and genotypeIII.conditionB give
the difference between the condition effect for a given genotype and the condition
effect for the reference genotype.

This genotype-condition interaction example is examined in further detail in Ex-
ample 3 in the help page for results, which can be found by typing ?results.
In particular, we show how to test for differences in the condition effect across
genotype, and we show how to obtain the condition effect for non-reference geno-
types. Note that in DESeq2 version 1.10, the DESeq function will turn off log
fold change shrinkage (setting betaPrior=FALSE), for designs which contain an
interaction term. Turning off the log fold change shrinkage allows the software to
use standard model matrices (as would be produced by model.matrix), where the
interaction coefficients are easier to interpret.

Time-series experiments

There are a number of ways to analyze time-series experiments, depending on the
biological question of interest. In order to test for any differences over multiple time
points, once can use a design including the time factor, and then test using the
likelihood ratio test as described in Section 3.5, where the time factor is removed in
the reduced formula. For a control and treatment time series, one can use a design
formula containing the condition factor, the time factor, and the interaction of the
two. In this case, using the likelihood ratio test with a reduced model which does
not contain the interaction terms will test whether the condition induces a change
in gene expression at any time point after the reference level time point (time 0).
An example of the later analysis is provided in an RNA-seq workflow on the Bio-
conductor website: http://www.bioconductor.org/help/workflows/rnaseqGene/.

Likelihood ratio test

DESeq2 offers two kinds of hypothesis tests: the Wald test, where we use the
estimated standard error of a log2 fold change to test if it is equal to zero, and
the likelihood ratio test (LRT). The LRT examines two models for the counts, a
full model with a certain number of terms and a reduced model, in which some
of the terms of the full model are removed. The test determines if the increased
likelihood of the data using the extra terms in the full model is more than expected
if those extra terms are truly zero.

The LRT is therefore useful for testing multiple terms at once, for example testing
3 or more levels of a factor at once, or all interactions between two variables. The
LRT for count data is conceptually similar to an analysis of variance (ANOVA)
calculation in linear regression, except that in the case of the Negative Binomial
GLM, we use an analysis of deviance (ANODEV), where the deviance captures the
difference in likelihood between a full and a reduced model.
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3.6

The likelihood ratio test can be performed by specifying test="LRT" when using
the DESeq function, and providing a reduced design formula, e.g. one in which a
number of terms from design(dds) are removed. The degrees of freedom for the
test is obtained from the difference between the number of parameters in the two
models. A simple likelihood ratio test, if the full design was condition would look
like:

dds <- DESeq(dds, test="LRT", reduced=~1)
res <- results(dds)

If the full design contained other variables, such as a batch variable, then the
likelihood ratio test would look like:

dds <- DESeq(dds, test="LRT", reduced=~batch)
res <- results(dds)

Approach to count outliers

RNA-seq data sometimes contain isolated instances of very large counts that are
apparently unrelated to the experimental or study design, and which may be con-
sidered outliers. There are many reasons why outliers can arise, including rare
technical or experimental artifacts, read mapping problems in the case of genet-
ically differing samples, and genuine, but rare biological events. In many cases,
users appear primarily interested in genes that show a consistent behavior, and this
is the reason why by default, genes that are affected by such outliers are set aside
by DESeq2, or if there are sufficient samples, outlier counts are replaced for model
fitting. These two behaviors are described below.

The DESeq function calculates, for every gene and for every sample, a diagnostic
test for outliers called Cook’s distance. Cook’s distance is a measure of how much
a single sample is influencing the fitted coefficients for a gene, and a large value of
Cook's distance is intended to indicate an outlier count. The Cook's distances are
stored as a matrix available in assays(dds) [["cooks"]].

The results function automatically flags genes which contain a Cook's distance
above a cutoff for samples which have 3 or more replicates. The p values and
adjusted p values for these genes are set to NA. At least 3 replicates are required
for flagging, as it is difficult to judge which sample might be an outlier with only 2
replicates. This filtering can be turned off with results(dds, cooksCutoff=FALSE).

With many degrees of freedom —i. e., many more samples than number of param-
eters to be estimated — it is undesirable to remove entire genes from the analysis
just because their data include a single count outlier. When there are 7 or more
replicates for a given sample, the DESeq function will automatically replace counts
with large Cook’s distance with the trimmed mean over all samples, scaled up by
the size factor or normalization factor for that sample. This approach is conserva-
tive, it will not lead to false positives, as it replaces the outlier value with the value
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predicted by the null hypothesis. This outlier replacement only occurs when there
are 7 or more replicates, and can be turned off with DESeq(dds,minReplicatesFor
Replace=Inf).

The default Cook’s distance cutoff for the two behaviors described above depends
on the sample size and number of parameters to be estimated. The default is
to use the 99% quantile of the F(p,m — p) distribution (with p the number of
parameters including the intercept and m number of samples). The default for gene
flagging can be modified using the cooksCutoff argument to the results function.
For outlier replacement, DESeq preserves the original counts in counts(dds) saving
the replacement counts as a matrix named replaceCounts in assays(dds). Note
that with continuous variables in the design, outlier detection and replacement is
not automatically performed, as our current methods involve a robust estimation
of within-group variance which does not extend easily to continuous covariates.
However, users can examine the Cook's distances in assays(dds)[["cooks"1], in
order to perform manual visualization and filtering if necessary.

Note on many outliers: if there are very many outliers (e.g. many hundreds
or thousands) reported by summary(res), one might consider further exploration
to see if a single sample or a few samples should be removed due to low quality.
The automatic outlier filtering/replacement is most useful in situations which the
number of outliers is limited. When there are thousands of reported outliers, it
might make more sense to turn off the outlier filtering/replacement (DESeq with min
ReplicatesForReplace=Inf and results with cooksCutoff=FALSE) and perform
manual inspection: First it would be advantageous to make a PCA plot using the
code example in Section 2.2.3 to spot individual sample outliers; Second, one can
make a boxplot of the Cook’s distances to see if one sample is consistently higher
than others:

par(mar=c(8,5,2,2))
boxplot(logl0(assays(dds)[["cooks"]]), range=0, las=2)

Dispersion plot and fitting alternatives

Plotting the dispersion estimates is a useful diagnostic. The dispersion plot in
Figure 11 is typical, with the final estimates shrunk from the gene-wise estimates
towards the fitted estimates. Some gene-wise estimates are flagged as outliers
and not shrunk towards the fitted value, (this outlier detection is described in the
manual page for estimateDispersionsMAP). The amount of shrinkage can be more
or less than seen here, depending on the sample size, the number of coefficients,
the row mean and the variability of the gene-wise estimates.
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Figure 10: Boxplot of Cook’s distances. Here we can look to see if one sample has much
higher Cook's distances than the other samples. In this case, the samples all have comparable
range of Cook'’s distances.
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3.7.1

3.7.2

3.8

Local or mean dispersion fit

A local smoothed dispersion fit is automatically substitited in the case that the
parametric curve doesn't fit the observed dispersion mean relationship. This can
be prespecified by providing the argument fitType="local" to either DESeq or es
timateDispersions. Additionally, using the mean of gene-wise disperion estimates
as the fitted value can be specified by providing the argument fitType="mean".

Supply a custom dispersion fit

Any fitted values can be provided during dispersion estimation, using the lower-
level functions described in the manual page for estimateDispersionsGeneEst.
In the code chunk below, we store the gene-wise estimates which were already
calculated and saved in the metadata column dispGeneEst. Then we calculate the
median value of the dispersion estimates above a threshold, and save these values
as the fitted dispersions, using the replacement function for dispersionFunction.
In the last line, the function estimateDispersionsMAP, uses the fitted dispersions
to generate maximum a posteriori (MAP) estimates of dispersion.

ddsCustom <- dds

useForMedian <- mcols(ddsCustom)$dispGeneEst > le-7

medianDisp <- median(mcols(ddsCustom)$dispGeneEst[useForMedian],
na.rm=TRUE)

dispersionFunction(ddsCustom) <- function(mu) medianDisp

ddsCustom <- estimateDispersionsMAP(ddsCustom)

Independent filtering of results

The results function of the DESeq2 package performs independent filtering by
default using the mean of normalized counts as a filter statistic. A threshold on
the filter statistic is found which optimizes the number of adjusted p values lower
than a significance level alpha (we use the standard variable name for significance
level, though it is unrelated to the dispersion parameter «). The theory behind
independent filtering is discussed in greater detail in Section 4.7. The adjusted p
values for the genes which do not pass the filter threshold are set to NA.

The independent filtering is performed using the filtered p function of the gene-
filter package, and all of the arguments of filtered p can be passed to the results
function. The filter threshold value and the number of rejections at each quantile of
the filter statistic are available as metadata of the object returned by results. For
example, we can visualize the optimization by plotting the filterNumRej attribute
of the results object, as seen in Figure 12.

metadata(res)$alpha

## [1] 0.1
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metadata(res)$filterThreshold

## 27.1%
## 5.56

plot(metadata(res)$filterNumRej,
type="b", ylab="number of rejections",
xlab="quantiles of filter")
lines(metadata(res)$lo.fit, col="red")
abline(v=metadata(res)$filterTheta)
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Figure 12: Independent filtering. The results function maximizes the number of rejections
(adjusted p value less than a significance level), over the quantiles of a filter statistic (the mean
of normalized counts). The threshold chosen (vertical line) is the lowest quantile of the fil-

ter for which the number of rejections is within 1 residual standard deviation to the peak of a
curve fit to the number of rejections over the filter quantiles.

Independent filtering can be turned off by setting independentFiltering to FALSE.

resNoFilt <- results(dds, independentFiltering=FALSE)
addmargins(table(filtering=(res$padj < .1),
noFiltering=(resNoFilt$padj < .1)))

##t noFiltering

## filtering FALSE TRUE Sum
#t FALSE 7418 0 7418
#t TRUE 111 943 1054
#it Sum 7529 943 8472
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Tests of log2 fold change above or below a threshold

It is also possible to provide thresholds for constructing Wald tests of significance.
Two arguments to the results function allow for threshold-based Wald tests: 1fc
Threshold, which takes a numeric of a non-negative threshold value, and altHy
pothesis, which specifies the kind of test. Note that the alternative hypothesis is
specified by the user, i.e. those genes which the user is interested in finding, and
the test provides p values for the null hypothesis, the complement of the set defined
by the alternative. The altHypothesis argument can take one of the following four
values, where ( is the log2 fold change specified by the name argument:

= greaterAbs - |5| > lfcThreshold - tests are two-tailed

= lessAbs - |8| < lfcThreshold - p values are the maximum of the upper and
lower tests

= greater - 8 > lfcThreshold
= less - < —lfcThreshold

The test altHypothesis="lessAbs" requires that the user have run DESeq with
the argument betaPrior=FALSE. To understand the reason for this requirement,
consider that during hypothesis testing, the null hypothesis is favored unless the
data provide strong evidence to reject the null. For this test, including a zero-
centered prior on log fold change would favor the alternative hypothesis, shrinking
log fold changes toward zero. Removing the prior on log fold changes for tests of
small log fold change allows for detection of only those genes where the data alone
provides evidence against the null.

The four possible values of altHypothesis are demonstrated in the following
code and visually by MA-plots in Figure 13. First we run DESeq and specify be
taPrior=FALSE in order to demonstrate altHypothesis="1essAbs".

ddsNoPrior <- DESeq(dds, betaPrior=FALSE)

In order to produce results tables for the following tests, the same arguments
(except ylim) would be provided to the results function.

par(mfrow=c(2,2),mar=c(2,2,1,1))
yl <- c(-2.5,2.5)

resGA <- results(dds, lfcThreshold=.5, altHypothesis="greaterAbs")
resLA <- results(ddsNoPrior, lfcThreshold=.5, altHypothesis="lessAbs")
resG <- results(dds, lfcThreshold=.5, altHypothesis="greater")

resL <- results(dds, lfcThreshold=.5, altHypothesis="less")

plotMA(resGA, ylim=yl)
abline(h=c(-.5,.5),col="dodgerblue", lwd=2)
plotMA(resLA, ylim=yl)
abline(h=c(-.5,.5),col="dodgerblue", lwd=2)
plotMA(resG, ylim=yl)
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abline(h=.5,col="dodgerblue", lwd=2)
plotMA(resL, ylim=yl)
abline(h=-.5,col="dodgerblue", lwd=2)

Te-01 Te+03 Te-01 Te+03

Figure 13: MA-plots of tests of log2 fold change with respect to a threshold value. Going
left to right across rows, the tests are for altHypothesis="greaterAbs", "lessAbs", "greater",

and "less".

Access to all calculated values

All row-wise calculated values (intermediate dispersion calculations, coefficients,
standard errors, etc.) are stored in the DESeqDataSet object, e.g. dds in this
vignette. These values are accessible by calling mcols on dds. Descriptions of the
columns are accessible by two calls to mcols.

mcols(dds,use.names=TRUE)[1:4,1:4]

## DataFrame with 4 rows and 4 columns
## gene baseMean baseVar allZero

## <factor> <numeric> <numeric> <logical>
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## FBgn0000008 FBgn0000008 95.144 2.25e+02 FALSE
## FBgn0000014 FBgn0000014 1.057 2.96e+00 FALSE
## FBgn0000015 FBgn0000015 0.847 1.01e+00 FALSE
## FBgn0000017 FBgn0000017 4352.593 3.62e+05 FALSE

# here using substr() only for display purposes
substr(names(mcols(dds)),1,10)

## [1] "gene" "baseMean" "baseVar" "allZero"
## [5] "dispGeneEs" "dispFit" "dispersion" "dispIter"
## [9] "dispOutlie" "dispMAP" "Intercept" "conditionu"
## [13] "conditiont" "SE_Interce" "SE_conditi" "SE_conditi"
## [17] "MLE_Interc" "MLE_condit" "WaldStatis" "WaldStatis"
## [21] "WaldStatis" "WaldPvalue" "WaldPvalue" "WaldPvalue"
## [25] "betaConv" "betalter" "deviance" "maxCooks"
mcols(mcols(dds), use.names=TRUE)[1:4,]

## DataFrame with 4 rows and 2 columns

## type

## <character>

## gene input

## baseMean intermediate

## baseVar intermediate

## allZero intermediate

## description
## <character>
## gene

## baseMean mean of normalized counts for all samples
## baseVar variance of normalized counts for all samples
## allZero all counts for a gene are zero

The mean values 11;; = s;¢;; and the Cook’s distances for each gene and sample
are stored as matrices in the assays slot:

head(assays(dds) [["mu"]])

## treatedl treated2 treated3 untreatedl untreated2
## FBgn0000008  154.37 71.853 78.590 107.305 169.03
## FBgn0000014 1.83 0.850 0.930 1.292 2.04
## FBgn0000015 1.28 0.595 0.651 0.948 1.49
## FBgn0000017 6491.79 3021.568 3304.895 5276.388 8311.41
## FBgn0000018 660.84 307.586 336.428 491.323 773.93
## FBgn0000024 10.83 5.040 5.513 7.195 11.33
## untreated3 untreated4
## FBgn0000008 61.233 70.862
## FBgn0000014 0.737 0.853
## FBgn0000015 0.541 0.626
## FBgn0000017 3010.958 3484.435
## FBgn0000018 280.372 324.461
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## FBgn0000024 4.106 4.751

head(assays(dds)[["cooks"]1])

## treatedl treated2 treated3 untreatedl untreated2
## FBgn00OOO0O8 0.08803 0.30431 0.077569 0.0984 0.01370
## FBgn0000014 1.15575 0.26448 0.304818 2.3881 0.13034
## FBgn0000015 0.00989 0.12687 0.133641 0.1076 0.01755
## FBgn0000017 0.01853 0.00256 0.000717 0.0749 0.01318
## FBgn0000018 0.08725 0.00627 0.059497 0.1914 0.00168
## FBgn0000024 0.02330 0.19266 0.012765 0.2081 0.00216
## untreated3 untreated4
## FBgn0000008 0.1888 0.000541
## FBgn0000014 0.1355 0.166619
## FBgn0000015 0.0436  0.344032
## FBgn00O0017 0.1835 0.050460
## FBgn0000018 0.0736 0.009682
## FBgn0000024 0.0418 0.099273

The dispersions a; can be accessed with the dispersions function.

head(dispersions(dds))
## [1] 0.0304 2.8630 2.2096 0.0128 0.0156 0.2386

# which is the same as
head(mcols(dds)$dispersion)

## [1] 0.0304 2.8630 2.2096 0.0128 0.0156 0.2386

The size factors s; are accessible via sizeFactors:

sizeFactors(dds)

#i# treatedl treated2 treated3 untreatedl untreated2 untreated3

## 1.636 0.761 0.833 1.138 1.793 0.650
## untreated4
## 0.752

For advanced users, we also include a convenience function coef for extracting the
matrix of coefficients [3;,] for all genes 7 and parameters r, as in the formula in
Section 4.1. This function can also return a matrix of standard errors, see ?coef.
The columns of this matrix correspond to the effects returned by resultsNames
Note that the results function is best for building results tables with p values and
adjusted p values.

head(coef(dds))

#i# Intercept conditionuntreated conditiontreated
## FBgn0000008 6.560 -0.000875 0.000876
## FBgn0000014 0.171 0.011678 -0.011677
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## FBgn0000015 -0.309 0.045671 -0.045671
## FBgn0000017 12.067 0.111950 -0.111949
## FBgn0000018 8.706 0.047663 -0.047662
## FBgn0000024 2.694 -0.033432 0.033432

2

The beta prior variance o

is stored as an attribute of the DESeqDataSet:

attr(dds, "betaPriorVar")

## Intercept conditionuntreated conditiontreated
#i#t 1.0e+06 1.1le-01 1.1le-01

The dispersion prior variance 03 is stored as an attribute of the dispersion function:

dispersionFunction(dds)

## function (q)

## coefs[1] + coefs[2]/q
## <environment: 0x189b9370>
## attr(,"coefficients")
## asymptDisp extraPois
#i#t 0.014 2.721
## attr(,"fitType")

## [1] "parametric"

## attr(,"varLogDispEsts")
## [1] 0.989

## attr(,"dispPriorVar")
## [1] 0.499

attr(dispersionFunction(dds), "dispPriorVar")

## [1] 0.499

The version of DESeq2 which was used to construct the DESeqDataSet object, or
the version used when DESeq was run, is stored here:

metadata(dds)[["version"]]

## [1] '1.14.1"

Sample-/gene-dependent normalization factors

In some experiments, there might be gene-dependent dependencies which vary
across samples. For instance, GC-content bias or length bias might vary across
samples coming from different labs or processed at different times. We use the
terms “normalization factors” for a gene x sample matrix, and “size factors” for a
single number per sample. Incorporating normalization factors, the mean parameter
i; from Section 4.1 becomes:
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3.12

3.12.1

pij = NFijqij

with normalization factor matrix NF' having the same dimensions as the counts
matrix K. This matrix can be incorporated as shown below. We recommend
providing a matrix with row-wise geometric means of 1, so that the mean of nor-
malized counts for a gene is close to the mean of the unnormalized counts. This
can be accomplished by dividing out the current row geometric means.

normFactors <- normFactors / exp(rowMeans(log(normFactors)))
normalizationFactors(dds) <- normFactors

These steps then replace estimateSizeFactors in the steps described in Sec-
tion 3.1. Normalization factors, if present, will always be used in the place of
size factors.

The methods provided by the cqn or EDASeq packages can help correct for GC or
length biases. They both describe in their vignettes how to create matrices which
can be used by DESeq2. From the formula above, we see that normalization
factors should be on the scale of the counts, like size factors, and unlike offsets
which are typically on the scale of the predictors (i.e. the logarithmic scale for
the negative binomial GLM). At the time of writing, the transformation from the
matrices provided by these packages should be:

cqgnOffset <- cqnObject$glm.offset
cqgnNormFactors <- exp(cqnOffset)
EDASeqgNormFactors <- exp(-1 x EDASeqOffset)

“Model matrix not full rank”

While most experimental designs run easily using design formula, some design
formulas can cause problems and result in the DESeq function returning an error
with the text: “the model matrix is not full rank, so the model cannot be fit
as specified.” There are two main reasons for this problem: either one or more
columns in the model matrix are linear combinations of other columns, or there
are levels of factors or combinations of levels of multiple factors which are missing
samples. We address these two problems below and discuss possible solutions:

Linear combinations

The simplest case is the linear combination, or linear dependency problem, when
two variables contain exactly the same information, such as in the following sam-
ple table. The software cannot fit an effect for batch and condition, because
they produce identical columns in the model matrix. This is also referred to as
“perfect confounding”. A unique solution of coefficients (the §; in the formula in
Section 4.1) is not possible.
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H#i# batch condition

## 1 1 A
## 2 1 A
## 3 2 B
## 4 2 B

Another situation which will cause problems is when the variables are not identical,
but one variable can be formed by the combination of other factor levels. In the
following example, the effect of batch 2 vs 1 cannot be fit because it is identical
to a column in the model matrix which represents the condition C vs A effect.

## batch condition
## 1
##
##
##
##
##

SO Ul A WN -
NN R B R
OO0 W w> >

In both of these cases above, the batch effect cannot be fit and must be removed
from the model formula. There is just no way to tell apart the condition effects
and the batch effects. The options are either to assume there is no batch effect
(which we know is highly unlikely given the literature on batch effects in sequencing
datasets) or to repeat the experiment and properly balance the conditions across
batches. A balanced design would look like:

## batch condition
##
##
##
##
##
##

o Ul W N
N NN BFP =
O > 0O W >

Finally, there is a case where we can in fact perform inference. Consider an exper-
iment with grouped individuals, where we seek to test the group-specific effect of
a treatment, while controlling for individual effects. A simple example of such a
design is:

(coldata <- data.frame(grp=factor(rep(c("X","Y"),each=4)),
ind=factor(rep(1l:4,each=2)),
cnd=factor(rep(c("A","B"),4))))

## grp ind cnd
## 1 X 1 A
## 2
## 3
## 4

X X X

1 B
2 A
2 B
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# 5 Y 3 A
# 6 Y 3 B
# 7 Y 4 A
# 8 Y 4 B

This design can be analyzed by DESeq2 but requires a bit of refactoring in order
to fit the model terms. Here we will use a trick described in the edgeR user guide,
from the section “Comparisons Both Between and Within Subjects”. If we try to
analyze with a formula such as, ~ind+grpxcnd, we will obtain an error, because
the effect for group is a linear combination of the individuals.

However, the following steps allow for an analysis of group-specific condition effects,
while controlling for differences in individual. For object construction, use a dummy
design, such as ~1. Then add a column ind.n which distinguishes the individuals
“nested"” within a group. Here, we add this column to coldata, but in practice you
would add this column to dds.

coldata$ind.n <- factor(rep(rep(l:2,each=2),2))
coldata

## grp ind cnd ind.n

#1 X 1 A 1
# 2 X 1 B 1
## 3 X 2 A 2
# 4 X 2 B 2
# 5 Y 3 A 1
# 6 Y 3 B 1
# 7 Y 4 A 2
# 8 Y 4 B 2

Now we can reassign our DESeqDataSet a design of ~grp+grp:ind.n+grp:cnd,
before we call DESeq. This new design will result in the following model matrix:

model.matrix(~ grp + grp:ind.n + grp:cnd, coldata)

## (Intercept
##
##
##
##
##
##
##
## 1
## attr(,"assign")
## [1] 0122 33
## attr(,"contrasts")

## attr(,"contrasts")$grp
## [1] "contr.treatment"

grpY grpX:ind.n2 grpY:ind.n2 grpX:cndB grpY:cndB
0 0 0 0

0N U A WN R
e e N = I =
H R R HEO O
© 00 O KR~
(S i - I o B ol o
©C 00O O K
H O o000 O o
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3.12.2

##

## attr(,"contrasts")$ind.n
## [1] "contr.treatment"

##

## attr(,"contrasts")$cnd
## [1] "contr.treatment"

where the terms grpX. cndB and grpY . cndB give the group-specific condition effects.
These can be extracted using results with the name argument. Furthermore,
grpX.cndB and grpY.cndB can be contrasted using the contrast argument, in
order to test if the condition effect is different across group:

results(dds, contrast=list("grpY.cndB","grpX.cndB"))

Levels without samples

The base R function for creating model matrices will produce a column of zeros
if a level is missing from a factor or a combination of levels is missing from an
interaction of factors. The solution to the first case is to call droplevels on the
column, which will remove levels without samples. This was shown in the beginning
of this vignette.

The second case is also solvable, by manually editing the model matrix, and then
providing this to DESeq. Here we construct an example dataset to illustrate:

group <- factor(rep(l:3,each=6))
condition <- factor(rep(rep(c("A","B","C"),each=2),3))
(d <- data.frame(group, condition)[-c(17,18),])

## group condition
#t 1
#it
#i#t
##
#it
#t
#it
#it
##
##
#t
##t
#it
##
##
#t

O 0o NO UL B WN B

e el
A W N R O

=
(6,]
W w x> OO ww>>>0N00nwwr> >

W W Ww W NNDNNNNRE R P -

=
[e)]
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Note that if we try to estimate all interaction terms, we introduce a column with
all zeros, as there are no condition C samples for group 3. (Here, unname is used
to display the matrix concisely.)

ml <- model.matrix(~ conditionx*group, d)
colnames (ml)

## [1] "(Intercept)" "conditionB" "conditionC"
## [4] "group2" "group3" "conditionB:group2"
## [7] "conditionC:group2" "conditionB:group3" "conditionC:group3"
unname (ml)

## Lpdll (21 (0,31 140 [[,8] LEN 1,71 [L81 [[,9]
## [1,] 1 0 0 0 0 0 0 0 0
## [2,] 1 0 0 0 0 0 0 0 0
##  [3,] 1 1 0 0 0 0 0 0 0
##  [4,] 1 1 0 0 0 0 0 0 0
## [5,] 1 0 1 0 0 0 0 0 0
## [6,] 1 0 1 0 0 0 0 0 0
## [7,] 1 0 0 1 0 0 0 0 0
## [8,] 1 0 0 1 0 0 0 0 0
#t [9,] 1 1 0 1 0 1 0 0 0
## [10,] 1 1 0 1 0 1 0 0 0
## [11,] 1 0 1 1 0 0 1 0 0
## [12,] 1 0 1 1 0 0 1 0 0
## [13,] 1 0 0 0 1 0 0 0 0
## [14,] 1 0 0 0 1 0 0 0 0
## [15,] 1 1 0 0 1 0 0 1 0
## [16,] 1 1 0 0 1 0 0 1 0
## attr(,"assign")

## [11 011223333

## attr(,"contrasts")

## attr(,"contrasts")$condition

## [1] "contr.treatment"

##

## attr(,"contrasts")$group

## [1] "contr.treatment"

We can remove this column like so:

ml <- ml[,-9]

unname (ml)

## [,11 [,21 [,31 [,4]1 [,51 [,6] [,7]1 [,8]

## [1,] 1 0 0 0 0 0 0 0

## [2,] 1 0 0 0 0 0 0 0

##  [3,] 1 1 0 0 0 0 0 0

## [4,] 1 1 0 0 0 0 0 0

## [5,] 1 0 1 0 0 0 0 0

## [6,] 1 0 1 0 0 0 0 0
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## [7,] 1 0 0 1 0 0 0 0
## [8,] 1 0 0 1 0 0 0 0
## [9,] 1 1 0 1 0 1 0 0
## [10,] 1 1 0 1 0 1 0 0
## [11,] 1 0 1 1 0 0 1 0
## [12,] 1 0 1 1 0 0 1 0
## [13,] 1 0 0 0 1 0 0 0
## [14,] 1 0 0 0 1 0 0 0
## [15,] 1 1 0 0 1 0 0 1
## [16, ] 1 1 0 0 1 0 0 1

Now this matrix m1 can be provided to the full argument of DESeq. For a likelihood
ratio test of interactions, a model matrix using a reduced design such as ~con
dition+group can be given to the reduced argument. Wald tests can also be
generated instead of the likelihood ratio test, but for user-supplied model matrices,
the argument betaPrior must be set to FALSE.
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Theory behind DESeq2

4.1

4.2

The DESeg2 model

The DESeq2 model and all the steps taken in the software are described in detail
in our publication [1], and we include the formula and descriptions in this section
as well. The differential expression analysis in DESeq2 uses a generalized linear
model of the form:

Kij ~ NB(pij, o)
Mig = S;jqij
logy(qij) = x;.Bi

where counts Kj;; for gene i, sample j are modeled using a negative binomial
distribution with fitted mean p;; and a gene-specific dispersion parameter ;. The
fitted mean is composed of a sample-specific size factor s;> and a parameter g;;
proportional to the expected true concentration of fragments for sample j. The
coefficients 3; give the log2 fold changes for gene i for each column of the model
matrix X.

The dispersion parameter «; defines the relationship between the variance of the
observed count and its mean value. In other words, how far do we expected the
observed count will be from the mean value, which depends both on the size factor
s; and the covariate-dependent part ¢;; as defined above.

Var(K;j) = E[(Kij — pij)?] = pij + cuipil

The log2 fold changes in (3; are the maximum a posteriori estimates after incor-
porating a zero-centered Normal prior — in the software referrred to as a -prior —
hence DESeq2 provides “moderated” log2 fold change estimates. Dispersions are
estimated using expected mean values from the maximum likelihood estimate of
log2 fold changes, and optimizing the Cox-Reid adjusted profile likelihood, as first
implemented for RNA-seq data in edgeR [15, 16]. The steps performed by the
DESeq function are documented in its manual page; briefly, they are:

1. estimation of size factors s; by estimateSizeFactors
2. estimation of dispersion a; by estimateDispersions
3. negative binomial GLM fitting for 8; and Wald statistics by nbinomWaldTest

For access to all the values calculated during these steps, see Section 3.10

Changes compared to the DESeq package

The main changes in the package DESeq2, compared to the (older) version DESeq,
are as follows:

5The model can be
generalized to use
sample- and gene-

dependent normaliza-

tion factors, see Ap-
pendix 3.11.

49


http://bioconductor.org/packages/edgeR
http://bioconductor.org/packages/DESeq
http://bioconductor.org/packages/DESeq

Differential analysis of count data — the DESeq2 package

= RangedSummarizedExperiment is used as the superclass for storage of input
data, intermediate calculations and results.

= Maximum a posteriori estimation of GLM coefficients incorporating a zero-
centered Normal prior with variance estimated from data (equivalent to
Tikhonov/ridge regularization). This adjustment has little effect on genes
with high counts, yet it helps to moderate the otherwise large variance in
log2 fold change estimates for genes with low counts or highly variable counts.

= Maximum a posteriori estimation of dispersion replaces the sharingMode
options fit-only or maximum of the previous version of the package. This is
similar to the dispersion estimation methods of DSS [17].

= All estimation and inference is based on the generalized linear model, which
includes the two condition case (previously the exact test was used).

= The Wald test for significance of GLM coefficients is provided as the default
inference method, with the likelihood ratio test of the previous version still
available.

= |t is possible to provide a matrix of sample-/gene-dependent normalization
factors (Section 3.11).

= Automatic independent filtering on the mean of normalized counts (Section
4.7).

= Automatic outlier detection and handling (Section 4.4).

4.3 Methods changes since the 2014 DESeq2 paper

= For the calculation of the beta prior variance, instead of matching the empiri-
cal quantile to the quantile of a Normal distribution, DESeq2() now uses the
weighted quantile function of the Hmisc package. The weighting is described
in the manual page for nbinomWaldTest. The weights are the inverse of the
expected variance of log counts (as used in the diagonals of the matrix W
in the GLM). The effect of the change is that the estimated prior variance is
robust against noisy estimates of log fold change from genes with very small
counts. This change was introduced in version 1.6 (October 2014).

= For designs with interaction terms, the solution described in the paper is no
longer used (log fold change shrinkage only applied to interaction terms).
Instead, DESeq2 now turns off log fold change shrinkage for all terms if
an interaction term is present (betaPrior=FALSE). While the inference on
interaction terms was correct with betaPrior=TRUE, the interpretation of the
individual terms and the extraction of contrasts was too confusing. This
change was introduced in version 1.10 (October 2015).

= A small change to the independent filtering routine: instead of taking the
quantile of the filter (the mean of normalized counts) which directly maxi-
mizes the number of rejections, the threshold chosen is the lowest quantile of
the filter for which the number of rejections is close to the peak of a curve fit
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4.4

to the number of rejections over the filter quantiles. “Close to" is defined as
within 1 residual standard deviation. This change was introduced in version
1.10 (October 2015).

For a list of all changes since version 1.0.0, see the NEWS file included in the
package.

Count outlier detection

DESeq?2 relies on the negative binomial distribution to make estimates and perform
statistical inference on differences. While the negative binomial is versatile in having
a mean and dispersion parameter, extreme counts in individual samples might not
fit well to the negative binomial. For this reason, we perform automatic detection of
count outliers. We use Cook’s distance, which is a measure of how much the fitted
coefficients would change if an individual sample were removed [18]. For more on
the implementation of Cook's distance see Section 3.6 and the manual page for
the results function. Below we plot the maximum value of Cook's distance for
each row over the rank of the test statistic to justify its use as a filtering criterion.

W <- res$stat

maxCooks <- apply(assays(dds)[["cooks"]],1,max)

idx <- lis.na(W)

plot(rank(W[idx]), maxCooks[idx], xlab="rank of Wald statistic",
ylab="maximum Cook's distance per gene",
ylim=c(0,5), cex=.4, col=rgh(0,0,0,.3))

m <- ncol(dds)

p<-3

abline(h=qf(.99, p, m - p))
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Figure 14: Cook’s distance. Plot of the maximum Cook’s distance per gene over the rank
of the Wald statistics for the condition. The two regions with small Cook’s distances are genes
with a single count in one sample. The horizontal line is the default cutoff used for 7 samples

and 3 estimated parameters.
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4.5

4.6

4.7

4.7 .1

Contrasts

Contrasts can be calculated for a DESeqDataSet object for which the GLM coef-
ficients have already been fit using the Wald test steps (DESeq with test="Wald"
or using nbinomWaldTest). The vector of coefficients S is left multiplied by the
contrast vector ¢ to form the numerator of the test statistic. The denominator is
formed by multiplying the covariance matrix X for the coefficients on either side
by the contrast vector ¢. The square root of this product is an estimate of the
standard error for the contrast. The contrast statistic is then compared to a normal
distribution as are the Wald statistics for the DESeq2 package.

ctB
VetYe

W =

Expanded model matrices

DESeq2 uses "expanded model matrices” with the log2 fold change prior, in order
to produce shrunken log2 fold change estimates and test results which are inde-
pendent of the choice of reference level. Another way of saying this is that the
shrinkage is symmetric with respect to all the levels of the factors in the design.
The expanded model matrices differ from the standard model matrices, in that
they have an indicator column (and therefore a coefficient) for each level of factors
in the design formula in addition to an intercept. Note that in version 1.10 and
onward, standard model matrices are used for designs with interaction terms, as
the shrinkage of log2 fold changes is not recommended for these designs.

The expanded model matrices are not full rank, but a coefficient vector 3; can
still be found due to the zero-centered prior on non-intercept coefficients. The
prior variance for the log2 fold changes is calculated by first generating maximum
likelihood estimates for a standard model matrix. The prior variance for each level
of a factor is then set as the average of the mean squared maximum likelihood esti-
mates for each level and every possible contrast, such that that this prior value will
be reference-level-independent. The contrast argument of the results function
is used in order to generate comparisons of interest.

Independent filtering and multiple testing

Filtering criteria

The goal of independent filtering is to filter out those tests from the procedure that
have no, or little chance of showing significant evidence, without even looking at
their test statistic. Typically, this results in increased detection power at the same
experiment-wide type | error. Here, we measure experiment-wide type | error in
terms of the false discovery rate.

A good choice for a filtering criterion is one that

1. is statistically independent from the test statistic under the null hypothesis,
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2. is correlated with the test statistic under the alternative, and

3. does not notably change the dependence structure —if there is any— between
the tests that pass the filter, compared to the dependence structure between
the tests before filtering.

The benefit from filtering relies on property 2, and we will explore it further in
Section 4.7.2. lts statistical validity relies on property 1 — which is simple to
formally prove for many combinations of filter criteria with test statistics— and 3,
which is less easy to theoretically imply from first principles, but rarely a problem
in practice. We refer to [19] for further discussion of this topic.

A simple filtering criterion readily available in the results object is the mean of
normalized counts irrespective of biological condition (Figure 15), and so this is
the criterion which is used automatically by the results function to perform in-
dependent filtering. Genes with very low counts are not likely to see significant
differences typically due to high dispersion. For example, we can plot the —log,
p values from all genes over the normalized mean counts.

plot(res$baseMean+l, -logl0O(res$pvalue),
log="x", xlab="mean of normalized counts",
ylab=expression(-log[10] (pvalue)),
ylim=c(0,30),
cex=.4, col=rgh(0,0,0,.3))
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Figure 15: Mean counts as a filter statistic. The mean of normalized counts provides an
independent statistic for filtering the tests. It is independent because the information about the
variables in the design formula is not used. By filtering out genes which fall on the left side of
the plot, the majority of the low p values are kept.
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4.7.2

Why does it work?

Consider the p value histogram in Figure 16. It shows how the filtering ameliorates
the multiple testing problem — and thus the severity of a multiple testing adjustment
— by removing a background set of hypotheses whose p values are distributed more
or less uniformly in [0, 1].

use <- res$baseMean > metadata(res)$filterThreshold

hl <- hist(res$pvalue[!use], breaks=0:50/50, plot=FALSE)
h2 <- hist(res$pvalueluse], breaks=0:50/50, plot=FALSE)
colori <- c('do not pass ="khaki", “pass ="powderblue")

barplot(height = rbind(hl$counts, h2$counts), beside = FALSE,
col = colori, space = 0, main = "", ylab="frequency")
text(x = c(0, length(hl$counts)), y = 0, label = paste(c(0,1)),
adj = c(0.5,1.7), xpd=NA)
legend("topright", fill=rev(colori), legend=rev(names(colori)))

O pass
- O donotpass

frequency
200 400 00O &O00

0
l

0 1

Figure 16: Histogram of p values for all tests. The area shaded in blue indicates the subset
of those that pass the filtering, the area in khaki those that do not pass.

Frequently asked questions

5.1

How can | get support for DESeq2?

We welcome questions about our software, and want to ensure that we eliminate
issues if and when they appear. We have a few requests to optimize the process:

= all questions should take place on the Bioconductor support site: https:
//support.bioconductor.org, which serves as a repository of questions and
answers. This helps to save the developers’ time in responding to similar
questions. Make sure to tag your post with “deseq2". It is often very helpful
in addition to describe the aim of your experiment.
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5.2

5.3

5.4

5.5

= before posting, first search the Bioconductor support site mentioned above
for past threads which might have answered your question.

= if you have a question about the behavior of a function, read the sections of
the manual page for this function by typing a question mark and the func-
tion name, e.g. ?results. We spend a lot of time documenting individual
functions and the exact steps that the software is performing.

= include all of your R code, especially the creation of the DESeqDataSet
and the design formula. Include complete warning or error messages, and
conclude your message with the full output of sessionInfo().

= if possible, include the output of as.data. frame(colData(dds)), so that we
can have a sense of the experimental setup. If this contains confidential
information, you can replace the levels of those factors using levels().

Why are some p values set to NA?

See the details in Section 1.5.3.

How can | get unfiltered DESeq results?

Users can obtain unfiltered GLM results, i.e. without outlier removal or independent
filtering with the following call:

dds <- DESeq(dds, minReplicatesForReplace=Inf)
res <- results(dds, cooksCutoff=FALSE, independentFiltering=FALSE)

In this case, the only p values set to NA are those from genes with all counts equal
to zero.

How do | use the variance stabilized or rlog trans-
formed data for differential testing?

The variance stabilizing and rlog transformations are provided for applications other
than differential testing, for example clustering of samples or other machine learning
applications. For differential testing we recommend the DESeq function applied to
raw counts as outlined in Section 1.4.

Can | use DESeQ?2 to analyze paired samples?

Yes, you should use a multi-factor design which includes the sample information as
a term in the design formula. This will account for differences between the samples
while estimating the effect due to the condition. The condition of interest should
go at the end of the design formula. See Section 1.6.
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5.6

If I have multiple groups, should | run all together or
split into pairs of groups?

Typically, we recommend users to run samples from all groups together, and then
use the contrast argument of the results function to extract comparisons of
interest after fitting the model using DESeq.

The model fit by DESeq estimates a single dispersion parameter for each gene, which
defines how far we expect the observed count for a sample will be from the mean
value from the model given its size factor and its condition group. See Section 4.1
and the DESeq2 paper for full details. Having a single dispersion parameter for
each gene is usually sufficient for analyzing multi-group data, as the final dispersion
value will incorporate the within-group variability across all groups.

However, for some datasets, exploratory data analysis (EDA) plots as outlined in
Section 2.2.3 could reveal that one or more groups has much higher within-group
variability than the others. A simulated example of such a set of samples is shown in
Figure 17. This is case where, by comparing groups A and B separately — subsetting
a DESeqDataSet to only samples from those two groups and then running DESeq
on this subset — will be more sensitive than a model including all samples together.
It should be noted that such an extreme range of within-group variability is not
common, although it could arise if certain treatments produce an extreme reaction
(e.g. cell death). Again, this can be easily detected from the EDA plots such as
PCA described in this vignette.

group

PC2: 12% variance

4 0 2 4
PC1: 18% variance

Figure 17: Extreme range of within-group variability. Typically, it is recommended to run
DESeq across samples from all groups, for datasets with multiple groups. However, this simu-
lated dataset shows a case where it would be preferable to compare groups A and B by creating
a smaller dataset without the C samples. Group C has much higher within-group variability,
which would inflate the per-gene dispersion estimate for groups A and B as well.
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5.7

5.8

5.9

5.10

Can | run DESeq?2 to contrast the levels of 100 groups?

DESeq2 will work with any kind of design specified using the R formula. We
enourage users to consider exploratory data analysis such as principal components
analysis as described in Section 2.2.3, rather than performing statistical testing of
all combinations of dozens of groups.

As a speed concern with fitting very large models, note that each additional level
of a factor in the design formula adds another parameter to the GLM which is fit
by DESeq2. Users might consider first removing genes with very few reads, e.g.
genes with row sum of 1, as this will speed up the fitting procedure.

Can | use DESeg2 to analyze a dataset without repli-
cates?

If a DESeqDataSet is provided with an experimental design without replicates,
a warning is printed, that the samples are treated as replicates for estimation of
dispersion. This kind of analysis is only useful for exploring the data, but will
not provide the kind of proper statistical inference on differences between groups.
Without biological replicates, it is not possible to estimate the biological variability
of each gene. More details can be found in the manual page for ?DESeq.

How can | include a continuous covariate in the design
formula?

Continuous covariates can be included in the design formula in the same manner
as factorial covariates. Continuous covariates might make sense in certain ex-
periments, where a constant fold change might be expected for each unit of the
covariate. However, in many cases, more meaningful results can be obtained by
cutting continuous covariates into a factor defined over a small number of bins (e.g.
3-5). In this way, the average effect of each group is controlled for, regardless of
the trend over the continuous covariates. In R, numeric vectors can be converted
into factors using the function cut.

Will the log fold change shrinkage “overshrink” large
differences?

For most datasets, the application of a prior to the log fold changes is a good
choice, providing log fold change estimates that are more stable across the entire
range of mean counts than the maximum likelihood estimates (see Figure 1 and
the DESeq2 paper). One situation in which the prior on log fold changes might
“overshrink” the estimates is if nearly all genes show no difference across condition,
a very small set of genes have extremely large differences, and no genes in between.
A simulated example of such a dataset is Figure 18. This is not likely to be the
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case for most experiments, where typically there is a range of differences by size:
some genes with medium-to-large differences across treatment, and some with
small differences.

<2 s NI = - ©

log2 fold change
0
l

-10

| T T T
1e-04 1e-01 1e+02 1e+05 1e+08

mean of normalized counts

Figure 18: Example of a dataset with where the log fold change prior should be turned
off. Here we show a simulated MA-plot, where nearly all of the log fold changes are falling
near the x-axis, with three genes that have very large log fold changes (note the y-axis is from
-10 to 10 on the log2 scale). This would indicate a dataset where the log fold change prior
would “overshrink” the large fold changes, and so betaPrior=FALSE should be used.

There could be experiments in which only a few genes have very large log fold
changes, and the rest of the genes are nearly constant across treatment. Or, there
could be artificially constructed libraries fitting this description, e.g. technical
replicates where the only difference across libraries is the concentration of a few
spiked-in genes. “Overshrinking” of a few large log fold changes can be assessed by
running results with addMLE=TRUE, which will print a results table with columns
for the shrunken and unshrunken (MLE) log fold changes. The two estimates
can be visually compared by running plotMA with MLE=TRUE and MLE=FALSE. If
“overshrinking” very large log fold changes is a concern, it is better to turn off the
log fold change prior by running DESeq with betaPrior=FALSE.

Even more detail: how do we avoid overshrinking on typical datasets? The answer
is that we estimate the width of the log fold change prior in a robust way to
accommodate the very largest log fold changes, and so to avoid overshrinking. The
details of the prior estimation are described in the manual page for nbinomwaldTest.
Briefly, a weighted upper quantile is used to match the width of the log fold
change prior to the upper 5% of the MLE log fold changes, weighting by the
expected sampling variability of the estimated log fold changes given the mean
count for each gene. Note that this does not equal an assumption that 5% of
genes are differentially expressed, but that a reasonable width of a log fold change
distribution can be obtained from the upper 5% of MLE log fold changes.



Differential analysis of count data — the DESeq2 package

5.11

5.12

5.13

5.14

| ran a likelihood ratio test, but results() only gives
me one comparison.

“...How do | get the p values for all of the variables/levels that were removed in
the reduced design?”

This is explained in the help page for ?results in the section about likelihood ratio
test p-values, but we will restate the answer here. When one performs a likelihood
ratio test, the p values and the test statistic (the stat column) are values for the
test that removes all of the variables which are present in the full design and not
in the reduced design. This tests the null hypothesis that all the coefficients from
these variables and levels of these factors are equal to zero.

The likelihood ratio test p values therefore represent a test of all the variables and
all the levels of factors which are among these variables. However, the results table
only has space for one column of log fold change, so a single variable and a single
comparison is shown (among the potentially multiple log fold changes which were
tested in the likelihood ratio test). This is indicated at the top of the results table
with the text, e.g.: “log2 fold change (MLE): condition C vs A" followed by “LRT
p-value: '~ batch + condition’ vs '~ batch’ ". This indicates that the p value is
for the likelihood ratio test of all the variables and all the levels, while the log fold
change is a single comparison from among those variables and levels. See the help
page for results for more details.

What are the exact steps performed by DESeq () ?

See the manual page for DESeq, which links to the subfunctions which are called
in order, where complete details are listed.

Is there an official Galaxy tool for DESeq2?

Yes. The repository for the DESeq2 tool is https://github.com/galaxyproject/
tools-iuc/tree/master/tools/deseq2 and a link to its location in the Tool Shed is
https://toolshed.g2.bx.psu.edu/view/iuc/deseq2/d983d19fbbab.

| want to benchmark DESeqg2 comparing to other DE
tools.

One aspect which can cause problems for comparison is that, by default, DESeq2
outputs NA values for adjusted p values based on independent filtering of genes
which have low counts. This is a way for the DESeq2 to give extra information
on why the adjusted p value for this gene is not small. Additionally, p values can
be set to NA based on extreme count outlier detection (see Section 1.5.3 for full
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details). These NA values should be considered negatives for purposes of estimating
sensitivity and specificity. The easiest way to work with the adjusted p values in a
benchmarking context is probably to convert these NA values to 1:

res$padj <- ifelse(is.na(res$padj), 1, res$padj)

Acknowledgments

We have benefited in the development of DESeq2 from the help and feedback of
many individuals, including but not limited to: The Bionconductor Core Team,
Alejandro Reyes, Andrzej Ole$, Aleksandra Pekowska, Felix Klein, Nikolaos Igna-
tiadis, Vince Carey, Owen Solberg, Ruping Sun, Devon Ryan, Steve Lianoglou,
Jessica Larson, Christina Chaivorapol, Pan Du, Richard Bourgon, Willem Talloen,
Elin Videvall, Hanneke van Deutekom, Todd Burwell, Jesse Rowley, Igor Dolgalev,
Stephen Turner, Ryan C Thompson, Tyr Wiesner-Hanks, Konrad Rudolph, David
Robinson, Mingxiang Teng, Mathias Lesche, Sonali Arora, Jordan Ramilowski, lan
Dworkin, Bjorn Griining, Ryan McMinds, Paul Gordon, Leonardo Collado Torres,
Enrico Ferrero.

Session Info

R version 3.3.2 (2016-10-31), x86_64-pc-linux-gnu

= lLocale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

= Base packages: base, datasets, grDevices, graphics, methods, parallel,
stats, stats4, utils

= Other packages: Biobase 2.34.0, BiocGenerics 0.20.0, DESeq2 1.14.1,
GenomelnfoDb 1.10.1, GenomicRanges 1.26.1, IHW 1.2.0, IRanges 2.8.1,
RColorBrewer 1.1-2, S4Vectors 0.12.1, SummarizedExperiment 1.4.0,
airway 0.108.0, ggplot2 2.2.0, hexbin 1.27.1, knitr 1.15.1, pasilla 1.2.0,
pheatmap 1.0.8, readr 1.0.0, tximport 1.2.0, tximportData 1.2.0, vsn 3.42.3

= Loaded via a namespace (and not attached): AnnotationDbi 1.36.0,
BioclInstaller 1.24.0, BiocParallel 1.8.1, BiocStyle 2.2.1, DBI 0.5-1,
Formula 1.2-1, Hmisc 4.0-0, Matrix 1.2-7.1, RCurl 1.95-4.8, RSQLite 1.1,
Recpp 0.12.8, XML 3.98-1.5, XVector 0.14.0, acepack 1.4.1, affy 1.52.0,
affyio 1.44.0, annotate 1.52.0, assertthat 0.1, bitops 1.0-6, cluster 2.0.5,
codetools 0.2-15, colorspace 1.3-1, data.table 1.9.8, digest 0.6.10,
evaluate 0.10, fdrtool 1.2.15, foreign 0.8-67, genefilter 1.56.0,
geneplotter 1.52.0, grid 3.3.2, gridExtra 2.2.1, gtable 0.2.0, highr 0.6,
htmlTable 1.7, htmltools 0.3.5, labeling 0.3, lattice 0.20-34,
latticeExtra 0.6-28, lazyeval 0.2.0, limma 3.30.6, locfit 1.5-9.1,

60



Differential analysis of count data — the DESeq2 package

Ipsymphony 1.2.0, magrittr 1.5, memoise 1.0.0, munsell 0.4.3, nnet 7.3-12,
plyr 1.8.4, preprocessCore 1.36.0, rpart 4.1-10, scales 0.4.1, slam 0.1-39,
splines 3.3.2, stringi 1.1.2, stringr 1.1.0, survival 2.40-1, tibble 1.2,

tools 3.3.2, xtable 1.8-2, zlibbioc 1.20.0

References

1]

2]

(3]

[4]
(5]

[6]

[7]

(8]

[9

[10]

Michael I. Love, Wolfgang Huber, and Simon Anders. Moderated estimation
of fold change and dispersion for RNA-seq data with DESeq2. Genome
Biology, 15:550, 2014. URL: http://dx.doi.org/10.1186/s13059-014-0550-8.

Rob Patro, Stephen M. Mount, and Carl Kingsford. Sailfish enables
alignment-free isoform quantification from RNA-seq reads using lightweight
algorithms. Nature Biotechnology, 32:462-464, 2014. URL:
http://dx.doi.org/10.1038/nbt.2862.

Rob Patro, Geet Duggal, and Carl Kingsford. Salmon: Accurate, versatile
and ultrafast quantification from rna-seq data using lightweight-alignment.
bioRxiv, 2015. URL: http://biorxiv.org/content/early/2015/06/27/021592.

Nicolas Bray, Harold Pimentel, Pall Melsted, and Lior Pachter. Near-optimal
rna-seq quantification. arXiv, 2015. URL: http://arxiv.org/abs/1505.02710.

Bo Li and Colin N. Dewey. RSEM: accurate transcript quantification from
RNA-Seq data with or without a reference genome. BMC Bioinformatics,
12:3234, 2011. URL: http://dx.doi.org/10.1186/1471-2105-12-323,
d0i:10.1186/1471-2105-12-3231.

Cole Trapnell, David G Hendrickson, Martin Sauvageau, Loyal Goff, John L
Rinn, and Lior Pachter. Differential analysis of gene regulation at transcript
resolution with RNA-seq. Nature Biotechnology, 2013. URL:
http://dx.doi.org/10.1038/nbt.2450, doi:10.1038/nbt.2450.

Christelle Robert and Mick Watson. Errors in RNA-Seq quantification affect
genes of relevance to human disease. Genome Biology, 2015. URL:
http://dx.doi.org/10.1186/s13059-015-0734-x,
doi:10.1186/s13059-015-0734-X.

Charlotte Soneson, Michael I. Love, and Mark Robinson. Differential
analyses for RNA-seq: transcript-level estimates improve gene-level
inferences. F1000Research, 4, 2015. URL:
http://dx.doi.org/10.12688/f1000research.7563.1.

Simon Anders, Paul Theodor Pyl, and Wolfgang Huber. HTSeq — A Python
framework to work with high-throughput sequencing data. Bioinformatics,
2014. URL: http://dx.doi.org/10.1093/bioinformatics/btu638.

A. N. Brooks, L. Yang, M. O. Duff, K. D. Hansen, J. W. Park, S. Dudoit,
S. E. Brenner, and B. R. Graveley. Conservation of an RNA regulatory map
between Drosophila and mammals. Genome Research, pages 193-202, 2011.
URL: http://genome.cshlp.org/cgi/doi/10.1101/gr.108662.110,
doi:10.1101/9r.108662.110.

61


http://dx.doi.org/10.1186/s13059-014-0550-8
http://dx.doi.org/10.1038/nbt.2862
http://biorxiv.org/content/early/2015/06/27/021592
http://arxiv.org/abs/1505.02710
http://dx.doi.org/10.1186/1471-2105-12-323
http://dx.doi.org/10.1186/1471-2105-12-3231
http://dx.doi.org/10.1038/nbt.2450
http://dx.doi.org/10.1038/nbt.2450
http://dx.doi.org/10.1186/s13059-015-0734-x
http://dx.doi.org/10.1186/s13059-015-0734-x
http://dx.doi.org/10.12688/f1000research.7563.1
http://dx.doi.org/10.1093/bioinformatics/btu638
http://genome.cshlp.org/cgi/doi/10.1101/gr.108662.110
http://dx.doi.org/10.1101/gr.108662.110

Differential analysis of count data — the DESeq2 package

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Nikolaos Ignatiadis, Bernd Klaus, Judith Zaugg, and Wolfgang Huber.
Data-driven hypothesis weighting increases detection power in big data
analytics. bioRxiv, 2015. URL: http://dx.doi.org/10.1101/034330.

Robert Tibshirani. Estimating transformations for regression via additivity
and variance stabilization. Journal of the American Statistical Association,
83:394-405, 1988.

Wolfgang Huber, Anja von Heydebreck, Holger Siltmann, Annemarie
Poustka, and Martin Vingron. Parameter estimation for the calibration and
variance stabilization of microarray data. Statistical Applications in Genetics
and Molecular Biology, 2(1):Article 3, 2003.

Simon Anders and Wolfgang Huber. Differential expression analysis for
sequence count data. Genome Biology, 11:R106, 2010. URL:
http://genomebiology.com/2010/11/10/R106.

D. R. Cox and N. Reid. Parameter orthogonality and approximate
conditional inference. Journal of the Royal Statistical Society, Series B,
49(1):1-39, 1987. URL: http://www.jstor.org/stable/2345476.

Davis J McCarthy, Yunshun Chen, and Gordon K Smyth. Differential
expression analysis of multifactor RNA-Seq experiments with respect to
biological variation. Nucleic Acids Research, 40:4288-4297, January 2012.
URL: http://www.ncbi.nIm.nih.gov/pubmed /22287627,
doi:10.1093/nar/gks042.

Hao Wu, Chi Wang, and Zhijin Wu. A new shrinkage estimator for dispersion
improves differential expression detection in RNA-seq data. Biostatistics,
September 2012. URL: http://dx.doi.org/10.1093/biostatistics/kxs033,
doi:10.1093/biostatistics/kxs033.

R. Dennis Cook. Detection of Influential Observation in Linear Regression.
Technometrics, February 1977.

Richard Bourgon, Robert Gentleman, and Wolfgang Huber. Independent
filtering increases detection power for high-throughput experiments. PNAS,
107(21):9546-9551, 2010. URL:
http://www.pnas.org/content/107/21/9546.long.

62


http://dx.doi.org/10.1101/034330
http://genomebiology.com/2010/11/10/R106
http://www.jstor.org/stable/2345476
http://www.ncbi.nlm.nih.gov/pubmed/22287627
http://dx.doi.org/10.1093/nar/gks042
http://dx.doi.org/10.1093/biostatistics/kxs033
http://dx.doi.org/10.1093/biostatistics/kxs033
http://www.pnas.org/content/107/21/9546.long

	1 Standard workflow
	1.1 Quick start
	1.2 How to get help
	1.3 Input data
	1.3.1 Why un-normalized counts?
	1.3.2 SummarizedExperiment input
	1.3.3 Count matrix input
	1.3.4 tximport: transcript abundance summarized to gene-level
	1.3.5 HTSeq input
	1.3.6 Pre-filtering
	1.3.7 Note on factor levels
	1.3.8 Collapsing technical replicates
	1.3.9 About the pasilla dataset

	1.4 Differential expression analysis
	1.5 Exploring and exporting results
	1.5.1 MA-plot
	1.5.2 Plot counts
	1.5.3 More information on results columns
	1.5.4 Rich visualization and reporting of results
	1.5.5 Exporting results to CSV files

	1.6 Multi-factor designs

	2 Data transformations and visualization
	2.1 Count data transformations
	2.1.1 Blind dispersion estimation
	2.1.2 Extracting transformed values
	2.1.3 Regularized log transformation
	2.1.4 Variance stabilizing transformation
	2.1.5 Effects of transformations on the variance

	2.2 Data quality assessment by sample clustering and visualization
	2.2.1 Heatmap of the count matrix
	2.2.2 Heatmap of the sample-to-sample distances
	2.2.3 Principal component plot of the samples


	3 Variations to the standard workflow
	3.1 Wald test individual steps
	3.2 Contrasts
	3.3 Interactions
	3.4 Time-series experiments
	3.5 Likelihood ratio test
	3.6 Approach to count outliers
	3.7 Dispersion plot and fitting alternatives
	3.7.1 Local or mean dispersion fit
	3.7.2 Supply a custom dispersion fit

	3.8 Independent filtering of results
	3.9 Tests of log2 fold change above or below a threshold
	3.10 Access to all calculated values
	3.11 Sample-/gene-dependent normalization factors
	3.12 ``Model matrix not full rank''
	3.12.1 Linear combinations
	3.12.2 Levels without samples


	4 Theory behind DESeq2
	4.1 The DESeq2 model
	4.2 Changes compared to the DESeq package
	4.3 Methods changes since the 2014 DESeq2 paper
	4.4 Count outlier detection
	4.5 Contrasts
	4.6 Expanded model matrices
	4.7 Independent filtering and multiple testing
	4.7.1 Filtering criteria
	4.7.2 Why does it work?


	5 Frequently asked questions
	5.1 How can I get support for DESeq2?
	5.2 Why are some p values set to NA?
	5.3 How can I get unfiltered DESeq results?
	5.4 How do I use the variance stabilized or rlog transformed data for differential testing?
	5.5 Can I use DESeq2 to analyze paired samples?
	5.6 If I have multiple groups, should I run all together or split into pairs of groups?
	5.7 Can I run DESeq2 to contrast the levels of 100 groups?
	5.8 Can I use DESeq2 to analyze a dataset without replicates?
	5.9 How can I include a continuous covariate in the design formula?
	5.10 Will the log fold change shrinkage ``overshrink'' large differences?
	5.11 I ran a likelihood ratio test, but results() only gives me one comparison.
	5.12 What are the exact steps performed by [functioncolor]DESeq()?
	5.13 Is there an official Galaxy tool for DESeq2?
	5.14 I want to benchmark DESeq2 comparing to other DE tools.

	6 Acknowledgments
	7 Session Info

