Using the DART package: Denoising Algorithm based on
Relevance network Topology

Katherine Lawler, Yan Jiao, Andrew E Teschendorff, Charles Shijie Zheng

April 10, 2015

Contents

(1__Introductionl 1
[2 Load example data sets| 2
[3 Relevance network and consistency score 3
[4 Pruning the relevance network| 5
[65  Activity score prediction| 5
[6  Inferring signature activation in an independent data set] 6
[_DoDART function 7
8 nhance o unction - Do 8
[9 Citing the DART package) 10
10 References| 11
(11 Session informationl 11

1 Introduction

DART (Denoising Algorithm based on Relevance network Topology) estimates an activity
score for a pathway or perturbation gene signature (the 'model signature’) in independent
samples of a gene expression matrix, following a denoising step. The model signature takes
the form of a gene (or probe) list with associated weights, typically representing the log fold
changes or statistics of differential expression in response to some experimental cue (i.e pathway
activation). The denoising step removes prior information that is inconsistent with a training
data set. The DART algorithm has been shown to be a robust method for estimating pathway
and/or perturbation signature activity in many different cancer gene expression data sets [1,2].



See [1,2] for further details on relevance network construction, consistency score significance
estimation and metrics for activation score computation.

We demonstrate the DART functions by estimating the activity of an ERBB2 perturbation
signature [3], derived from a cell-line model, in primary breast cancer gene expression data
sets. The goal is to show how the in-vitro derived ERBB2 perturbation signature reflecting
artificial ERBB2 overexpression can be used to predict the naturally occuring perturbations
affecting ERBB2 expression in primary cancers. A relevance correlation network of the model
signature genes is trained using the Wang/Minn breast cancer data set [4,5]. It is important
that this training data set is fairly large and representative of breast cancer demographics. The
relevance network is then pruned to remove the edges (the edges represent statistically signifi-
cant correlations across the training data), which are inconsistent with the prior information.
The pruned network is then used to estimate activity scores in each sample of the training set
as well as in the samples of the smaller "Mainz” breast cancer data set [6]. We note that since
phenotypic sample labels are not used in the unsupervised inference of the pruned network,
that it is valid to obtain activity scores in the training set itself.

> library(DART)

2 Load example data sets

For this example, the Wang/Minn and Mainz breast cancer data sets are loaded as Expression-
Sets from existing Bioconductor Experiment Data packages [7,8]. Both data sets are based on
the Affymetrix U133A platform. Note: DART does not deal with preprocessing of microarray
gene expression data. If necessary, expression data set preprocessing such as normalization
within data sets should be dealt with by the user before applying DART.

library(Biobase)

library(breastCancerVDX) # Wang et al./Minn et al.
library(breastCancerMAINZ)

data(vdx)

data(mainz)
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An in vitro-derived ERBB2 perturbation signature [3] is provided as example data in the
DART package. The perturbation signature is given as a vector of differential gene expression
following ERBB2 activation and annotated using Entrez Gene IDs. This model signature
contains 431 genes, of which 255 genes are reported to be up-regulated and 176 down-regulated.

> data(dataDART)
> modelSig <- dataDART$sign

Mapping between probe identifiers and model signature

The DART functions assume that the same type of identifier is used to label gene expression
rows and model signature values.

In general, the mappings between gene expression platforms and the model signatures or
pathways should be handled by the user (for example, see the biomaRt package [9] for mapping
microarray probe identifiers to Ensembl Gene IDs, Entrez Gene IDs, or other gene identifiers).



This example uses Entrez Gene IDs, so we extract a gene expression matrix from each
ExpressionSet and annotate the rows using Entrez Gene IDs. The mapping between Affymetrix
probe IDs (gene expression data) and Entrez Gene IDs (model signature) is handled using the
Affymetrix U133A probeset annotation provided in the loaded ExpressionSet objects.

Example: Constructing a gene expression matrix

For each of the Wang/Minn and Mainz data sets, we retrieve a gene expression matrix from
the ExpressionSet and label the rows using Entrez Gene IDs. Where multiple probesets map
to one Entrez Gene ID, we retain only the most variable probeset.

> # Order vdx by std dev across samples, decreasing
> vdx.ord <- vdx[order( apply(exprs(vdx), 1, sd,na.rm=T), decreasing=T ), ]
> # Reduce vdx to retain a single (most variable) probeset per Entrez Gene ID
> vdx.EntrezUniq <- vdx.ord[

+ match (unique (fData(vdx.ord) $EntrezGene.ID), fData(vdx.ord)$EntrezGene.ID),]
> # Get vdx data, labelled by Entrez Gene IDs
> vdx.data <- exprs(vdx.EntrezUniq)

> rownames (vdx.data) <- fData(vdx.EntrezUniq)$EntrezGene.ID[
+ match (rownames (vdx.data), rownames (fData(vdx.EntrezUniq))) ]
> colnames(vdx.data) <- sub('.CEL.gz$','',pData(vdx.EntrezUniq)$filename)
> #

> # Do the same for the Mainz data set
> mainz.ord <- mainz[order( apply(exprs(mainz), 1, sd,na.rm=T), decreasing=T ), ]

> mainz.EntrezUniq <- mainz.ord[

+ match (unique (fData(mainz.ord) $EntrezGene. ID) ,fData (mainz. ord) $EntrezGene. ID), ]
> mainz.data <- exprs(mainz.EntrezUniq)

> rownames (mainz.data) <- fData(mainz.EntrezUniq)$EntrezGene.ID[

+ match(rownames (mainz.data) ,rownames (fData(mainz.EntrezUniq))) ]

> colnames (mainz.data) <- sub('.CEL.gz$','',pData(mainz.EntrezUniq)$filename)

> #

> # Inspect the gene expression matrices

> dim(vdx.data)

[1] 13092 344
> dim(mainz.data)

[1] 13092 200

3 Relevance network and consistency score

A relevance network is constructed using the model signature genes as nodes. A pair of nodes
is connected if the correlation/anti-correlation of the nodes is significant in the training data
set. Significance is defined using a user-specified false discovery rate threshold (default value
is 0.000001). This is stringent, but reflects a conservative Bonferroni threshold: since typical



model signatures consist on the order of 100 genes, this means estimation on the order of 10000
pairwise correlations, so a Bonferroni threshold would approximately be around le-6.

> rn.o <- BuildRN(vdx.data, modelSig, fdr=0.000001)
[1] "Found 97% of signature genes in data matrix"

> # How many nodes in the relevance network?
> print(dim(rn.o%$adj))

[1] 420 420

> # How many edges in the relevance network? Look at the adjacency matrix.
> print (sum(rn.o$adj == 1)/2)

[1] 6400

> # The nodes in the relevance network are the genes in the model signature
> # which were found in the data matrix
> print(length(rn.o$rep.idx))

[1] 420

Reducing the false discovery rate even further to 0.0000001 results in a relevance network
with reduced connectivity:

> rn.smallerFDR.o <- BuildRN(vdx.data, modelSig, fdr=0.0000001)
[1] "Found 97% of signature genes in data matrix"

> print(sum(rn.smallerFDR.o$adj == 1)/2)

[1] 4975

Before performing the pruning step, we check whether the relevance network is significantly
consistent with the model signature when compared with randomly permuted node-node cor-
relations. Note: If the consistency score is not significant compared to the random permuta-
tions, then this indicates that the directional expression changes encoded in the perturbation
signature do not account for expression variation of these genes in the data set. Therefore, if
the consistency score is not significant it is not recommended to use the signature to predict
pathway activity.

> ### Evaluate Consistency
> evalNet.o <- EvalConsNet(rn.o);
> print (evalNet.o$netcons['fconsE'])

fconsE
0.7190625



> ### The consistency score (i.e fraction of consistent edges) is 0.72.
>
> print(evallNet.o$netcons)

nG nkE fE fconsE Pval(consist)
4.200000e+02 6.400000e+03 7.273554e-02 7.190625e-01 0.000000e+00

> ### The p-value of the consistency score is significant, so proceed.
> ### Note that P-values may appear as zero because of the finite number
> ### of randomisations performed.

4 Pruning the relevance network

The pruning step removes edges which are inconsistent with the prior information contained
in the model signature vector. An edge is removed from the relevance network if the nodes are
correlated in the training data set but have opposite signs in the model signature, or the nodes
are anti-correlated in the training set but have the same sign in the model signature vector.

> ### Prune (i.e. denoise) the network

> prNet.o <- PrunelNet (evallNet.o)

> ### Print dimension of the maximally connected pruned network
> print(dim(prNet.o$pradjMC))

[1] 347 347

> ### Print number of edges in maximally connected pruned network
> print (sum(prNet.o$pradjMC)/2)

[1] 4601

5 Activity score prediction
Finally, an activity score for the model signature is estimated for each sample in the data set.

> ### Infer signature activation in the original data set
> pred.o <- PredActScore(prNet.o, vdx.data)

[1] "Found 100% of maximally connected pruned network genes in the data"
The activity score on a relevance network of N genes is defined for each sample (data set

S - > ok

ZieN ki ien

where k; is the number of neighbours of gene ¢ in the network, Z’ is the row-standardized
expression vector for the sample, and o; is =1 according to whether gene 7 is up- or down-
regulated (this information comes from the model signature).

column) as



Comparing the estimated activation scores to predicted intrinsic breast cancer subtypes
for the Wang et al. subset of samples shows a significant difference in ERBB2 permutation
signature activation between basal-like and HER2 breast cancer subtypes. (Intrinsic subtype
predictions were precomputed for this example using an intrinsic subtype classifier [10].)

> ### Check that activation is higher in HER2+ compared to basals

> pred.o.score.report <- pred.o$score[match(names(dataDART$pheno) ,names (pred.o$score))]
> boxplot(pred.o.score.report ~ dataDART$pheno,ylab='activity score: ERBB2 perturb sig')
> pv <- wilcox.test(pred.o.score.report ~ dataDART$pheno)$p.value

> title(main=paste ("DoDART - Wang data set: P=",6signif(pv,2),sep=""))

DoDART - Wang data set: P=1.8e-05
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6 Inferring signature activation in an independent data set

The pruned relevance network can be used to estimate robust model signature activity in
other breast cancer data sets. Note that for the learning of the pruned network a relatively
large data set is necessary, ideally one that represents a random sampling of the underlying
disease demographics. Having inferred the pruned network in this large training set, predicting
pathway activity in independent samples is then done for each sample separately.



> pred.mainz.o <- PredActScore(prNet.o, mainz.data)
[1] "Found 100% of maximally connected pruned network genes in the data"

# Check that activation is higher in HER2+ compared to basals
# in the smaller Mainz data set, after training on the larger Wang/Minn data set

pred.mainz.o.score.report <- pred.mainz.o$score[
match (names (dataDART$phenoMAINZ) ,names (pred.mainz.o$score))]
boxplot (pred.mainz.o.score.report ~ dataDART$phenoMAINZ,
ylab='activity score: ERBB2 perturb sig')
pv <- wilcox.test(pred.mainz.o.score.report ~ dataDART$phenoMAINZ)$p.value
title(main=paste("DoDART - Mainz data set: P=",signif(pv,2),sep=""))

vV V + V + VvV VVyV

DoDART - Mainz data set: P=0.00019
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7 DoDART function

The wrapper function DoDART builds a relevance network, evaluates the consistency of corre-
lations compared to the model signature, removes noise from the network (pruning step), and
estimates an activity score for each sample in the data set [2].



> res.vdx <- DoDART(vdx.data, modelSig, fdr=0.000001)

[1] "Found 97% of signature genes in data matrix"
[1] "Found 100% of maximally connected pruned network genes in the data"

> # View the activity scores for the first five Wang/Minn samples
> print (res.vdx$score[1:5])

GSM36793  GSM36796  GSM36797  GSM36798  GSM36800
3.1162895 0.8782771 -6.9537040 -4.0296276 3.7383374

8 Enhanced DoDART function - DoDARTCLQ

The enhanced wrapper function DoDARTCLQ builds on DoDART. DoDARTCLQ uses a smaller and

more compact network to estimate pathway /perturbation activity compared to DoDART. Whereas
DoDART uses the whole pruned correlation network, DoDARTCLQ infers all maximal cliques within

the pruned correlation network and then estimates activity using only genes in the union set of

these maximal cliques. Although the largest cliques may not be unique, they typically exhibit

very strong overlaps, justifying the use of the merged or union set.

> res2.vdx <- DoDARTCLQ(vdx.data, modelSig, fdr=0.000001)

[1] "Found 97% of signature genes in data matrix"
[1] "Found 100% of maximally connected pruned network genes in the data"

> # View the activity scores generated by DoDARTCLQ for the first five Wang/Minn samples
> print(res2.vdx$pred[1:5])

GSM36793 GSM36796 GSM36797 GSM36798 GSM36800
2.1899156568 -0.01577221 -4.71891616 -1.49101043 1.12086416

> ### Check that activation generated by DoDARTCLQ is higher in HER2+ compared to basals
> pred.o.score.report2 <-res2.vdx$pred[match(names (dataDART$pheno) ,names (pred.o$score))]
> boxplot(pred.o.score.report2 ~ dataDART$pheno,ylab='activity score: ERBB2 perturb sig')
> pv <- wilcox.test(pred.o.score.report ~ dataDART$pheno)$p.value

> title(main=paste ("DoDARTCLQ - Wang data set: P=",signif(pv,2),sep=""))



DoDARTCLQ - Wang data set: P=1.8e-05

activity score: ERBB2 perturb sig
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> # Check that activation is higher in HER2+ compared to basals

> # in the smaller Mainz data set, after training on the larger Wang/Minn data
> # set by DoDARTCLQ
>
>

pred.mainz2.o0 <- PredActScore(res2.vdx$clq, mainz.data)
[1] "Found 100% of maximally connected pruned network genes in the data"

pred.mainz.o.score.report2 <- pred.mainz2.o$score[
match (names (dataDART$phenoMAINZ) ,names (pred.mainz.o$score))]
boxplot (pred.mainz.o.score.report2 ~ dataDART$phenoMAINZ,
ylab='activity score: ERBB2 perturb sig')
pv <- wilcox.test(pred.mainz.o.score.report ~ dataDART$phenoMAINZ)$p.value
title(main=paste("DoDARTCLQ - Mainz data set: P=",signif(pv,2),sep=""))
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DoDARTCLQ - Mainz data set: P=0.00019
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9 Citing the DART package

To cite the DART package and methods:

Jiao Y, Lawler K, Patel GS, Purushotham A, Jones AF et al. (2011) DART: Denoising Algo-
rithm based on Relevance network Topology improves molecular pathway activity inference.
BMC Bioinformatics, 12:403.

Teschendorff AE, Gomez S, Arenas A, El-Ashry D, Schmidt M, et al. (2010) Improved prog-
nostic classification of breast cancer defined by antagonistic activation patterns of immune
response pathway modules. BMC Cancer 10:604.

Teschendorff AE, Li L, Yang Z. (2015) Denoising perturbation signatures reveals an action-

able AKT-signaling gene module underlying a poor clinical outcome in endocrine treated ER+
breast cancer. Genome Biology 16:61.
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Session information

> print (sessionInfo())

R version 3.0.2 (2013-09-25)
Platform: x86_64-pc-linux-gnu (64-bit)

locale:
[1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB.UTF-8 LC_COLLATE=C
[6] LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_GB.UTF-8
[7] LC_PAPER=en_GB.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
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[11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] parallel stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] breastCancerMAINZ_1.3.1 breastCancerVDX_1.0.6 Biobase_2.22.0
[4] BiocGenerics_0.8.0 DART_1.15.3 igraph 0.7.1

loaded via a namespace (and not attached):
[1] tools_3.0.2
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