CrispRVariants User Guide

Helen Lindsay, Mark Robinson
3rd October 2016

Contents

1 Introduction

2 Case study: Analysis of ptena mutant spectrum in zebrafish
2.1 Convert ABl-format Sanger sequences to FASTQ . . . . . . . . . . . .. ..
2.2 Mapthe FASTQ reads . . . . . . . . . . .
2.3 Read in BAM files and initialize CrisprSet object . . . . . . . . . . . . .. .. ...
2.4 Creating a CrisprSet . . . . . . . . . L
2.5 Creating summary plots of variants . . . . . . . . .. ..
2.6 Calculating the mutation efficiency . . . . . . . . . . ..
2.7 Getconsensus alleles . . . . . . .
2.8 Plot chimeric alignments . . . . . . . ..

3 Choosing the strand for display

4 Changing the appearance of plots
4.1 Filtering data in plotVariants . . . . . . . . . .
4.2 plotAlignments. . . . . . . L e
4.3 plotFreqHeatmap . . . . . . L
4.4 barplotAlleleFreqs . . . . . . .

5 Using CrispRVariants plotting functions independently
5.1 Plot the reference sequence . . . . . . . . L

Contents

11
11
15
22
26

30




CrispRVariants User Guide 2

1 Introduction

The CRISPR-Cas9 system is an efficient method of introducing mutations into genomic DNA. A guide RNA directs
nuclease activity to a 20 nucleotide target region, resulting in efficient mutagenesis. Repair of the cleaved DNA can
introduce insertions and deletions centred around the cleavage site. Once the target sequence is mutated, the guide
RNA will no longer bind and the DNA will not be cleaved again. SNPs within the target region, depending on their
location, may also disrupt cleavage. The efficiency of a CRISPR-Cas9 experiment is typically measured by amplifying and
sequencing the region surrounding the target sequence, then counting the number of sequenced reads that have insertions
and deletions at the target site. The CrispRVariants package formalizes this process and takes care of various details of
managing and manipulating data for such confirmatory and exploratory experiments.

This guide shows an example illustrating how raw data is preprocessed and mapped and how mutation information is
extracted relative to the reference sequence. The package comprehensively summarizes and plots the spectrum of variants
introduced by CRISPR-Cas9 or similar genome editing experiments.

2 Case study: Analysis of ptena mutant spectrum in zebrafish

The data used in this case study is from the Mosimann laboratory, UZH.

2.1 Convert AB1-format Sanger sequences to FASTQ

This data set is from 5 separate clutches of fish (1 control - uninjected, 2 injected with strong phenotype, 2 injected
with mild phenotype), with injections from a guide against the ptena gene. For this exercise, the raw data comes as AB1
(Sanger) format. To convert ABL files to FASTQ, we use ablToFastq(), which is a wrapper for functions in sangerseqR
package with additional quality score trimming.

Although there are many ways to organize such a project, we organize the data (raw and processed) data into a set of
directories, with a directory for each type of data (e.g., ‘abl’ for ABL files, ‘fastq’ for FASTQ files, ‘bam’ for BAM files,
etc.); this can continue with directories for scripts, for figures, and so on. With this structure in place, the following code
sets up various directories.

library(CrispRVariants)
library(sangerseqR)

# List AB1 filenames, get sequence names, make names for the fastq files
# Note that we only include one abl file with CrispRVariants because
# of space constraints. All bam files are included

data_dir <- system.file(package="CrispRVariants", "extdata/abl/ptena'")
fq_dir <- tempdir()

abl_fnames <- dir(data_dir, "abl$", recursive=TRUE, full=TRUE)

sq_nms <- gsub(".abl","" ,basename(abl_fnames))

# Replace spaces and slashes in filename with underscores
fq_fnames <- pasteO(gsub("[\ [\\/]", "_", dirname(abl_fnames)), ".fastq")
# abifToFastq to read AB1 files and write to FASTQ
dummy <- mapply( function(u,v,w) {
abifToFastq(u,v,file.path(fq_dir,w))
}, sq_nms, abl_fnames, fq_fnames)

We will collect sequences from each embryo into the same FASTQ file. Note that abifToFastq appends output to existing
files where possible. In this example, there is only 1 sequence, which will be output to 1 file:



CrispRVariants User Guide 3

length(unique (abl_fnames))
## [1] 1
length(unique (fq_fnames))
## [11 1

Some of the AB1 files may not have a sufficient number of bases after quality score trimming (default is 20 bases). In
these cases, abifToFastq() issues a warning (suppressed here).

2.2 Map the FASTQ reads

We use FASTQ format because it is the major format used by most genome alignment algorithms. At this stage, the
alignment could be done outside of R (e.g., using command line tools), but below we use R and a call to system() to
keep the whole workflow within R. Note that this also requires various software tools (e.g., bwa, samtools) to already be
installed.

The code below iterates through all the FASTQ files generated above and aligns them to a pre-indexed genome.

library("Rsamtools")

# BWA indices were generated using bwa wversion 0.7.10

bwa_index <- "GRCHz10.fa.gz"

bam_dir <- system.file(package="CrispRVariants", "extdata/bam")
fq_fnames <- file.path(fq_dir,unique(fq_fnames))

bm_fnames <- gsub(".fastq$",".bam",basename(fq_fnames))
srt_bm_fnames <- file.path(bam_dir, gsub(".bam"," s",bm_fnames))

# Map, sort and index the bam files, remove the unsorted bams
for(i in 1:length(fq_fnames)) {
cmd <- pasteO("bwa mem ", bwa_index, " ", fq_fnames[i],

" | samtools view -Sb - > ", bm_fnames[i])
message(cmd, "\n"); system(cmd)
indexBam(sortBam(bm_fnames[i],srt_bm_fnames[i]))
unlink(bm_fnames[i])

}

See the help for bwa index at the bwa man page and for general details on mapping sequences to a genome reference.

2.3 Read in BAM files and initialize CrisprSet object

Given a set of BAM files with the amplicon sequences of interest mapped to the reference genome, we need to collect
a few additional pieces of information about the guide sequence and define the area around the guide that we want to
summarize the mutation spectrum over.

If you already know the coordinates, these can be typed in or put in a BED file that can be read in using the rtracklayer
package. The import() commmand below returns a GRanges object.

library(rtracklayer)

# Represent the guide as a GenomicRanges::GRanges object

gd_fname <- system.file(package="CrispRVariants", "extdata/bed/guide.bed")
gd <- rtracklayer::import(gd_fname)

gd
## GRanges object with 1 range and 2 metadata columns:
#Hit segnames ranges strand | name score

## <Rle> <IRanges> <Rle> | <character> <numeric>


http://bio-bwa.sourceforge.net/bwa.shtml

CrispRVariants User Guide 4

##  [1] chr17 [23648474, 23648496] - | ptena_ccA 0
# o -
##  seqinfo: 1 sequence from an unspecified genome; no seqlengths

Below, we'll extend the guide region by 5 bases on each side when counting variants. The guide designed for ptena
(including PAM) is 23bp and is located on chromosome chrl7 from 23648474-23648496. Note that the expected cut site
(used later for labeling variants), after extension, is at base 22 with respect to the start of the guide sequence.

gdl <- GenomicRanges::resize(gd, width(gd) + 10, fix = "center")

With the Bioconductor BSgenome packages, the reference sequence itself can be retrieved directly into a DNAStringSet
object. For other genomes, the reference sequence can be retrieved from a genome by first indexing the genome with
samtools faidx and then fetching the required region. Here we are using the GRCHz10 zebrafish genome. The reference
sequence was fetched and saved as follows:

system("samtools faidx GRCHz10.fa.gz")

reference=system(sprintf ("samtools faidx GRCHz10.fa.gz %s:%s-%s",
seqnames (gdl) [1], start(gdl) [1], end(gdl)[1]),
intern = TRUE) [[2]]

# The guide is on the mnegative strand, so the reference needs to be reverse complemented
reference=Biostrings: :reverseComplement (Biostrings: :DNAString(reference))
save(reference, file = "ptena_ GRCHz10_ref.rda")

We'll load the previously saved reference sequence.

ref_fname <- system.file(package="CrispRVariants", "extdata/ptena_GRCHz10_ref.rda")
load(ref_fname)

reference

##  33-letter "DNAString" instance

## seq: GCCATGGGCTTTCCAGCCGAACGATTGGAAGGT

Note the NGG sequence (here, TGG) is present with the 5 extra bases on the end.

To allow easy matching to experimental condition (e.g., useful for colour labeling) and for subsetting to experiments
of interest, we often organize the list of BAM files together with accompanying metadata in a machine-readable table
beforehand:

# The metadata and bam files for this experiment are included with CrispRVariants
library("gdata")

md_fname <- system.file(package="CrispRVariants", "extdata/metadata/metadata.xls")
md <- gdata::read.xls(md_fname, 1)

md

#it bamfile directory
## 1 abl_ptena_phenotype_embryo_1_s.bam ptena/phenotype/embryo 1
## 2 abl_ptena_phenotype_embryo_2_s.bam ptena/phenotype/embryo 2
## 3 abl_ptena_wildtype_looking embryo_1_s.bam ptena/wildtype looking/embryo 1
## 4 abl_ptena_wildtype_looking_embryo_2_s.bam ptena/wildtype looking/embryo 2
## 5 abl_ptena_uninjected_embryo_1_s.bam ptena/uninjected/embryo 1
##  Short.name Targeting.type sgRNA1 sgRNA2  Group

## 1 ptena 1 single ptena_ccA NA strong

## 2 ptena 2 single ptena_ccA NA strong

## 3 ptena 3 single ptena_ccA NA mild

## 4 ptena 4 single ptena_ccA NA mild

## 5 control single ptena_ccA NA control



CrispRVariants User Guide 5

# Get the bam filenames from the metadata table
bam_dir <- system.file(package="CrispRVariants", "extdata/bam")
bam_fnames <- file.path(bam_dir, md$bamfile)

# check that all files exzist
all( file.exists(bam_fnames) )
## [1] TRUE

2.4 Creating a CrisprSet

The next step is to create a CrisprSet object, which is the container that stores the relevant sequence information,
alignments, observed variants and their frequencies.

# Note that the zero point (target.loc parameter) is 22

crispr_set <- readsToTarget(bam_fnames, target = gdl, reference = reference,
names = md$Short.name, target.loc = 22)

crispr_set

## CrisprSet object containing 5 CrisprRun samples

## Target location:

## GRanges object with 1 range and 2 metadata columns:

#Hit segnames ranges strand | name score
## <Rle> <IRanges> <Rle> | <character> <numeric>
## [1] chr17 [23648469, 23648501] - ptena_ccA 0
W -

##  seqinfo: 1 sequence from an unspecified genome; no seqlengths
## [1] "Most frequent variants:"

#i#t ptena 1 ptena 2 ptena 3 ptena 4 control
## no variant 3 4 4 0 7
## -1:4D 0 0 0 2 0
## 6:1D 0 0 0 1 1
## 1:71 1 0 0 0 0
## 2:1D,4:51 0 0 0 1 0
## Other 0 0 1 1 0

# The counts table can be accessed with the "wvariantCounts" function
vc <- variantCounts(crispr_set)

print(class(vc))

## [1] "matrix"

You can see that in the table of variant counts, variants are summarised by the location of their insertions and deletions
with respect to the target site. Non-variant sequences and sequences with a single nucleotide variant (SNV) but no
insertion or deletion (indel) are displayed first, followed by the indel variants from most to least frequent For example, the
most frequent non-wild-type variant, “-1:4D" is a 4 base pair deletion starting 1 base upstream of the zero point.

2.5 Creating summary plots of variants

We want to plot the variant frequencies along with the location of the guide sequence relative to the known transcripts.
If you do this repeatedly for the same organism, it is worthwhile to save the database in a local file and read in with
loadDb(), since this is quicker than retrieving it from UCSC (or Ensembl) each time.

We start by creating a transcript database of Ensembl genes. The gtf was downloaded from Ensembl version 81. We first
took a subset of just the genes on chromosome 17 and then generated a transcript database.



CrispRVariants User Guide 6

# Extract gemes on chromosome 17 (command line)

# Note that the Ensembl gtf does mot include the "chr" prefiz, so we add it here
gtf=Danio_rerio.GRCz10.81.gtf.gz

zcat ${gtf} | awk '($1 == 17){print "chr"$0}' > Danio_rerio.GRCz10.81_chri7.gtf

# In R

library(GenomicFeatures)

gtf_fname <- "Danio_rerio.GRCz10.81_chrl7.gtf"

txdb <- GenomicFeatures::makeTxDbFromGFF (gtf_fname, format = "gtf")
saveDb(txdb, file= "GRCz10_81_chrl7_txdb.sqlite")

We now load the the previously saved database

plotVariants() is a wrapper function that groups together a plot of the transcripts of the gene/s overlapping the guide
(optional), CrispRVariants::plotAlignments(), which displays the alignments of the consensus variant sequences to the
reference, and CrispRVariants::plotFreqHeatmap(), which produces a table of the variant counts per sample, coloured by
either their counts or percentage contribution to the variants observed for a given sample. If a transcript database is
supplied, the transcript plot is annotated with the guide location. Arguments for plotAlignments() and plotFreqHeatmap()
can be passed to plotVariants() as lists named plotAlignments.args and plotFreqHeatmap.args, respectively.

# The gridExztra package is required to spectify the legend.key.height
# as a "unit" object. It is mot needed to call plotVariants() with defaults
library(gridExtra)

# Match the clutch td to the column names of the wvariants
group <- md$Group

p <- plotVariants(crispr_set, txdb = txdb, gene.text.size = 8,
row.ht.ratio = ¢(1,8), col.wdth.ratio = c(4,2),
plotAlignments.args = list(line.weight = 0.5, ins.size

legend.symbol.size = 4),
plotFreqHeatmap.args = list(plot.text.size = 3, x.size = 8, group = group,
legend.text.size = 8,
legend.key.height = grid::unit(0.5, "lines")))

2,

The plotVariants() options set the text size of the transcript plot annotation (gene.text.size) and the relative heights
(row.ht.ratio) and widths (col.wdth.ratio) of the plots.

The plotAlignments arguments set the symbol size in the figure (ins.size) and in the legend (legend.symbol), the line
thickness for the (optional) annotation of the guide region and cleavage site (line.weight).

For plotFreqHeatmap we define an grouping variable for colouring the x-axis labels (group), the size of the text within the
plot (plot.text.size) and on the x-axis (x.size) and set the size of the legend text (legend.text.size).

2.6 Calculating the mutation efficiency

The mutation efficiency is the number of reads that include an insertion or deletion. Chimeric reads and reads containing
single nucleotide variants near the cut site may be counted as variant reads, non-variant reads, or excluded entirely. See
the help page for the function mutationEfficiency for more details.

We can see in the plot above that the control sample includes a variant sequence 6:1D, also present in sample ptena 4.
We will exclude all sequences with this variant from the efficiency calculation. We also demonstrate below how to exclude
particular variants.

# Calculate the mutation efficiency, excluding indels that occur in the "control” sample

# and further excluding the "control" sample from the efficiency calculation
eff <- mutationEfficiency(crispr_set, filter.cols = "control", exclude.cols = "control")



CrispRVariants User Guide

ENSDARG00000071018

23646500 23647000 23647500 23648000 23648500

- 7

oo [ SRR Wee B i o o o o o EL

—2:4D'HANN.&.N#—%AI&+—.A7f*fINNIAANNI 0 0 0 0 1
o

Other

N 0 0 0 1 0 Percentage

o
[
[
o
o

T T T
-20 -15 -10 -5 -11 5 10

QO #c \ A ‘ TCGAACT
< neene Q) orrTe

control
ptena 3
ptena 4
ptena 1
ptena 2

Figure 1: (Top) schematic of gene structure showing guide location (left) consensus sequences for variants (right) variant
counts in each embryo.

eff

## ptena 1 ptena 2 ptena 3 ptena 4 Average Median  Overall StDev
#i# 25.00 42.86 20.00 80.00 41.96 33.93 42.86 1.50
## ReadCount

## 21.00

# Suppose we just wanted to filter particular wvariants, not an entire sample.
# This can be done using the "filter.vars" argument

eff2 <- mutationEfficiency(crispr_set, filter.vars = "6:1D", exclude.cols = "control")

# The results are the same in this case as only one variant was filtered from the control
identical (eff,eff2)



CrispRVariants User Guide 8

## [1] TRUE

We see above that sample ptena 4 has an efficiency of 80%, i.e. 4 variant sequences, plus one sequence “6:1D" which is
counted as a non-variant sequence as it also occurs in the control sample.

2.7 Get consensus alleles

The consensus sequences for variant alleles can be accessed using consensusSeqs. This function allows filtering by variant
frequency or read count, as for plotAlignments and plotFreqHeatmap. Consensus alleles are returned with respect to
the positive strand.

sqs <- consensusSeqgs(crispr_set)

sgs
## A DNAStringSet instance of length 8

#H# width seq names

## [1] 33 ACCTTCCAATCGTTCGGCTGGAAAGCCCATGGC no variant
## [2] 29 NCCTTCCANTCGGCTGGAAAGCCCATGGC -1:4D

## [3] 32 ACCTTCNNTCGTTCGGCTGGAAAGCCCATGGC 6:1D

## [4] 40 NCCTTCCAATCAGTTCGAATTCGGCTGGAGAGCCCATAGC 1:71

## [5] 34 NCCTTCCAATCGGTTCGGCTGGAAAGCCCATGGC 1:1T

## [6] 40 NCCTTCCANCNCCTTCCTTTTCGGCTGGAAAGCCCATGGC 1:21,3:51
## [7] 29 ANNTTCNNATCGGCTGGNAAGCCNNTGGC -2:4D

## [8] 37 NCCTTCCACAAACACNTTCGGCTGGAAAGCCCATGGC 2:1D,4:51

# The ptena guide ©s on the negative strand.

# Confirm that the reverse complement of the "no wariant” allele
# matches the reference sequence:

Biostrings: :reverseComplement(sqs[["no variant"]]) == reference
## [1] TRUE

2.8 Plot chimeric alignments

When deciding whether chimeric alignments should be considered as variant sequences, it can be useful to plot the
frequent chimeras.

ch <- getChimeras(crispr_set, sample = "ptena 4")

# Confirm that all chimeric alignments are part of the same Tead
length(unique (names(ch))) ==
## [1] TRUE

# Set up points to annotate on the plot
annotations <- c(resize(gd, 1, fix = "start"), resize(gd, 1, fix = "end"))

annotations$name <- c('"ptena_start", "ptena_end")

plotChimeras(ch, annotations = annotations)



CrispRVariants User Guide 9

23648656 -
23648640 -

23648620 -

(o]

23648600 -

23648580

23648560 -
Chromosome

chrl7

23648540 -
23648520 -
23648500
236484801

Chromosomal locat

23648460 -
23648440 -

23648420 -,

+_
o
o
Lo

0
100

0

0
4007

Read location

Here we see the read aligns as two tandem copies of the region chr17:23648420-23648656. The endpoint of each copy is
not near the guide sequence. We do not consider this a genuine mutation, so we'll recalculate the mutation efficiency
excluding the chimeric reads and the control variant as before.

mutationEfficiency(crispr_set, filter.cols = "control", exclude.cols = "control",
include.chimeras = FALSE)

## ptena 1 ptena 2 ptena 3 ptena 4 Average Median  Overall StDev

## 25.00 42.86 0.00 75.00 35.71 33.93 36.84 1.50

## ReadCount

## 19.00

We see that the mutation effiency for “ptena 4" is now 75%, i.e. 3 genuine variant sequences, 1 sequence counted as
“non-variant” because it occurs in the control, and the chimeric read excluded completely

3 Choosing the strand for display

CrispRVariants is capable of tabulating variants with respect to either strand. By default, variant alleles are displayed
with respect to the target strand, i.e. sequences for a guide on the negative strand are reverse complemented for display.
For some applications it may be preferable to display the variants on the opposite strand, for example if a guide on the
negative strand is used to target a gene on the positive strand. The display strand is controlled using the orientation
parameter in readsToTarget(s) during initialization.

To illustrate, we will plot the variants for ptena on the positive strand. Note that the only changes to the initialization
code is the orientation parameter. In particular, the target.loc is still specified with respect to the guide sequence and the
reference is still the guide sequence, not its reverse complement.



CrispRVariants User Guide 10

crispr_set_rev <- readsToTarget(bam_fnames, target = gdl, reference = reference,

names = md$Short.name, target.loc = 22,
orientation = "opposite")
plotVariants(crispr_set_rev)

Reference -

no variant 4 A

3:4D ~

6:1D -

Percentage

1 0 0 0 0 0

-1:714 N

@
=}

-1:114 N

2:51,-1:21 5 N-N A A A A 0 1 0 0 0

o
=
o
o
o
|
3

=
o
s}

2:AD-“FNN-NN‘Ai_____N‘A_A-NN- 0 ! 0 0 0
<
3:5I’2:1D- § ‘ ) IN “- 0 0 0 ! 0
Other 4 0 0 1 1 0
T T T T T T T T T T T T T
10 5 1-1 -5 -10 -15 -20 A N ©® < S
© © 1] © =
c o c o o
e 8 2 e 8
© AGTTCGA W CNCCT @ G 2 2 2 2

& CAAAC O ctT

## TableGrob (2 x 1) "arrange": 2 grobs

##  z cells name grob
## 1 1 (1-1,1-1) arrange rect[GRID.rect.223]
## 2 2 (2-2,1-1) arrange gtable[arrange]

Note that variants are labelled with respect to their leftmost coordinate, so the labelled variant location changes when
plotting on the opposite strand.



CrispRVariants User Guide 11

4 Changing the appearance of plots

Note that arguments for CrispRVariants::plotAlignments described below can be passed to CrispRVariants::plotVariants
as a list, e.g. plotAlignments.args = list(axis.text.size = 14). Similarly, arguments for CrispRVari-
ants::plotFreqHeatmap are passed through plotVariants via plotFreqHeatmap.args.

4.1 Filtering data in plotVariants

For the following examples, we will use the ptena data set. We must first load the data and create a
CrispRVariants::CrisprSet object.

# Setup for ptena data set
library("CrispRVariants")
library("rtracklayer")
library("GenomicFeatures")
library("gdata")

# Load the guide location

gd_fname <- system.file(package="CrispRVariants", "extdata/bed/guide.bed")
gd <- rtracklayer::import(gd_fname)

gdl <- resize(gd, width(gd) + 10, fix = "center")

# The saved reference sequence corresponds to the guide

# plus 5 bases on either side, i.e. gdl

ref_fname <- system.file(package="CrispRVariants",
"extdata/ptena_GRCHz10_ref.rda")

load (ref_fname)

# Load the metadata table, which gives the sample names
md_fname <- system.file(package="CrispRVariants",

"extdata/metadata/metadata.x1ls")
md <- gdata::read.xls(md_fname, 1)

# Get the list of bam files
bam_dir <- system.file(package="CrispRVariants", "extdata/bam")
bam_fnames <- file.path(bam_dir, md$bamfile)

# Check that all files were found
all(file.exists(bam_fnames))
## [1] TRUE

crispr_set <- readsToTarget(bam_fnames, target = gdl, reference = reference,
names = md$Short.name, target.loc = 22,
verbose = FALSE)

# Load the transcript database

txdb_fname <- system.file("extdata/GRCz10_81_ptena_txdb.sqlite",
package="CrispRVariants")

txdb <- AnnotationDbi::loadDb(txdb_fname)

Here is the ptena data set plotted with default options:

p <- plotVariants(crispr_set, txdb = txdb)
## 'select()' returned 1:many mapping between keys and columns



CrispRVariants User Guide 12

## 'select()' returned 1:many mapping between keys and columns

ENSDARGO00000071018
23646500 23647000 23647500 23648000 23648500
Reference - 4 7 5 5 8
novariant-[@lc c ATj@@6cTTTCcCcABccl@an -T.
-14D-@ccatf@@@crtTTccalgccl@an --FE@A @@~ | 0 0 02 O
Percentage
6:1D4fGlccaTf@@8cTTTCccAlEcclEan AnNE-AAEET | 0 0 0 1 1 0
171-@lctaT@@@ctcTccalBcclgan ATTEEA B8N | 1 0 0O 0O O 25
11 @ccatl@@@crtrrccalgcclEan AT~ BB~ | 0 1 0 0 © =50
o 75
12135 H@lccatl@@@cttTccaBccl@aa AnTREEIAABEIN | O 1 0 0 © -100
-24D-H@lccann@@cTTinccallcc@a - -FEnn@aannF| 0O 2 0 0 O
(@]
2:1D,451-[@lc caT[@@@c T TTCccAalBcclgana -FiEEA B8N 0 0 0 1 O
Other - 0O 0 1 1 o
T T T T i T T T T T T T
-20 -15 -10 -5 -11 5 10 4 N ™ 8 5
g g g g £
g 8 8 & §
Q AG Vv c @ TCGAACT e & o o

& AGGNG O GTTTG

The layout of this plot is controlled mainly by two parameters: row.ht.ratio and col.wdth.ratio. row.ht.ratio
(default c(1,6)) controls the relative sizes of the transcript plot and the other plots. Below we show how to change the
ratio so that the transcript plot is relatively larger:

p <- plotVariants(crispr_set, txdb = txdb, row.ht.ratio = c(1,3))
## 'select()' returned 1:many mapping between keys and columns
## 'select()' returned 1:many mapping between keys and columns



CrispRVariants User Guide 13

ENSDARG00000071018
- <E<——
- <<
-
— e
—
23646500 23647000 23647500 23648000 23648500
Reference - 4 7 5 5 8
no variant - TG A AlGIEI T 0
-1:4D-@lccAaTl@@ElcTTTCcCcA@ccl@an --FE@EAr@EN | 0 0 012 O Percentage
g:1D-BlccaT@@@cTTTCcCcABlccléan ANNEB-AAEEITI| 0 0 0 1 1 0
171-@lcTAT@@EEcTcTCccABccl@aa AfTEEAABEIN |1 0 0 0 O 2
Li-ElccaTl@@écTTTCCABCCcl@Aa ATTEIElAABEIN | 0 1 0 0 O -50
1:21,3551-[@lccAaTl@@GcTTTCCAGCccClEAA A<>N TeEAa@@nN | 0 1 0 0 O° -75
-2:4D-@lc c ANN[EIElc T T NCcaA@cc@a - -@nNBlAANNTI| O 1 0 0O O -100
(@)
2:1D,451H[@ccAaTl@@GcTTTCCAGCClEGAA -FTEE@AA@@N | 0 0 0 1 O°
Other 0 0 1 1 O
T T T T [} T T T T T T T
-20 -15 -10 -5 -11 5 10 < N ™ < 3
T 8 ® ® 5
c e o c c
2 2 8 o 3
O AG v ¢ @ TCGAACT e & & o

AGGNG O GTTTG

Simi-
larly, col.wdth.ratio controls the width ratio of the alignment plot and the heatmap (default c(2,1), i.e. the alignment
plot is twice as wide as the heatmap). Below we alter this to make the alignment plot comparatively wider:

p <- plotVariants(crispr_set, txdb = txdb, col.wdth.ratio = c(4,1))



CrispRVariants User Guide 14

ENSDARGO00000071018
23646500 23647000 23647500 23648000 23648500
Reference -
no variant -
~1:4D -
Percentage
6:1D o 0
1:71 25
-
1:11+
-
1:21,3:51 - - 100
-24D-4@lc ¢ A n NEBlcTTTincc aB@lccl@aAa - -|- -[TnnBla AN NT 01000
(@]
2:1D4:51H@lc ¢ AlTElEEBlc T T T cca@ccl@a anj@-TTENEA ABE N 00010
Other - 00110
T T T T T T T T rrnrroTa
-20 -15 -10 -5 -11 5 10 ‘_‘Nm"'_e
zogze
28885
O AG Vv C @ TCGAACT cooo

& AGGNG O GTTTG

The remaining examples in this section use the gol data set.
# Load gol data set

library("CrispRVariants")

data(gol_clutchl)

The data used in plotAlignments and plotFreqHeatmap can be filtered by either frequency via min.freq, count via
min.count, or to show a set number of alleles sorted by frequency, via top.n. Within plotVariants, these filtering
options need to be set for both plotAlignments" andplotFreqHeatmap"’ We also add space to the bottom of the plot
to prevent clipping of the labels.
library(GenomicFeatures)
p <- plotVariants(gol, plotAlignments.args = list(top.n = 3),

plotFreqHeatmap.args = list(top.n = 3),

left.plot.margin = ggplot2::unit(c(0.1,0,5,0.2), "lines"))



CrispRVariants User Guide

Reference 5 8 6 9 8 9 91513
-33DH[@TCcTTE@EGTCTCTCIGBCAGGA-- -JTl@cTti@EAaGccall 3 0 3
-3838D---------“--"------------ Tlelc TIElEGlABIccA| ([0 0O 0O0OO0O 0
224l-[G@TcTTIE@ETCTCTCIGCAGGAT T%AT-A-CCA 01003300

] ] ] ] [ | ] ] LI | LI | LI | LI |
-20 -15 -10 -5 -11 5 10 I NMm S 0O~ o
TS EcEEctE¢c

C 6 8 B @ @ @ @

O O O O Q9 QO Q9 O

© 241 (4 common alleles) Q2 .0 .0 0 9 .0 .98 0

0O O 0O 0O 0O O O o

o e T e T B O IO I o |

[T T T T T Tl VI

© © 0 oo o o o

OO0 DD D DD

At present, filtering by sample (column) is possible for plotFreqHeatmap via the
used to reorder columns), but not ‘plotAlignments.

plotFreqHeatmap.args = list(top.n = 3, order = c(1,5,3)),
left.plot.margin = ggplot2::unit(c(0.1,0,5,0.2), "lines"))

plotVariants(gol, plotAlignments.args = list(top.n = 3),

Reference - 8 9 9
-33DH[@TcTT@GTCTCTCIGCAGEGA - - -JTl@cTlEGEGAGCCA 3 0

-3838D4---------------------- TEic TEEIABCC A 0 0 0

2241=[G@TCTTIEGEGTCTCTCIGBIC AlGGEGAT TciA TIEGIAGIC C A 0 3 0

] ] ] ] [ | ] ] ] ] ]

-20 -15 -10 -5 -11 5 10 — 0 ™

< < €

< © <

(e o Q.

© 241 (4 common alleles) 2 2 2

o o o

— — —

s L L

© © ©

o [=2] (=]

## TableGrob (2 x 1) "arrange": 2 grobs

##  z cells name grob
## 1 1 (1-1,1-1) arrange rect[GRID.rect.940]
## 2 2 (2-2,1-1) arrange gtable[arrange]

4.2 plotAlignments

4.2.1 Insertion symbols

The symbols indicating insertions are controlled by four parameters. ins.size (default 3) controls the size of the symbols

within the plot area.

plotAlignments(gol, top.n = 3, ins.size = 6)

25

50

75

100

25

50

75

100

15

order parameter (which can also be



CrispRVariants User Guide 16

Reference =

-3:3D

—38:38D -

2:241 -

TS TR B P
] ] ]

T
-20 -15 -10 -5

. 241 (4 common alleles)

By default the symbols in the legend are the same size as those in the plot, but this can be controlled separately with
legend.symbol.size.

plotAlignments(gol, top.n = 3, legend.symbol.size = 6)

Reference -

—3:3D-.—FCH’—Y—-+C+C+C.C A-A

-38:38D - - - - - - - - - - - - - - - - - - -

2:24I-.—Fc4—1—-—#c+c+c.c A-A
T

T T T
-20 -15 -10 -5

. 241 (4 common alleles)

As long sequences can make the plot difficult to read, by default only the length of insertions greater then 20bp is shown.
This can be changed with the max.insertion.size parameter. If there is more than one allele, the number of (frequent)
alleles is indicated.

plotAlignments(gol, top.n = 5, max.insertion.size = 25)



CrispRVariants User Guide 17

-38:38D4 - - - - - - - - - - - - - - -

T T
=20 -15 -10

CTCCCTTGGATCTCGCAGGAN, CTTGGNNNNTCTTGGATCTCGCAN,
© CTCTCTTGGATCTCGCAGGAN, ¢ STTGGTCTCTCTTGGATCTCGCAG, GTC
: CTTGGTCTCTCTTGGATCTCGCAN, ¥
CTCTCTTGGATCTCGCANGAN :
NTNNNTCTCTCTTGGATCTCGCAG

Finally, the parameter min.insertion.freq (default 5%) controls how many alleles are displayed at each insertion locus.
In large data sets, there will be a substantial proportion of reads with sequencing errors, and we may only wish to display
the most common sequences.

# Here we set a fairly high value of 50/ for min.insertion. freq
# As ambiguous nucleotides occur frequently in this data set,

# there are no alleles passing this cutoff.

plotAlignments(gol, top.n = 5, min.insertion.freq = 50)

Reference -

-3:3D ~

—38:38D -

2:241 -

-9:10D =

-1:31,5:211 5

o 2 & 241 (0commonalleles) Y GTC

max.insertion.size and min.insertion.freq can be combined. In this case, alleles longer than max.insertion.size
but less frequent than min.insertion.freq will be collapsed.

plotAlignments(gol, top.n = 5, max.insertion.size = 25, min.insertion.freq = 50)



CrispRVariants User Guide 18

-38:38D4 - - - - - - -~ =~ =~ =~ =~ = =~ — - -

T T
=20 -15 -10 -5

© CTCTCTTGGATCTCGCAGGAN & 241 (0 common alleles) V¥ GTC

4.2.2 Whitespace between rows

The space between rows is controlled with the tile.height parameter (default 0.55). Values closer to 0 increase the
space between rows, whilst values closer to 1 decrease the space between rows.

# No white space between rows
plotAlignments(gol, top.n = 3, tile.height = 1)

Reference =

—3:3D ~

—38:38D -

2:241 -

© 241 (4 common alleles)

# More white space between rows
plotAlignments(gol, top.n = 3, tile.height = 0.3)



CrispRVariants User Guide 19

Reference - w

“soo- T e T TR v o v e B, - - -[FEc TEEEAEc ¢ -

e

zou-ET ¢ v THEEEIT ¢ T oc v e [ ﬂ- . N oo

—20 —15 —10 —5 5 10

O 241 (4 common alleles)

4.2.3 Box around guide

The black box around the guide sequence can be removed by setting highlight.guide = FALSE.
plotAlignments(gol, top.n = 3, highlight.guide = FALSE)

Reference =

—-3:3D o

TR RN BN P

-38:38D - - - - - - - = = = = - - = = - - - -

2:241 - .—F 4—1—-+c+c+c.c A-

—20 —15 —10 —5 -11 5 10

O 241 (4 common alleles)

By default, the box around the guide is drawn from 17 bases upstream of the target.loc to 6 bases downstream.
For experiments with a truncated guide, or other non-standard guide location, the box must be manually specified.
The guide location can be altered by setting the guide.loc parameter. This can be either an IRanges::IRanges or

GenomicRanges::GRanges object.

library(IRanges)

guide <- IRanges::IRanges(15,28)
plotAlignments(gol, top.n = 3, guide.loc = guide)



CrispRVariants User Guide 20

Reference -

vo-lr o Bl BB [(EeBE-E
-3838D- - - - - - - - - - - - - - - - - - - - - = —“c’Alc c A
ool ol A- +q+l +- -

-20 15 ~10 10

O 241 (4 common alleles)

4.2.4 Text sizes

The text within the alignments is controlled by plot.text.size (default 0), and can be removed completely by
setting plot.text.size = 0. The axis labels and legend labels are controlled with axis.text.size (default 8) and
legend.text.size (default 6) respectively. The number of columns in the legend is controlled by legend.cols (default
3).
# Here we increase the size of the azis labels and make
# two columns for the legend
plotAlignments(gol, top.n = 3, axis.text.size = 12,

legend.text.size = 12, legend.cols = 2)

Reference -
_3;3D-.+cq—r—-+c+c+c.c A-A 1
~38:38D{ - - - - - - - - - -
2:24|-@l7 c v @8t cflc A8

20 _15 10 5 “11 5 10

© 24l (4 common alleles)

4.2.5 Box around PAM

The argument highlight.pam determines whether a box around the PAM should be drawn.

# Don't highlight the PAM sequence
plotAlignments(gol, top.n = 3, highlight.pam = FALSE)



CrispRVariants User Guide 21

Reference -

I3 DENRI TRERN FN NN BN B
-3838D- - - - - - - - - - - - - - - - - - - - - = —“c’Alc c A
ool ol A- +q+l +- -

-20 15 ~10 10

O 241 (4 common alleles)

By default this box is drawn 3 nucleotides downstream of the target.loc. Other applications might require a different
region highlighted. This can be achieved by explicitly setting the start and end positions of the box, with respect to the
reference sequence.

# Highlight 3 bases upstream to 3 bases downstream of the target.loc
plotAlignments(gol, top.n = 3, pam.start = 19, pam.end = 25)

Reference -

[°8 DENRI TRERN BN N RN B
-3838D- - - - - - - - - - - - - - - - - - - - - = —“C’Alc c A
B +q+l i

-20 -15 -10 10

O 241 (4 common alleles)

The boxes around the guide and the PAM can both be changed to arbitrary locations, however note that the guide box is
specified by a ranges object whilst the PAM box is specified by start and end coordinates. Both coordinates are with
respect to the start of the reference sequence. The box around the guide is slightly wider than the box around the PAM.

plotAlignments(gol, top.n = 3, guide.loc = IRanges(5,10),
pam.start = 8, pam.end = 13)



CrispRVariants User Guide

Reference -

(5 DRI TREETE ON  PEmei B B B
—38238D'——————————————————————“C’AlCCA
(©)
oo B <E <l I FG O -
T T T T T T T
-5 -11 5

10

T
-20 -15 -10

O 241 (4 common alleles)

The thickness of the lines showing the cut site, the guide and the PAM are controlled with 1ine.weight (default 1).
plotAlignments(gol, top.n = 3, line.weight = 3)

Reference -
—3:3D-l+c4—v—-+c+c+clc A-A - - - c+-Alc c A
-3838D- - - - - - - - - - - - - - - - - - - = c+-AlCCA
2:24I-l+c4—v—-+c+c+clc A-A A+-Alc cC A
T T T

T T T
-20 -15 -10 -5 -11 5 10

© 241 (4 common alleles)

4.3 plotFreqHeatmap

Here is the result of calling plotFreqHeatmap with default values, showing the three most common variant alleles.

plotFreqHeatmap(gol, top.n = 3)



CrispRVariants User Guide

23
Total - Percentage
0
—3:3D - 25
-
—38:38D - -

75

2244 0 1 0 0O 8 3 0 O B

T T T T T T T

gol F1 crispant 1
gol F1 crispant 2
gol F1 crispant 3
gol F1 crispant 4
gol F1 crispant 5
gol F1 crispant 6
gol F1 crispant 7
gol F1 crispant 8

4.3.1 Controlling the data plotted

The tiles may be coloured by either the percentage of the column totals (default), or by the counts, by setting as.percent

= FALSE. The column headers show the total number of sequences in the data. Typically, rare variants are excluded, so
the displayed variants do not add up to the column totals.

plotFreqHeatmap(gol, top.n = 3, as.percent = FALSE)

Total4| 8 6 9 8 9 9 15 13 Count

-3:3D -

—-38:38D -

o

12
2:2411 0 1 0 0 3 3 0 0
i i i i i i i i
- ~ ™ < o © ~ ®
= - - - = - - -
c € € € c c c €
© © © © © © © ©
o o o o o o o o
K] (2] 0 @ @ 2 K] (]
= = = = = = = =
3} 5 5 3] 3] 3} 3} 5
F| i e H H H F| a
L ('8 (18 L L L L ('8
© © © © © ° © ©
) ) > ) S) > ) )

When calling plotFreqHeatmap.CrisprSet, the data can be displayed as percentages instead of raw counts by setting
type = "proportions" instead of the default type = "counts".

plotFreqHeatmap(gol, top.n = 3, type = "proportions")



CrispRVariants User Guide 24

Total 4 37.5 83.3388.89 100 33.3388.89 100 53.85|  Percentage

0
-3:3D - 25

50
—38:38D -

75

2:241- 0 1667 0 0 33.3333.33 0 100

o

gol F1 crispant 1
gol F1 crispant 2
gol F1 crispant 3
gol F1 crispant 4
gol F1 crispant 5
gol F1 crispant 6
gol F1 crispant 7
gol F1 crispant 8

4.3.2 Changing colours of x-labels

The x-labels can be coloured by experimental group. To do this, a grouping vector must be supplied by setting parameter
group. Columns are ordered according to the levels of the group. There should be one group value per column in the
data.

ncolumns <- ncol(variantCounts(gol))
ncolumns

## [1] 8
grp <- rep(c(1,2), each = ncolumns/2)
plotFreqHeatmap(gol, top.n = 3, group = grp)

Total - Percentage
0
—3:3D ~ 25
m-
—38:38D o -
75
2244 0 1 0 O 3 3 0 O B

gol F1 crispant 1
gol F1 crispant 2
gol F1 crispant 3
gol F1 crispant 4
gol F1 crispant 5
gol F1 crispant 6
gol F1 crispant 7

gol F1 crispant 8

The default colours are designed to be readable on a white background and colour-blind safe. These can be changed by

supplying a vector of colours for each level of the group. Colours must be supplied if there are more than 7 experimental
groups.

grp_clrs <- c("red", "purple")
plotFreqHeatmap(gol, top.n = 3, group = grp, group.colours = grp_clrs)



CrispRVariants User Guide

Total - Percentage

0
-3:3D - 25

50
—38:38D -

75

100
22414 0 1 0 0 3 3 0 0
T T T T T T T T
— o~ ™ < o © ~ ©
= - - - - - = o
c c c c c c c c
© © © © © © © (]
=3 o o o o o o o
(] K] 0 9 K] 0 9 (2]
= = = = = = = =
5] 5] 3] 5] 5] 3] 5] 5]
o~ - - o~ - - o~ o
L L s L o w L s
IS) ° ° © ° ° ° °
> ) ) ) > > ) >

4.3.3 Controlling the appearance of the legend

The legend position is controlled via legend.position, which is passed to ggplot2::theme.
legend.key.height controls the height of the legend. See the ggplot docs for more information.

plotFreqHeatmap(gol, top.n = 3, legend.position = "bottom")

Total{ 8 6 9 8 9 9 15 13

—-38:38D -

o
o
o
o
o
o
o

2:241 -

o
=
o
o
w
w
o
o

gol F1 crispant 1

gol F1 crispant 2
gol F1 crispant 3
gol F1 crispant 4
gol F1 crispant 5
gol F1 crispant 6
gol F1 crispant 7
gol F1 crispant 8

Percentage 0 25 - 50 - 75 - 100

plotFreqHeatmap(gol, top.n = 3,
legend.key.height = ggplot2::unit(1.5, "lines"))

25

Similarly


http://docs.ggplot2.org/current/theme.html

CrispRVariants User Guide

26
Percemage
Total - 0
-3:3D - 2
I
-38:38D =
N
2:241-= 0 1 0 0 3 3 0 0
i
T T T T T T T T

gol F1 crispant 1
gol F1 crispant 2
gol F1 crispant 3
gol F1 crispant 4
gol F1 crispant 5
gol F1 crispant 6
gol F1 crispant 7
gol F1 crispant 8

4.4 barplotAlleleFreqs

barplotAlleleFreqs includes two different colour schemes - a default rainbow scheme and a blue-red gradient. Note
that the transcript database txdb must be passed by name as this function accepts ellipsis arguments.

Here barplotAlleleFregs is run with the default parameters:
barplotAlleleFreqs(crispr_set, txdb = txdb)

## Looking up variant locations

## Loading required namespace: VariantAnnotation

## 'select()' returned many:1 mapping between keys and columns

## 'select()' returned many:1 mapping between keys and columns
## Classifying variants

ptena 1

ptena 2

ptena 3

ptena 4

control

0.00 0.25 0.50 0.75 1.00

Allelesd{ v Jw v v ]S

. no variant . inframe indel < 10
Chimeric . frameshift indel < 10

Sequences-{ o Juajual~]+

In this case barplotAlleleFregs is run with the alternative palette.



CrispRVariants User Guide 27

barplotAlleleFreqs(crispr_set, txdb = txdb, palette = "bluered")

ptena 1

ptena 2

ptena 3

ptena 4

control
0.00 0.25 0.50 0.75 1.00

Allelesd{ v jJw v ]In]S

. no variant inframe indel < 10
Chimeric . frameshift indel < 10

Sequences-{ @ Jjoju ]~ >

By default, a table of the number of sequences and alleles is plotted next to the barplot. This can be switched off. In
this case, barplotAlleleFreqgs will return an ggplot object, allowing further alteration of the appearance through the
usual ggplot2: :theme settings.

barplotAlleleFreqs(crispr_set, txdb = txdb, include.table = FALSE)

ptena 1
ptena 2
ptena 3
ptena 4
control

0.00 0.25 0.50 0.75 1.00

. no variant . inframe indel < 10
Chimeric . frameshift indel < 10

barplotAlleleFreqs.CrisprSet uses VariantAnnotation::locateVariants to look up the variant locations with
respect to a transcript database. The default behaviour of barplotAlleleFreqs.matrix is to perform a naive
classification of the variants as frameshift or non-frameshift by size. This approach ignores transcript scructure, but can
be useful to give a faster overview, or in cases where the transcript structure is unknown.

var_counts <- variantCounts(crispr_set)
barplotAlleleFreqgs(var_counts)



CrispRVariants User Guide 28

. no variant . inframe indel <9
other [l frameshift indel < 9

ptena 1 2 4
ptena 2 4 7
ptena 3 2 5
ptena 4 4 5
control 2 8
1 1

0.00 0.25 0.50 0.75 1.00 a a

g 2

< S

oy

[<H)

n

If the parameter classify is set to FALSE, the variants are plotted with no further aggregation. If there are more than
seven variants, colours must be provided.
rainbowPal9 <- c("#781C81","#3F4EA1","#4683C1",

"#57A3AD" , "#6DB388" , "#B1BE4E",

"#DFA53A" , "#E7742F" , "#D92120")

barplotAlleleFreqgs(var_counts, classify = FALSE, bar.colours = rainbowPal9)

. no variant . 1:71 -2:4D
B 140
61D 1:21,3:51 [ other

ptena 1 2 4
ptena 2 _ 4 7
ptena 3 2 5
ptena 4 4 5
control 2 8
0.00 0.25 0.50 0.75 1.00 a g
o g
< S
oy
[}
)

luu [ 2:1D4sl

An arbitrary classification can also be used. CrispRVariants provides some utility functions to assist in classify-
ing variants. Note that methods of the CrisprSet class are accessed with crisprSet$function() rather than
function(crisprSet).

Here are some examples of variant classification:

# Classify variants as insertion/deletion/mized
byType <- crispr_set$classifyVariantsByType()

byType

#i# no variant -1:4D 6:1D
## "no variant" "deletion" "deletion"
#i# 1:71 1:11 1:21,3:51
## "insertion" "insertion" "multiple insertions"
## -2:4D 2:1D,4:51 Other

## "deletion" "insertion/deletion" "Other"



CrispRVariants User Guide 29

# Classify variants by their location, without considering size
byLoc <- crispr_set$classifyVariantsByLoc(txdb=txdb)

## Looking up variant locations

## 'select()' returned many:1 mapping between keys and columns
## 'select()' returned many:1 mapping between keys and columns
## Classifying variants

byLoc

## no variant -1:4D 6:1D 1:71 1:11 1:21,3:51
## "no variant" "coding" "coding" "coding" "coding" "coding"
## -2:4D 2:1D,4:51 Other

## "coding" "coding" "Other"

# Coding wariants can then be classified by setting a stize cutoff
byLoc <- crispr_set$classifyCodingBySize(byLoc, cutoff = 6)

byLoc

## no variant -1:4D 6:1D
## "no variant" "frameshift indel < 6" "frameshift indel < 6"
#i# 1:71 1:11 1:21,3:51I
## "frameshift indel > 6" "frameshift indel < 6" "frameshift indel > 6"
## -2:4D 2:1D,4:51 Other
## "frameshift indel < 6" "inframe indel > 6" "Other"

# Combine filtering and wvariant classification, using barplotAlleleFreqgs.matric
vc <- variantCounts(crispr_set)

# Select wariants that occur in at least two samples
keep <- names(which(rowSums(vc > 0) > 1))

keep

## [1] "no variant" "6:1D" "Other"

# Use this classtification and the selected variants
barplotAlleleFreqs(vc[keep,], category.labels = byLoc[keep])

ptena 1 1 3
ptena 2 1 4
ptena 3 2 5
ptena 4 2 2
control 2 8
1 1
0.00 0.25 0.50 0.75 1.00 a g
K3} g
I o variant | other [l frameshift indel < 9 < S
[}
n

4.4.1 Other modifications

plotAlignments and plotFreqHeatmap both return ggplot objects, which can be adjusted via theme (). For example,
to decrease the space between the legend and the plot:



CrispRVariants User Guide 30

p <- plotAlignments(gol, top.n = 3)
p + theme(legend.margin = ggplot2::unit(0, "cm"))

Reference -
SX3| EERE! — TNEPEIT TRV PN PN R
—38238D'----------------——————“CiA.CCA

o
SOLECRRT EERERR BB AR R
T T T T
-1 1 5

T T T T
-20 -15 -10 -5 10

© 241 (4 common alleles)

5 Using CrispRVariants plotting functions independently

The CrispRVariants plotting functions are intended to be used within a typical CrispRVariants pipeline, where the correct
arguments are extracted from a CrisprSet object. However, with some data formatting, it is also possible to use these
functions with standard R objects.

An example adapting CrispRVariants: :plotVariants to display pairwise alignment can be found in the code accom-
panying the CrispRVariants paper: https://github.com/markrobinsonuzh /CrispRvariants_manuscript

5.1 Plot the reference sequence

Processing large data with CrispRVariants requires some time. It can be useful to first plot the reference sequence to
check that the intended target location is specified. Here we use the reference sequence from the gol data set included in
CrispRVariants. Any Biostrings::DNAString can be used. Note that CrispRVariants::plotAlignments accepts elliptical
arguments in its signature, so non-signature arguments must be supplied by name. The code below shows the minimum
arguments required for running CrispRVariants::plotAlignments.

# Get a reference sequence
library("CrispRVariants")
data(gol_clutchl)

ref <- gol$ref

#Then to make the plot:
plotAlignments(ref, alns = NULL, target.loc = 22, ins.sites = data.frame())

Reference =

10 20 30


https://github.com/markrobinsonuzh/CrispRvariants_manuscript

	1 Introduction
	2 Case study: Analysis of ptena mutant spectrum in zebrafish
	2.1 Convert AB1-format Sanger sequences to FASTQ
	2.2 Map the FASTQ reads
	2.3 Read in BAM files and initialize CrisprSet object
	2.4 Creating a CrisprSet
	2.5 Creating summary plots of variants
	2.6 Calculating the mutation efficiency
	2.7 Get consensus alleles
	2.8 Plot chimeric alignments

	3 Choosing the strand for display
	4 Changing the appearance of plots
	4.1 Filtering data in plotVariants
	4.2 plotAlignments
	4.3 plotFreqHeatmap
	4.4 barplotAlleleFreqs

	5 Using CrispRVariants plotting functions independently
	5.1 Plot the reference sequence


