Contents

(1 _Introduction|

|2 Creation and masking|

|3 Analytic utilities|

|4 Exporting to file|

5 Sossion Informat

1 Introduction

MultipleAlignment Objects

Marc Carlson
Bioconductor Core Team
Fred Hutchinson Cancer Research Center
Seattle, WA

November 30, 2016

11

11

The DNAMultipleAlignment RNAMultiple Alignment and AAMultiple Alignment classes allow users to rep-
resent groups of aligned DNA, RNA or amino acid sequences as a single object. The frame of reference for
aligned sequences is static, so manipulation of these objects is confined to be non-destructive. In practice,
this means that these objects contain slots to mask ranges of rows and columns on the original sequence.
These masks are then respected by methods that manipulate and display the objects, allowing the user to

remove or expose columns and rows without invalidating the original alignment.

2 Creation and masking

To create a MultipleAlignment, call the appropriate read function to read in and parse the original alignment.
There are functions to read clustaW, Phylip and Stolkholm data formats.

> library(Biostrings)
> origMAlign <-

system.file("extdata",
"msx2_mRNA.aln",
package="Biostrings"),

format="clustal")

+ readDNAMultipleAlignment (filepath =
+

+

+

+

> phylipMAlign <-

+ readAAMultipleAlignment (filepath =
+

system.file("extdata",

+ "Phylip.txt",
package="Biostrings"),
+ format="phylip")

+

Rows can be renamed with rownames.

> rownames (origMAlign)

[1] "gi|84452153|ref|NM_002449.4|" "gi|208431713|ref|NM_001135625."
[3] "gil118601823|ref|NM_001079614." "gi|114326503|ref |NM_013601.2]"
[5] "gil119220589|ref |NM_012982.3|" "gi|148540149|ref|NM_001003098."
[7] "gil|45383056|ref |NM_204559.1|" "gi|213515133|ref|NM_001141603."

> rownames (origMAlign) <- c("Human","Chimp","Cow", "Mouse", "Rat",
+ "Dog","Chicken", "Salmon ")
> origMAlign

DNAMultipleAlignment with 8 rows and 2343 columns

aln names
[1] ----- TCCCGTCTCCGCAGCAAAAAA . . . TCACAATTAAAAAAAAAAAAAAAAA Human
[2] ———————— Chimp
[B] === Cow
4] -———-—-——————————— AAAA. . - Mouse
[6] -—————————— o B R Rat
Y e Dog
[7] ———————mmm——- CGGCTCCGCAGC. . . ~======== == == mmmm e Chicken
[8] GGGGGAGACTTCAGAAGTTGTTGTCC. . .—=============—=—=————— Salmon

To see a more detailed version of your MultipleAlignment object, you can use the detail method, which
will show the details of the alignment interleaved and without the rows and columns that you have masked
out.

> detail (origMAlign)
Applying masks is a simple matter of specifying which ranges to hide.

> maskTest <- origMAlign
> rowmask (maskTest) <- IRanges(start=1,end=3)
> rowmask (maskTest)

NormalIRanges object with 1 range and O metadata columns:

start end width
<integer> <integer> <integer>
[1] 1 3 3

> maskTest

DNAMultipleAlignment with 8 rows and 2343 columns

aln names
(1] sttt A | | | EEREREEEHEEE A Human
[2] #t R . | AR Chimp
(3] sttt | | | AR Cow

[4] - AAAA. . Mouse
[6] —————————— B Rat

[6] —————————— T Dog

[7] ——————m—mmmm- CGGCTCCGCAGC. . . —===========—==—— == Chicken
[8] GGGGGAGACTTCAGAAGTTGTTGTCC. . .=—======mmmmmmmmmmmmmm Salmon

> colmask(maskTest) <- IRanges (start=c(1,1000),end=c(500,2343))
> colmask (maskTest)

NormalIRanges object with 2 ranges and O metadata columns:

start end width
<integer> <integer> <integer>

[1] 1 500 500
[2] 1000 2343 1344

> maskTest

DNAMultipleAlignment with 8 rows and 2343 columns

aln names
(1] sttt | | | R Human
(2] sttt . | | AR Chimp
(3] sttt | | | AR AR Cow
(4] sttt | | | AR Mouse
(5] ittt AR | | | HEEREHEEEHEEEE A Rat
(6] #tdtitttttt | | | R R Dog
(7] st | | R . Chicken
(8] sttt | | | AR . Salmon

Remove row and column masks by assigning NULL:

> rowmask (maskTest) <- NULL
> rowmask (maskTest)

NormalIRanges object with O ranges and O metadata columns:
start end width
<integer> <integer> <integer>

> colmask(maskTest) <- NULL
> colmask(maskTest)

NormalIRanges object with O ranges and O metadata columns:
start end width
<integer> <integer> <integer>

> maskTest

DNAMultipleAlignment with 8 rows and 2343 columns

aln names
[1] ----- TCCCGTCTCCGCAGCAAAAAA . . . TCACAATTAAAAAAAAAAAAAAAAA Human
2] Chimp
[8] —————————— Cow
I B AAAA. . —m Mouse
) B Rat
[6] ———————————— B i Dog
[7] ———=——mmmmmm- CGGCTCCGCAGC. . . —==============m——— = Chicken
[8] GGGGGAGACTTCAGAAGTTGTTGTCC. . .—=—============—————— - Salmon

When setting a mask, you might want to specify the rows or columns to keep, rather than to hide. To
do that, use the invert argument. Taking the above example, we can set the exact same masks as before by
specifying their inverse and using invert=TRUE.

> rowmask (maskTest, invert=TRUE)
> rowmask (maskTest)

<- IRanges (start=4,end=8)

NormalIRanges object with 1 range and O metadata columns:

start end width
<integer> <integer> <integer>
[1] 1 3 3

> maskTest

DNAMultipleAlignment with 8 rows
aln

(1] sttt

(2] #tstdtsttat st .

(3] sttt

[4] ———=mmmmm e AAAA.
[6] ——————mmmmmmmmmmmmmeeme o
R
[7] ————mmmmmmm CGGCTCCGCAGC. . .

[8] GGGGGAGACTTCAGAAGTTGTTGTCC. ..

> colmask(maskTest, invert=TRUE)
> colmask (maskTest)

and 2343 columns
names

CHERHHEEE N Human
HHHHEEEEE R Chimp
HHEHEEEE R Cow

————————————————————————— Mouse

Dog
Chicken
Salmon

<- IRanges (start=501,end=999)

NormalIRanges object with 2 ranges and O metadata columns:

start end width
<integer> <integer> <integer>

[1] 1 500 500
2] 1000 2343 1344

> maskTest

DNAMultipleAlignment with 8 rows
aln
i 2
HIHHHH R R
L s T
I
L 2
i 2
HIHHHE R
HIHHHH R R

(1]
(2]
(3]
(4]
(5]
(6]
7]
(8l

In addition to being able to invert

HEHH B R R R
R

B

HEHH B R R R R
R R

and 2343 columns

names
Human
Chimp
Cow
Mouse
Rat

Dog
Chicken
Salmon

HERHHHHHHAE R

HHSHHBHHHHR SRR B HRR SRR ES

HESHH AR

these masks, you can also choose the way in which the ranges you
provide will be merged with any existing masks. The append argument allows you to specify the way in
which new mask ranges will interact with any existing masks. By default, these masks will be the "union”
of the new mask and any existing masks, but you can also specify that these masks be the mask that results
from when you ”intersect” the current mask and the new mask, or that the new mask simply "replace” the
current mask. The append argument can be used in combination with the invert argument to make things
even more interesting. In this case, the inversion of the mask will happen before it is combined with the
existing mask. For simplicity, I will only demonstrate this on rowmask, but it also works for colmask. Before

we begin, lets set the masks back to being NULL again.

> ## 1st lets null out the masks so we can have a fresh start.

> colmask (maskTest) <- NULL
> rowmask (maskTest) <- NULL

Then we can do a series of examples, starting with the default which uses the "union” value for the append

argument.

> ## Then we can demonstrate how the append argument works
> rowmask (maskTest) <- IRanges(start=1,end=3)

> maskTest

DNAMultipleAlignment with 8 rows and 2343 columns

aln

(1] bttt R A .
[2] sttt A
[3] #ststststtap

names

HEHHR R R Human
HHEEEEEE R Chimp
CHEHHHEEE R Cow

[4] - AAAA . . — Mouse
[6] ——=———mmm e Rat

[6] ———————————— - B e Dog

(7] ————————- CGGCTCCGCAGC. . . —=====—————————— Chicken
[8] GGGGGAGACTTCAGAAGTTGTTGTCC. . . —======mm=mmmmmmmmmmm Salmon

> rowmask (maskTest,append="intersect") <- IRanges(start=2,end=5)
> maskTest

DNAMultipleAlignment with 8 rows and 2343 columns

aln names
(1] --——- TCCCGTCTCCGCAGCAAAAAA. . . TCACAATTAAAAAAAAAAAAAAAAA Human
(2] sttt | | | AR Chinp
(3] sttt | | | AR Cow

[4] ——————————— AAAA. . ——— Mouse
[6] === Rat

Y e Dog

[7] ————————mm———- CGGCTCCGCAGC. . . —=======m === mmmmm e Chicken
[8] GGGGGAGACTTCAGAAGTTGTTGTCC. . .—=——===========—=——————— Salmon

> rowmask (maskTest,append="replace") <- IRanges (start=5,end=8)
> maskTest

DNAMultipleAlignment with 8 rows and 2343 columns

aln names
[1] -——- TCCCGTCTCCGCAGCAAAAAA. . . TCACAATTAAAAAAAAAAAAAAAAA Human
[2] —-==--mmmmmmm e et Chimp
[3] ———————mmmmm e e Cow
4] - AAAA. . - Mouse

[5] sttt .
(6] sttt .
(7] #sstspttap s .
[8] #ut#titsttt A |

HEHH A R R RS Rat
HHRHHEEEEE R Dog
HERHHHEE R EEEE Chicken
HERHHHEEE R Salmon

> rowmask (maskTest,append="replace",invert=TRUE) <- IRanges(start=5,end=8)
> maskTest

DNAMultipleAlignment with 8 rows and 2343 columns

aln names
(1] st | | R . Human
(2] sttt | | | AR Chinp
(3] sttt | | | AR Cow
(4] sttt AR | | | AR AR Mouse

[6] ——————————— B Rat
[6] ————————————— - B Dog
(7] ——————- CGGCTCCGCAGC. . . ————————————————————————— Chicken
[8] GGGGGAGACTTCAGAAGTTGTTGTCC...-——————————=————————————— Salmon

> rowmask (maskTest,append="union") <- IRanges (start=7,end=8)
> maskTest

DNAMultipleAlignment with 8 rows and 2343 columns

aln names
(1] st | | R . Human
(2] st | | | AR Chinp
(3] sttt | | | HREHEHEHREREREHEHRER . Cow
(4] sttt | | | HEEEEHEEEER AR Mouse
6] - B Sttt Rat
Y B Dog
(7] st | | R . Chicken
(8] ittt | | | HEHEHEEREREHEEEEE . Salmon

The function maskMotif works on Multiple Alignment objects too, and takes the same arguments that it
does elsewhere. maskMotif is useful for masking occurances of a string from columns where it is present in
the consensus sequence

> tataMasked <- maskMotif(origMAlign, "TATA")
> colmask(tataMasked)

NormalIRanges object with 5 ranges and O metadata columns:

start end width
<integer> <integer> <integer>

[1] 811 814 4
[2] 1180 1183 4
[3] 1186 1191 6
[4] 1204 1207 4
[5] 1218 1221 4

maskGaps also operates on columns and will mask collumns based on the fraction of each column that
contains gaps min.fraction along with the width of columns that contain this fraction of gaps min.block.width.

> autoMasked <- maskGaps(origMAlign, min.fraction=0.5, min.block.width=4)
> autoMasked

DNAMultipleAlignment with 8 rows and 2343 columns

aln names
(1] #HHEEEEEEEREREEREEHEEEREEE | EREEEREEREEEEEEEEEAE Y Human
(2] #HHEHEEEEREEEEEEEEEEEEEEEE | HREEREEEREREEEEE . Chimp
(3] #stdtttt R | | | EEEEHEREERREHEEEER . Cow
(4] sttt | | | SRR . Mouse

(5] ##ttstttt A . | | R Rat
(6] #tdtittttatt it | | | R R Dog
(7] sttt | | S R . Chicken
[8] #ttstitttt ittt | | B . Salmon

Sometimes you may want to cast your MultipleAlignment to be a matrix for usage eslewhere. as.matriz
is supported for these circumstances. The ability to convert one object into another is not very unusual so
why mention it? Because when you cast your object, the masks WILL be considered so that the masked
rows and columns will be left out of the matrix object.

> full = as.matrix(origMAlign)
> dim(full)

[1] 8 2343

> partial = as.matrix(autoMasked)
> dim(partial)

[1] 8 1143

One example of where you might want to use as.matriz is when using the ape package. For example if
you needed to use the dist.dna function you would want to use as.matriz followed by as.alignment and
then the as.DNAbin to create a DNAbin object for the dist.dna.

3 Analytic utilities

Once you have masked the sequence, you can then ask questions about the properties of that sequence. For
example, you can look at the alphabet frequency of that sequence. The alphabet frequency will only be for
the masked sequence.

> alphabetFrequency (autoMasked)

A C G TMRWSYKVHDBN - +.
[1,] 260 351 296 218 0 0 0 00000000 1800
[2,] 171 271 231 128000 0000000333900
[3,] 277 360 2752090 0000000000 2200
[4,] 265 343 277 226 0 0000000000 3200
[5,] 251 345 287 229 00000000000 3100
[6,] 160 285 241 118 00 0 0000000033900
[7,] 224 342 273 190 00000000000 11400
[8,] 268 289 273 262 0 0 0 00000000 5100

You can also calculate a consensus matrix, extract the consensus string or look at the consensus views.
These methods too will all consider the masking when you run them.

> consensusMatrix (autoMasked, baseOnly=TRUE)[, 84:90]

(,1] [,2] [,3] [,4] [,5] [,6] [,7]

A 0 3 0 3 0 3 3
C 3 0 0 1 1 1 2
G 1 2 4 1 2 0 0
T 1 0 1 0 1 1 0
other 3 3 3 3 4 3 3

> substr(consensusString (autoMasked),80,130)
[1] "####CRGABAMGTCA-YRGCTTCTCYGTSCAWAGGCRRTGRCYTGTTYTCG"
> consensusViews (autoMasked)

Views on a 2343-letter BString subject
subject: --—-——————————————————- VWVMKYYBSRST. . . ——====———————— ===
views:

start end width

[1] 84 325 242 [CRGABAMGTCA-YRGCTTCTCYGTSCA...WGCGSCTCSGCYGGSGCYRYCCTGSGG]
[2] 330 332 3 [CCRI]
[3] 338 1191 854 [CTGCTGCTGYCGGGVCACGGCGYYCGG. ..CTGMTAGTTTTTATGTATAAATATATA]
[4] 1198 1241 44 [ATAAAATATAAKAC--TTTTTATAYRSCARATGTAAAAATTCAA]

You can also cluster the alignments based on their distance to each other. Because you must pass in
a DNAStringSet, the clustering will also take into account the masking. So for example, you can see how
clustering the unmasked DNAMultipleAlignment will draw a funky looking tree.

> sdist <- stringDist(as(origMAlign, "DNAStringSet"), method="hamming")
> clust <- hclust(sdist, method = "single")

> pdf (file="badTree.pdf")

> plot(clust)

> dev.off ()

null device
1

But, if we use the gap-masked DNAMultipleAlignment, to remove the long uninformative regions, and
then make our plot, we can see the real relationships.

> sdist <- stringDist(as(autoMasked, "DNAStringSet"), method="hamming")
> clust <- hclust(sdist, method = "single")

> pdf (file="goodTree.pdf")

> plot(clust)

> dev.off()

null device
1

> fourgroups <- cutree(clust, 4)
> fourgroups

Human Chimp Cow Mouse Rat Dog Chicken Salmon
1 2 1 1 1 2 3 4

In the "good” plot, the Salmon sequence is once again the most distant which is what we expect to
see. A closer examination of the sequence reveals that the similarity between the mouse, rat and human
sequences was being inflated by virtue of the fact that those sequences were simply much longer (had more
information than) the other species represented. This is what caused the "funky” result. The relationship
between the sequences in the funky tree was being driven by extra ”length” in the rodent/mouse/human
sequences, instead of by the similarity of the conserved regions.

Height

Cluster Dendrogram

1000

800
|

600
|

Salmon

Human

Rat
Chicken

200

1
Mouse
Cow ——

0

L
Chimp j
Dog —‘

sdist
hclust (*, "single")

Figure 1: Funky tree produced by using unmasked strings.

Cluster Dendrogram

o
S
o
S
8 4 E
o ©
(2]
o
S
<
c
g
2 8 S
> ® =
© O
I
o
S
«
o
S
=
fT fT 5 g
g (S}
o - o =
£ g & < T
= [a > o
= 5]
o >

sdist
hclust (*, "single")

Figure 2: A tree produced by using strings with masked gaps.

10

4 Exporting to file

One possible export option is to write to fasta files If you need to write your MultipleAlignment object out
as a fasta file, you can cast it to a DNAStringSet and then write it out as a fasta file like so:

> DNAStr = as(origMAlign, "DNAStringSet")
> writeXStringSet (DNAStr, file="myFile.fa")

One other format that is of interest is the Phylip format. The Phylip format stores the column masking
of your object as well as the sequence that you are exporting. So if you have masked the sequence and you
write out a Phylip file, this mask will be recorded into the file you export. As with the fasta example above,
any rows that you have masked out will be removed from the exported file.

> write.phylip(phylipMAlign, filepath="myFile.txt")

5 Session Information
All of the output in this vignette was produced under the following conditions:
> sessionInfo()

R version 3.3.2 (2016-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.1 LTS

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats4 parallel stats graphics grDevices utils datasets
[8] methods base

other attached packages:
[1] Biostrings_2.42.1 XVector_0.14.0 IRanges_2.8.1
[4] S4Vectors_0.12.1 BiocGenerics_0.20.0

loaded via a namespace (and not attached):
[1] zlibbioc_1.20.0 tools_3.3.2

11

	Introduction
	Creation and masking
	Analytic utilities
	Exporting to file
	Session Information

