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This document illustrates the use of the BayesKnockdown R package to calculate posterior
probabilities of relationships between a single predictor and multiple potential targets. The
package was developed specifically for gene expression datasets in the form of knockdown
experiments, but can be applied more generally to other over-expression data and to infer
differential expression.

1 Posterior Probabilities

Given a predictor x and a set of possible targets y, the BayesKnockdown function can be in-
voked to estimate the posterior probabilities of a relationship between x and each individual
target in y [2]. The BayesKnockdown function allows specification of a prior probability of
regulation via the prior argument, and it can be a constant for all targets or unique to each
target. This is useful particularly when an informative prior is available to incorporate addi-
tional knowledge. The prior is set to 0.5 by default, which corresponds to an uninformative
prior.

Additionally, the method allows specification of Zellner’s g-prior via the g argument [3].
The g-prior specifies the expected strength of the signal relative to noise, with larger values
corresponding to a larger expected signal. It is recommended that g be set to a value between
1 and the number of observations in the data. The default value is

√
n, which we have found

to be a good compromise between the extremes.

1.1 Simulated Data Example

As a simple example of using the BayesKnockdown function, we generate random data for the
knockdown gene as well as the potential targets. We then introduce a relationship between
the knockdown gene and target number 3. The BayesKnockdown function takes this data
and produces the posterior probability of a relationship between x and each target. Figure
1 shows the posterior probabilities calculated for each target.
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Figure 1: Bar plot showing the posterior probabilities of a relationship between the knock-
down gene and each target in simulated data. Gene 3 is the only true relationship.

> library(BayesKnockdown);

> set.seed(1618);

> n <- 100;

> p <- 10;

> x <- rnorm(n);

> y <- matrix(nrow=p, data=rnorm(n*p));

> y[3,] <- y[3,] + 0.5*x;

> simResult <- BayesKnockdown(x, y);

> simResult;

[1] 0.2788326 0.2847752 1.0000000 0.2448188 0.2451588 0.3195648 0.2717004

[8] 0.2578031 0.3667949 0.3408614

> barplot(simResult, names.arg="", xlab="Target Gene",

+ ylab="Posterior Probability", ylim=c(0,1));
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1.2 Knockdown Data Example

A more realistic example uses data from the National Institute of Health (NIH) Library of
Integrated Network-based Cellular Signatures (LINCS) program (http://lincsproject.
org) [1]. The aim of this program is to generate genetic and molecular signatures of cells in
response to various perturbations. To support this endeavor, many large datasets have been
made available, including proteomic and imaging data.

The LINCS L1000 data capture gene expression levels of 1,000 genes in human cell lines
under a variety of conditions. The lincs.kd data is a 21 by 27 matrix containing data from
knockdown experiments targeting gene PPARG in cell line A375. Cell line A375 is a human
skin melanoma cell line with over 100,000 experiments in the L1000 data. The first row is the
expression levels of PPARG in the 27 experiments targeting PPARG for knockdown, while
the other 20 rows are a subset of the measured genes in the same experiments. The data
have been normalized to account for differences in the experimental settings, as described in
[2]. The full LINCS L1000 data is available at http://lincscloud.org.

Given the L1000 data, the BayesKnockdown function can be invoked to calculate the
posterior probabilities of a relationship between gene PPARG and the other genes in the
dataset. In this case, we specify a prior probability of 0.0005, reflecting the belief that there
are very few relationships relative to the total possible number. Figure 2 shows the range of
values returned for the different target genes.

> data(lincs.kd);

> kdResult <- BayesKnockdown(lincs.kd[1,], lincs.kd[-1,], prior=0.0005);

> kdResult;

ATF1 SERPINE1 CEBPA MUC1 EZH2 SNX13

0.9959445881 0.0271544446 0.0007644977 0.0090443118 0.9637199199 0.0504674678

ELOVL6 CASC3 MRPL12 KIF2C BCL7B PRAF2

0.0002019284 0.8210955027 0.0048439740 0.9986842921 0.9997559484 0.0005646142

NET1 ATP1B1 H2AFV TIMM17B ZNF586 RFNG

0.0002563962 0.0046399699 0.0222102583 0.0004304130 0.0153763269 0.0003694639

CDK19 SFMBT1

0.9990571273 0.9053986408

> barplot(kdResult, names.arg="", xlab="Target Gene",

+ ylab="Posterior Probability", ylim=c(0,1));

1.3 ExpressionSet Example

The BayesKnockdown.es function allows calculation of posterior probabilities using an Ex-

pressionSet object from the bioBase library. The function works similarly to the BayesKnock-
down function, except that one of the features of the ExpressionSet is identified to be the
predictor variable, and all other features are used as response variables.

> library(Biobase);

> data(sample.ExpressionSet);
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Figure 2: Bar plot showing the posterior probabilities of a relationship between the knock-
down gene PPARG and each target in LINCS L1000 data.

> subset <- sample.ExpressionSet[1:10,];

> BayesKnockdown.es(subset, "AFFX-MurIL10_at");

AFFX-MurIL2_at AFFX-MurIL4_at AFFX-MurFAS_at AFFX-BioB-5_at AFFX-BioB-M_at

0.3418659 0.3361832 0.7430095 0.3940327 0.4110827

AFFX-BioB-3_at AFFX-BioC-5_at AFFX-BioC-3_at AFFX-BioDn-5_at

0.6523990 0.3267071 0.3181790 0.7516404

2 2-Class Data

The BayesKnockdown.diffExp function tests for differential expression in a set of variables
between two experimental conditions. In gene expression data, this often takes the form
of comparing the effects of a drug perturbation compared to a baseline. Of interest is
the set of genes which show different expression levels between the two conditions. The
BayesKnockdown.diffExp function takes two matrices of observations for a set of variables,
one matrix for each condition, and gives posterior probabilities that the variables are different
between the two conditions.

As an example, we generate two random datasets for 10 genes, corresponding to different
experimental conditions. The first has 25 observations and the second has 30. We add
an offset for gene 3 in the second dataset, reflecting a change of expression between the two
conditions. The BayesKnockdown.diffExp function produces posterior probabilities for each
gene reflecting how likely they are to be expressed differently between the two conditions.
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Figure 3: Bar plot showing the posterior probabilities that each gene is differentially ex-
pressed between two conditions. Gene 3 is the only gene which is actually differentially
expressed.

Figure 3 shows the posterior probabilities that each gene is differentially expressed between
the two conditions.

> n1 <- 25;

> n2 <- 30;

> p <- 10;

> y1 <- matrix(nrow=p, data=rnorm(n1*p));

> y2 <- matrix(nrow=p, data=rnorm(n2*p));

> y2[3,] <- y2[3,] + 1;

> diffExpResult <- BayesKnockdown.diffExp(y1, y2);

> barplot(diffExpResult, names.arg="", xlab="Target Gene",

+ ylab="Posterior Probability", ylim=c(0,1));
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