
Package ‘pRoloc’
April 15, 2017

Type Package

Title A unifying bioinformatics framework for spatial proteomics

Version 1.14.6

Author Laurent Gatto and Lisa M. Breckels with contributions from
Thomas Burger and Samuel Wieczorek

Maintainer Laurent Gatto <lg390@cam.ac.uk>

Description This package implements pattern recognition techniques on
quantitiative mass spectrometry data to infer protein
sub-cellular localisation.

Depends R (>= 2.15), MSnbase (>= 1.19.20), MLInterfaces (>= 1.37.1),
methods, Rcpp (>= 0.10.3), BiocParallel

Imports Biobase, mclust (>= 4.3), caret, e1071, sampling, class,
kernlab, lattice, nnet, randomForest, proxy, FNN, BiocGenerics,
stats, dendextend, RColorBrewer, scales, MASS, knitr, mvtnorm,
gtools, plyr, ggplot2, biomaRt, utils, grDevices, graphics

Suggests testthat, rmarkdown, pRolocdata (>= 1.9.4), roxygen2,
synapter, xtable, tsne, hexbin, rgl, BiocStyle, hpar (>=
1.15.3), dplyr, GO.db, AnnotationDbi

LinkingTo Rcpp, RcppArmadillo

License GPL-2

VignetteBuilder knitr

Video https://www.youtube.com/playlist?list=PLvIXxpatSLA2loV5Srs2VBpJIYUlVJ4ow

URL https://github.com/lgatto/pRoloc

BugReports https://github.com/lgatto/pRoloc/issues

biocViews Proteomics, MassSpectrometry, Classification, Clustering,
QualityControl

Collate AllGenerics.R machinelearning-framework.R
machinelearning-framework-theta.R machinelearning-utils.R
machinelearning-functions-knn.R
machinelearning-functions-ksvm.R machinelearning-functions-nb.R
machinelearning-functions-nnet.R
machinelearning-functions-PerTurbo.R
machinelearning-functions-plsda.R
machinelearning-functions-rf.R machinelearning-functions-svm.R

1

https://github.com/lgatto/pRoloc
https://github.com/lgatto/pRoloc/issues

2 R topics documented:

machinelearning-functions-knntl.R belief.R distances.R
markers.R pRolocmarkers.R chi2.R MLInterfaces.R
clustering-framework.R MSnSet.R clustering-kmeans.R
perTurbo-algorithm.R phenodisco.R plotting.R plotting2.R
plotting3.R hclust.R environment.R utils.R lopims.R
annotation.R goenv.R go.R makeGoSet.R vis.R MartInterface.R
dynamics.R zzz.R goannotations.R clusterdist-functions.R
clusterdist-framework.R qsep.R

RoxygenNote 6.0.1

NeedsCompilation yes

R topics documented:
pRoloc-package . 3
addGoAnnotations . 4
addLegend . 6
addMarkers . 6
AnnotationParams-class . 8
checkFeatureNamesOverlap . 9
checkFvarOverlap . 10
chi2-methods . 11
classWeights . 12
clustDist . 13
ClustDist-class . 14
ClustDistList-class . 15
empPvalues . 17
exprsToRatios-methods . 18
fDataToUnknown . 18
filterBinMSnSet . 19
filterMaxMarkers . 20
filterMinMarkers . 21
filterZeroCols . 21
GenRegRes-class . 22
getGOFromFeatures . 23
getMarkerClasses . 24
getMarkers . 25
getNormDist . 26
getPredictions . 27
goIdToTerm . 28
highlightOnPlot . 29
knnClassification . 30
knnOptimisation . 31
knntlClassification . 32
knntlOptimisation . 33
ksvmClassification . 35
ksvmOptimisation . 36
lopims . 37
makeGoSet . 38
markerMSnSet . 39
MartInstance-class . 40
minMarkers . 40

pRoloc-package 3

MLearn-methods . 41
move2Ds . 42
mrkHClust . 43
mrkVecToMat . 44
nbClassification . 45
nbOptimisation . 46
nndist-methods . 47
nnetClassification . 48
nnetOptimisation . 49
orderGoAnnotations . 50
orgQuants . 51
perTurboClassification . 52
perTurboOptimisation . 53
phenoDisco . 55
plot2D . 56
plot2Ds . 59
plotDist . 61
plsdaClassification . 62
plsdaOptimisation . 63
pRolocmarkers . 64
QSep-class . 65
rfClassification . 67
rfOptimisation . 68
sampleMSnSet . 69
setLisacol . 70
showGOEvidenceCodes . 71
SpatProtVis-class . 72
subsetMarkers . 73
svmClassification . 74
svmOptimisation . 75
testMarkers . 76
testMSnSet . 77
thetas . 78
undocumented . 78
zerosInBinMSnSet . 79

Index 80

pRoloc-package A unifying bioinformatics framework for spatial proteomics

Description

This package implements pattern recognition techniques on quantitiative mass spectrometry data to
infer protein sub-cellular localisation.

4 addGoAnnotations

Details

More details about the package a provided in the following vignettes

pRoloc-ml An overview of the machine learning techniques available in the pRoloc package.

pRoloc-tutorial The main pRoloc tutorial, providing a hands-on introduction to the package, in-
cluding data requirements, visualisation, clustering, classification and the application of semi-
supervised machine learning.

pRoloc-transfer-learning Description of a transfer learning algorithm for spatial proteomics.

HUPO_2011_poster HUPO 2011 poster: pRoloc - A unifying bioinformatics framework for or-
ganelle proteomics.

HUPO_2014_poster HUPO 2014 poster: A state-of-the-art machine learning pipeline for the anal-
ysis of spatial proteomics data.

If you have questions, want to rebort a bug or share suggestions, please file an issue at https://
github.com/lgatto/MSnbase/issues, contact me directly or ask a question on the Bioconductor
support forum https://support.bioconductor.org/.

Author(s)

Laurent Gatto and Lisa M. Breckels with contributions from Thomas Burger and Samuel Wieczorek

Maintainer: Laurent Gatto <lg390@cam.ac.uk>

References

Gatto L, Breckels LM, Wieczorek S, Burger T, Lilley KS. Mass-spectrometry-based spatial pro-
teomics data analysis using pRoloc and pRolocdata. Bioinformatics. 2014 May 1;30(9):1322-4.
doi:10.1093/bioinformatics/btu013. Epub 2014 Jan 11. PubMed PMID: 24413670; PubMed Cen-
tral PMCID: PMC3998135.

Breckels LM, Gatto L, Christoforou A, Groen AJ, Lilley KS, Trotter MW. The effect of organelle
discovery upon sub-cellular protein localisation. J Proteomics. 2013 Mar 21. doi:pii: S1874-
3919(13)00094-8. 10.1016/j.jprot.2013.02.019. PubMed PMID: 23523639.

Gatto L., Breckels L.M., Burger T, Nightingale D.J.H., Groen A.J., Campbell C., Mulvey C.M.,
Christoforou A., Ferro M., Lilley K.S. ’A foundation for reliable spatial proteomics data analysis’
Mol Cell Proteomics. 2014 May 20.

See Also

The underlying infrastructure to store and manipulate the quantitative data is implemented in the
MSnbase package. See MSnbase to get started.

addGoAnnotations Add GO annotations

Description

Adds GO annotations to the feature data

https://github.com/lgatto/MSnbase/issues
https://github.com/lgatto/MSnbase/issues
https://support.bioconductor.org/

addGoAnnotations 5

Usage

addGoAnnotations(object, params, evidence, useID = FALSE,
fcol = "GOAnnotations", ...)

Arguments

object An instance of class MSnSet.

params An instance of class AnnotationParams. If missing, getAnnotationParams
will be used.

evidence GO evidence filtering.

useID Logical. Should GO term names or identifiers be used? If TRUE, identifiers will
be used. If FALSE GO term names will be used.

fcol Character. Name of the matrix of annotations to be added to the fData default
is GOAnnotations

... Other arguments passed to makeGoSet

Value

An updated MSnSet with new feature data column called GOAnnotations containing a matrix of
GO annotations

Author(s)

Lisa M Breckels

Examples

library(pRolocdata)
data(dunkley2006)
par <- setAnnotationParams(inputs =

c("Arabidopsis thaliana genes",
"Gene stable ID"))

add protein sets/annotation information
xx <- addGoAnnotations(dunkley2006, par)
dim(fData(xx)$GOAnnotations)

filter sets
xx <- filterMinMarkers(xx, n = 50)
dim(fData(xx)$GOAnnotations)
xx <- filterMaxMarkers(xx, p = .25)
dim(fData(xx)$GOAnnotations)

Subset for specific protein sets
sub <- subsetMarkers(xx, keep = c("vacuole"))

Order protein sets
res <- orderGoAnnotations(xx, k = 1:3, p = 1/3, verbose = FALSE)
if (interactive()) {
pRolocVis(res, fcol = "GOAnnotations")
}

6 addMarkers

addLegend Adds a legend

Description

Adds a legend to a plot2D figure.

Usage

addLegend(object, fcol = "markers", where = c("bottomleft", "bottom",
"bottomright", "left", "topleft", "top", "topright", "right", "center",
"other"), col, bty = "n", ...)

Arguments

object An instance of class MSnSet

fcol Feature meta-data label (fData column name) defining the groups to be differ-
entiated using different colours. Default is markers.

where One of "bottomleft" (default), "bottomright", "topleft", "topright" or
"other" defining the location of the legend. "other" opens a new graphics
device, while the other locations are passed to legend.

col A character defining point colours.

bty Box type, as in legend. Default is set to "n".

... Additional parameters passed to legend.

Details

The function has been updated in version 1.3.6 to recycle the default colours when more organelle
classes are provided. See plot2D for details.

Value

Invisibly returns NULL

Author(s)

Laurent Gatto

addMarkers Adds markers to the data

Description

The function adds a ’markers’ feature variable. These markers are read from a comma separated
values (csv) spreadsheet file. This markers file is expected to have 2 columns (others are ignored)
where the first is the name of the marker features and the second the group label. Alternatively, a
markers named vector as provided by the pRolocmarkers function can also be used.

addMarkers 7

Usage

addMarkers(object, markers, mcol = "markers", fcol, verbose = TRUE)

Arguments

object An instance of class MSnSet.

markers A character with the name the markers’ csv file or a named character of mark-
ers as provided by pRolocmarkers.

mcol A character of length 1 defining the feature variable label for the newly added
markers. Default is "markers".

fcol An optional feature variable to be used to match against the markers. If missing,
the feature names are used.

verbose A logical indicating if number of markers and marker table should be printed
to the console.

Details

It is essential to assure that featureNames(object) (or fcol, see below) and marker names (first
column) match, i.e. the same feature identifiers and case fold are used.

Value

A new instance of class MSnSet with an additional markers feature variable.

Author(s)

Laurent Gatto

See Also

See pRolocmarkers for a list of spatial markers and markers for details about markers encoding.

Examples

library("pRolocdata")
data(dunkley2006)
atha <- pRolocmarkers("atha")
try(addMarkers(dunkley2006, atha)) ## markers already exists
fData(dunkley2006)$markers.org <- fData(dunkley2006)$markers
fData(dunkley2006)$markers <- NULL
marked <- addMarkers(dunkley2006, atha)
fvarLabels(marked)
if 'makers' already exists
marked <- addMarkers(marked, atha, mcol = "markers2")
fvarLabels(marked)
stopifnot(all.equal(fData(marked)$markers, fData(marked)$markers2))
plot2D(marked)
addLegend(marked, where = "topleft", cex = .7)

8 AnnotationParams-class

AnnotationParams-class

Class "AnnotationParams"

Description

Class to store annotation parameters to automatically query a Biomart server, retrieve relevant an-
notation for a set of features of interest using, for example getGOFromFeatures and makeGoSet.

Objects from the Class

Objects can be created and set with the setAnnotationParams function. Object are created by call-
ing without any arguments setAnnotationParams(), which will open an interactive interface. De-
pending on the value of "many.graphics" option, a graphical of a text-based menu will open (the
text interface can be forced by setting the graphics argument to FALSE: setAnnotationParams(graphics = FALSE)).
The menu will allow to select the species of interest first and the type of features (ENSEMBL gene
identifier, Entrez id, ...) second.

The species that are available are those for which ENSEMBL data is available in Biomart and have
a set of attributes of interest available. The compatible identifiers for downstream queries are then
automatically filtered and displayed for user selection.

It is also possible to pass a parameter inputs, a character vector of length 2 containing a pattern
uniquely matching the species of interest (in position 1) and a patterns uniquely matching the feature
types (in position 2). If the matches are not unique, an error will be thrown.

A new instance of the AnnotationParams will be created to enable easy and automatic query of the
Mart instance. The instance is invisibly returned and stored in a global variable in the pRoloc pack-
age’s private environment for automatic retrieval. If a variable containing an AnnotationParams in-
stance is already available, it can be set globally by passing it as argument to the setAnnotationParams
function. Globally set AnnotationParams instances can be accessed with the getAnnotationParams
function.

See the pRoloc-theta vignette for details.

Slots

mart: Object of class "Mart" from the biomaRt package.

martname: Object of class "character" with the name of the mart instance.

dataset: Object of class "character" with the data set of the mart instance.

filter: Object of class "character" with the filter to be used when querying the mart instance.

date: Object of class "character" indicating when the current instance was created.

biomaRtVersion: Object of class "character" with the biomaRt version used to create the AnnotationParams
instance.

.__classVersion__: Object of class "Versions" with the version of the AnnotationParams
class of the current instance.

Methods

show signature(object = "AnnotationParams"): to display objects.

checkFeatureNamesOverlap 9

Author(s)

Laurent Gatto <lg390@cam.ac.uk>

See Also

getGOFromFeatures, makeGoSet and the pRoloc-theta vignette.

Examples

data(andy2011params)
andy2011params
data(dunkley2006params)
dunkley2006params

try(setAnnotationParams(inputs = c("nomatch1", "nomatch2")))
setAnnotationParams(inputs = c("Homo sapiens",

"UniProtKB/Swiss-Prot ID"))
getAnnotationParams()

checkFeatureNamesOverlap

Check feature names overlap

Description

Checks the marker and unknown feature overlap of two MSnSet instances.

Usage

checkFeatureNamesOverlap(x, y, fcolx = "markers", fcoly, verbose = TRUE)

Arguments

x An MSnSet instance.

y An MSnSet instance.

fcolx The feature variable to separate unknown (fData(y)$coly == "unknown")
from the marker features in the x object.

fcoly As fcolx, for the y object. If missing, the value of fcolx is used.

verbose If TRUE (default), the overlap is printed out on the console.

Value

Invisibly returns a named list of common markers, unique x markers, unique y markers in, common
unknowns, unique x unknowns and unique y unknowns.

Author(s)

Laurent Gatto

10 checkFvarOverlap

Examples

library("pRolocdata")
data(andy2011)
data(andy2011goCC)
checkFeatureNamesOverlap(andy2011, andy2011goCC)
featureNames(andy2011goCC)[1] <- "ABC"
res <- checkFeatureNamesOverlap(andy2011, andy2011goCC)
res$markersX
res$markersY

checkFvarOverlap Compare a feature variable overlap

Description

Extracts qualitative feature variables from two MSnSet instances and compares with a contingency
table.

Usage

checkFvarOverlap(x, y, fcolx = "markers", fcoly, verbose = TRUE)

Arguments

x An MSnSet instance.

y An MSnSet instance.

fcolx The feature variable to separate unknown (fData(y)$coly == "unknown")
from the marker features in the x object.

fcoly As fcolx, for the y object. If missing, the value of fcolx is used.

verbose If TRUE (default), the contingency table of the the feature variables is printed out.

Value

Invisibly returns a named list with the values of the diagonal, upper and lower triangles of the
contingency table.

Author(s)

Laurent Gatto

Examples

library("pRolocdata")
data(dunkley2006)
res <- checkFvarOverlap(dunkley2006, dunkley2006,

"markers", "markers.orig")
str(res)

chi2-methods 11

chi2-methods The PCP ’chi square’ method

Description

In the original protein correlation profiling (PCP), Andersen et al. use the peptide normalised pro-
files along gradient fractions and compared them with the reference profiles (or set of profiles) by

computing Chi2 values,
∑

(xi−xp)
2

xp
, where xi is the normalised value of the peptide in fraction i

and xp is the value of the marker (from Wiese et al., 2007). The protein Chi2 is then computed as
the median of the peptide Chi2 values. Peptides and proteins with similar profiles to the markers
will have small Chi2 values.

The chi2 methods implement this idea and compute such Chi^2 values for sets of proteins.

Methods

signature(x = "matrix", y = "matrix", method = "character", fun = "NULL", na.rm = "logical")
Compute nrow(x) times nrow(y) Chi2 values, for each x, y feature pair. Method is one of
"Andersen2003" or "Wiese2007"; the former (default) computed the Chi2 as sum(y-x)^2/length(x),
while the latter uses sum((y-x)^2/x). na.rm defines if missing values (NA and NaN) should be
removed prior to summation. fun defines how to summarise the Chi2 values; default, NULL,
does not combine the Chi2 values.

signature(x = "matrix", y = "numeric", method = "character", na.rm = "logical")
Computes nrow(x) Chi2 values, for all the (xi, y) pairs. See above for the other arguments.

signature(x = "numeric", y = "matrix", method = "character", na.rm = "logical")
Computes nrow(y) Chi2 values, for all the (x, yi) pairs. See above for the other arguments.

signature(x = "numeric", y = "numeric", method = "character", na.rm = "logical")
Computes the Chi2 value for the (x, y) pairs. See above for the other arguments.

Author(s)

Laurent Gatto <lg390@cam.ac.uk>

References

Andersen, J. S., Wilkinson, C. J., Mayor, T., Mortensen, P. et al., Proteomic characterization of the
human centrosome by protein correlation profiling. Nature 2003, 426, 570 - 574.

Wiese, S., Gronemeyer, T., Ofman, R., Kunze, M. et al., Proteomics characterization of mouse
kidney peroxisomes by tandem mass spectrometry and protein correlation profiling. Mol. Cell.
Proteomics 2007, 6, 2045 - 2057.

See Also

empPvalues

12 classWeights

Examples

mrk <- rnorm(6)
prot <- matrix(rnorm(60), ncol = 6)
chi2(mrk, prot, method = "Andersen2003")
chi2(mrk, prot, method = "Wiese2007")

pepmark <- matrix(rnorm(18), ncol = 6)
pepprot <- matrix(rnorm(60), ncol = 6)
chi2(pepmark, pepprot)
chi2(pepmark, pepprot, fun = sum)

classWeights Calculate class weights

Description

Calculates class weights to be used for parameter optimisation and classification such as svmOptimisation
or svmClassification - see the pRoloc tutorial vignette for an example. The weights are calcu-
lated for all non-unknown classes the inverse of the number of observations.

Usage

classWeights(object, fcol = "markers")

Arguments

object An instance of class MSnSet

fcol The name of the features to be weighted

Value

A table of class weights

Author(s)

Laurent Gatto

Examples

library("pRolocdata")
data(hyperLOPIT2015)
classWeights(hyperLOPIT2015)
data(dunkley2006)
classWeights(dunkley2006)

clustDist 13

clustDist Pairwise Distance Computation for Protein Information Sets

Description

This function computes the mean (normalised) pairwise distances for pre-defined sets of proteins.

Usage

clustDist(object, k = 1:5, fcol = "GOAnnotations", n = 5,
verbose = TRUE, seed)

Arguments

object An instance of class "MSnSet".

k The number of clusters to try fitting to the protein set. Default is k = 1:5.

fcol The feature meta-data containing matrix of protein sets/ marker definitions. De-
fault is GOAnnotations.

n The minimum number of proteins per set. If protein sets contain less than n
instances they will be ignored. Defualt is 5.

verbose A logical defining whether a progress bar is displayed.

seed An optional seed for the random number generator.

Details

The input to the function is a MSnSet dataset containing a matrix appended to the feature data slot
identifying the membership of protein instances to a pre-defined set(s) e.g. a specific Gene Ontology
term etc.

For each protein set, the clustDist function (i) extracts all instances belonging to the set, (ii)
using the kmeans algorithm fits and tests k = c(1:5) (default) cluster components to each set, (iii)
calculates the mean pairwise distance for each k tested.

Note: currently distances are calcualted in Euclidean space, but other distance metrics will be sup-
ported in the future).

The output is a list of ClustDist objects, one per information cluster. The ClustDist class sum-
marises the algorithm information such as the number of k’s tested for the kmeans, and mean and
normalised pairwise Euclidean distances per numer of component clusters tested. See ?ClustDist
for more details.

Value

An instance of "ClustDistList" containing a "ClustDist" instance for every protein set, which
summarises the algorithm information such as the number of k’s tested for the kmeans, and mean
and normalised pairwise Euclidean distances per numer of component clusters tested.

Author(s)

Lisa Breckels

14 ClustDist-class

See Also

For class definitions see "ClustDistList" and "ClustDist".

Examples

library(pRolocdata)
data(dunkley2006)
par <- setAnnotationParams(inputs =

c("Arabidopsis thaliana genes",
"Gene stable ID"))

add protein sets/annotation information
xx <- addGoAnnotations(dunkley2006, par)
filter
xx <- filterMinMarkers(xx, n = 50)
xx <- filterMaxMarkers(xx, p = .25)
get distances for protein sets
dd <- clustDist(xx)
plot clusters for first 'ClustDist' object
in the 'ClustDistList'
plot(dd[[1]], xx)
plot distances for all protein sets
plot(dd)
Extract normalised distances
Normalise by n^1/3
minDist <- getNormDist(dd, p = 1/3)
Get new order according to lowest distance
o <- order(minDist)
Re-order GOAnnotations
fData(xx)$GOAnnotations <- fData(xx)$GOAnnotations[, o]
if (interactive()) {
pRolocVis(xx, fcol = "GOAnnotations")
}

ClustDist-class Class "ClustDist"

Description

The ClustDist summaries algorithm information, from running the clustDist function, such as
the number of k’s tested for the kmeans, and mean and normalised pairwise (Euclidean) distances
per numer of component clusters tested.

Objects from the Class

Object of this class are created with the clustDist function.

Slots

k: Object of class "numeric" storing the number of k clusters tested.

dist: Object of class "list" storing the list of distance matrices.

term: Object of class "character" describing GO term name.

id: Object of class "character" describing the GO term ID.

ClustDistList-class 15

nrow: Object of class "numeric" showing the number of instances in the set

clustsz: Object of class "list" describing the number of instances for each cluster for each k
tested

components: Object of class "vector" storing the class membership of each protein for each k
tested.

fcol: Object of class "character" showing the feature column name in the corresponding MSnSet
where the protein set information is stored.

Methods

plot Plots the kmeans clustering results.

show Shows the object.

Author(s)

Lisa M Breckels <lms79@cam.ac.uk>

Examples

showClass("ClustDist")

library('pRolocdata')
data(dunkley2006)
par <- setAnnotationParams(inputs =

c("Arabidopsis thaliana genes",
"Gene stable ID"))

add protein set/annotation information
xx <- addGoAnnotations(dunkley2006, par)

filter
xx <- filterMinMarkers(xx, n = 50)
xx <- filterMaxMarkers(xx, p = .25)

get distances for protein sets
dd <- clustDist(xx)

plot clusters for first 'ClustDist' object
in the 'ClustDistList'
plot(dd[[1]], xx)

plot distances for all protein sets
plot(dd)

ClustDistList-class Storing multiple ClustDist instances

Description

A class for storing lists of ClustDist instances.

16 ClustDistList-class

Objects from the Class

Object of this class are created with the clustDist function.

Slots

x: Object of class list containing valid ClustDist instances.
log: Object of class list containing an object creation log, containing among other elements the

call that generated the object.
.__classVersion__: The version of the instance. For development purposes only.

Methods

"[[" Extracts a single ClustDist at position.
"[" Extracts one of more ClustDists as ClustDistList.
length Returns the number of ClustDists.
names Returns the names of ClustDists, if available. The replacement method is also available.
show Display the object by printing a short summary.
lapply(x, FUN, ...) Apply function FUN to each element of the input x. If the application of

FUN returns and ClustDist, then the return value is an ClustDistList, otherwise a list.
plot Plots a boxplot of the distance results per protein set.

Author(s)

Lisa M Breckels <lms79@cam.ac.uk>

Examples

library('pRolocdata')
data(dunkley2006)
par <- setAnnotationParams(inputs =

c("Arabidopsis thaliana genes",
"Gene stable ID"))

add protein set/annotation information
xx <- addGoAnnotations(dunkley2006, par)

filter
xx <- filterMinMarkers(xx, n = 50)
xx <- filterMaxMarkers(xx, p = .25)

get distances for protein sets
dd <- clustDist(xx)

plot distances for all protein sets
plot(dd)

names(dd)

Extract first 4 ClustDist objects of the ClustDistList
dd[1:4]

Extract 1st ClustDist object
dd[[1]]

empPvalues 17

empPvalues Estimate empirical p-values for Chiˆ2 protein correlations.

Description

Andersen et al. (2003) used a fixed Chi2 threshold of 0.05 to identify organelle-specific candi-
dates. This function computes empirical p-values by permutation the markers relative intensities
and computed null Chi2 values.

Usage

empPvalues(marker, corMatrix, n = 100, ...)

Arguments

marker A numerics with markers relative intensities.

corMatrix A matrix of nrow(corMatrix) protein relative intensities to be compares against
the marker.

n The number of iterations.

... Additional parameters to be passed to chi2.

Value

A numeric of length nrow(corMatrix).

Author(s)

Laurent Gatto <lg390@cam.ac.uk>

References

Andersen, J. S., Wilkinson, C. J., Mayor, T., Mortensen, P. et al., Proteomic characterization of the
human centrosome by protein correlation profiling. Nature 2003, 426, 570 - 574.

See Also

chi2 for Chi2 calculation.

Examples

set.seed(1)
mrk <- rnorm(6, 5, 1)
prot <- rbind(matrix(rnorm(120, 5, 1), ncol = 6),

mrk + rnorm(6))
mrk <- mrk/sum(mrk)
prot <- prot/rowSums(prot)
empPvalues(mrk, prot)

18 fDataToUnknown

exprsToRatios-methods Calculate all ratio pairs

Description

Calculations all possible ratios for the assayData columns in an "MSnSet".

Methods

signature(object = "MSnSet", log = "logical") If log is FALSE (default) the ratios for all
the assayData columns are computed; otherwise, log ratios (differences) are calculated.

Examples

library("pRolocdata")
data(dunkley2006)
x <- dunkley2006[, 1:3]
head(exprs(x))
r <- exprsToRatios(x)
head(exprs(r))
pData(r)

fDataToUnknown Update a feature variable

Description

This function replaces a string or regular expression in a feature variable using the sub function.

Usage

fDataToUnknown(object, fcol = "markers", from = "^$", to = "unknown", ...)

Arguments

object An instance of class MSnSet.

fcol Feature variable to be modified. Default is "markers". If NULL, all feature
variables will updated.

from A character defining the string or regular expression of the pattern to be re-
placed. Default is the empty string, i.e. the regular expression "^$". See sub
for details. If NA, then NA values are replaced by to.

to A replacement for matched pattern. Default is "unknown". See sub for details.

... Additional arguments passed to sub.

Value

An updated MSnSet.

filterBinMSnSet 19

Author(s)

Laurent Gatto

Examples

library("pRolocdata")
data(dunkley2006)
getMarkers(dunkley2006, "markers")
dunkley2006 <- fDataToUnknown(dunkley2006,

from = "unknown", to = "unassigned")
getMarkers(dunkley2006, "markers")

filterBinMSnSet Filter a binary MSnSet

Description

Removes columns or rows that have a certain proportion or absolute number of 0 values.

Usage

filterBinMSnSet(object, MARGIN = 2, t, q, verbose = TRUE)

Arguments

object An MSnSet

MARGIN 1 or 2. Default is 2.

t Rows/columns that have t or less 1s, it will be filtered out. When t and q are
missing, default is to use t = 1.

q If a row has a higher quantile than defined by q, it will be filtered out.

verbose A logical defining of a message is to be printed. Default is TRUE.

Value

A filtered MSnSet.

Author(s)

Laurent Gatto

See Also

zerosInBinMSnSet, filterZeroCols, filterZeroRows.

20 filterMaxMarkers

Examples

set.seed(1)
m <- matrix(sample(0:1, 25, replace=TRUE), 5)
m[1,] <- 0
m[, 1] <- 0
rownames(m) <- colnames(m) <- letters[1:5]
fd <- data.frame(row.names = letters[1:5])
x <- MSnSet(exprs = m, fData = fd, pData = fd)
exprs(x)
Remove columns with no 1s
exprs(filterBinMSnSet(x, MARGIN = 2, t = 0))
Remove columns with one 1 or less
exprs(filterBinMSnSet(x, MARGIN = 2, t = 1))
Remove columns with two 1s or less
exprs(filterBinMSnSet(x, MARGIN = 2, t = 2))
Remove columns with three 1s
exprs(filterBinMSnSet(x, MARGIN = 2, t = 3))
Remove columns that have half or less of 1s
exprs(filterBinMSnSet(x, MARGIN = 2, q = 0.5))

filterMaxMarkers Removes class/annotation information from a matrix of candidate
markers that appear in the fData.

Description

Removes annotation information that contain more that a certain number/percentage of proteins

Usage

filterMaxMarkers(object, n, p = 0.2, fcol = "GOAnnotations",
verbose = TRUE)

Arguments

object An instance of class MSnSet.

n Maximum number of proteins allowed per class/information term.

p Maximum percentage of proteins per column. Default is 0.2 i.e. remove columns
that have information for greater than 20 of the total number of proteins in the
dataset (note: this is useful for example, if information is GO terms, for remov-
ing very general and uninformative terms).

fcol The name of the matrix of marker information. Default is GOAnnotations.

verbose Number of marker candidates retained after filtering.

Value

An updated MSnSet

See Also

addGoAnnotations and example therein.

filterMinMarkers 21

filterMinMarkers Removes class/annotation information from a matrix of candidate
markers that appear in the fData.

Description

Removes annotation information that contain less that a certain number/percentage of proteins

Usage

filterMinMarkers(object, n = 10, p, fcol = "GOAnnotations",
verbose = TRUE)

Arguments

object An instance of class MSnSet.

n Minimum number of proteins allowed per column. Default is 10.

p Minimum percentage of proteins per column.

fcol The name of the matrix of marker information. Default is GOAnnotations.

verbose Number of marker candidates retained after filtering.

Value

An updated MSnSet.

Author(s)

Lisa M Breckels

See Also

addGoAnnotations and example therein.

filterZeroCols Remove 0 columns/rows

Description

Removes all assay data columns/rows that are composed of only 0, i.e. have a colSum/rowSum of 0.

Usage

filterZeroCols(object, verbose = TRUE)

filterZeroRows(object, verbose = TRUE)

Arguments

object A MSnSet object.

verbose Print a message with the number of filtered out columns/row (if any).

22 GenRegRes-class

Value

An MSnSet.

Author(s)

Laurent Gatto

Examples

library("pRolocdata")
data(andy2011goCC)
any(colSums(exprs(andy2011goCC)) == 0)
exprs(andy2011goCC)[, 1:5] <- 0
ncol(andy2011goCC)
ncol(filterZeroCols(andy2011goCC))

GenRegRes-class Class "GenRegRes" and "ThetaRegRes"

Description

Regularisation framework containers.

Objects from the Class

Object of this class are created with the respective regularisation function: knnOptimisation,
svmOptimisation, plsdaOptimisation, knntlOptimisation, ...

Slots

algorithm: Object of class "character" storing the machine learning algorithm name.

hyperparameters: Object of class "list" with the respective algorithm hyper-parameters tested.

design: Object of class "numeric" describing the cross-validation design, the test data size and
the number of replications.

log: Object of class "list" with warnings thrown during the hyper-parameters regularisation.

seed: Object of class "integer" with the random number generation seed.

results: Object of class "matrix" of dimenstions times (see design) by number of hyperpa-
rameters + 1 storing the macro F1 values for the respective best hyper-parameters for each
replication.

f1Matrices: Object of class "list" with respective times cross-validation F1 matrices.

cmMatrices: Object of class "list" with respective times contingency matrices.

testPartitions: Object of class "list" with respective times test partitions.

datasize: Object of class "list" with details about the respective inner and outter training and
testing data sizes.

Only in ThetaRegRes:

predictions: A list of predictions for the optimisation iterations.

otherWeights: Alternative best theta weigts: a vector per iterations, NULL if no other best weights
were found.

getGOFromFeatures 23

Methods

getF1Scores Returns a matrix of F1 scores for the optimisation parameters.

f1Count signature(object = "GenRegRes", t = "numeric") and signature(object = "ThetaRegRes", t =
"numeric"): Constructs a table of all possible parameter combination and count how many
have an F1 scores greater or equal than t. When t is missing (default), the best F1 score is
used. This method is useful in conjunctin with plot.

getParams Returns the best parameters. It is however strongly recommended to inspect the op-
timisation results. For a ThetaRegRes optimisation result, the method to chose the best pa-
rameters can be "median" (default) or "mean" (the median or mean of the best weights is
chosen), "max" (the first weights with the highest macro-F1 score, considering that multiple
max scoring combinations are possible) or "count" (the observed weight that get the maxi-
mum number of observations, see f1Count). The favourP argument can be used to prioritise
weights that favour the primary data (i.e. heigh weights). See favourPrimary below.

getSeed Returns the seed used for the optimisation run.

getWarnings signature(object = "GenRegRes"): Returns a vector of recorded warnings.

levelPlot signature(object = "GenRegRes"): Plots a heatmap of of the optimisation results.
Only for "GenRegRes" instances.

plot Plots the optisisation results.

show Shows the object.

Other functions

Only for ThetaRegRes:

combineThetaRegRes(object) Takes a list of ThetaRegRes instances to be combined and re-
turnes a new ThetaRegRes instance.

favourPrimary(primary, auxiliary, object, verbose = TRUE) Takes the primary and auxiliary
data sources (two MSnSet instances) and a ThetaRegRes object and returns and updated
ThetaRegRes instance containing best parameters/weigths (see the getParams function) favour-
ing the primary data when multiple best theta weights are available.

Author(s)

Laurent Gatto <lg390@cam.ac.uk>

Examples

showClass("GenRegRes")
showClass("ThetaRegRes")

getGOFromFeatures Retrieve GO terms for feature names

Description

The function pulls the gene ontology (GO) terms for a set of feature names.

24 getMarkerClasses

Usage

getGOFromFeatures(id, namespace = "cellular_component", evidence = NULL,
params = NULL, verbose = FALSE, nmax = 500)

Arguments

id An character with feature names to be pulled from biomart. If and MSnSet is
provided, then featureNames(id) is used.

namespace The GO namespace. One of biological_process, cellular_component (de-
fault) or molecular_function.

evidence The GO evidence code. See showGOEvidenceCodes for details. If NULL (de-
fault), no filtering based on the evidence code is performed.

params An instance of class "AnnotationParams".

verbose A logical defining verbosity of the function. Default is FALSE.

nmax As described in https://support.bioconductor.org/p/86358/, the Biomart
result can be unreliable for large queries. This argument splits the input in
chunks of length nmax (default is 500). If set to NULL, the query is performed in
full.

Value

A data.frame with relevant GO terms.

Author(s)

Laurent Gatto

Examples

library(pRolocdata)
data(dunkley2006)
data(dunkley2006params)
dunkley2006params
fn <- featureNames(dunkley2006)[1:5]
getGOFromFeatures(fn, params = dunkley2006params)

getMarkerClasses Returns the organelle classes in an ’MSnSet’

Description

Convenience accessor to the organelle classes in an ’MSnSet’. This function returns the organelle
classes of an MSnSet instance. As a side effect, it prints out the classes.

Usage

getMarkerClasses(object, fcol = "markers", ...)

https://support.bioconductor.org/p/86358/

getMarkers 25

Arguments

object An instance of class "MSnSet".

fcol The name of the markers column in the featureData slot. Default is markers.

... Additional parameters passed to sort from the base package.

Value

A character vector of the organelle classes in the data.

Author(s)

Lisa Breckels and Laurent Gatto

See Also

getMarkers to extract the marker proteins. See markers for details about spatial markers storage
and encoding.

Examples

library("pRolocdata")
data(dunkley2006)
organelles <- getMarkerClasses(dunkley2006)
same if markers encoded as a matrix
dunkley2006 <- mrkVecToMat(dunkley2006, mfcol = "Markers")
organelles2 <- getMarkerClasses(dunkley2006, fcol = "Markers")
stopifnot(all.equal(organelles, organelles2))

getMarkers Get the organelle markers in an MSnSet

Description

Convenience accessor to the organelle markers in an MSnSet. This function returns the organelle
markers of an MSnSet instance. As a side effect, it print out a marker table.

Usage

getMarkers(object, fcol = "markers", names = TRUE, verbose = TRUE)

Arguments

object An instance of class "MSnSet".

fcol The name of the markers column in the featureData slot. Default is "markers".

names A logical indicating if the markers vector should be named. Ignored if markers
are encoded as a matrix.

verbose If TRUE, a marker table is printed and the markers are returned invisibly. If
FALSE, the markers are returned.

26 getNormDist

Value

A character (matrix) of length (ncol) ncol(object), depending on the vector or matrix encoding
of the markers.

Author(s)

Laurent Gatto

See Also

See getMarkerClasses to get the classes only. See markers for details about spatial markers
storage and encoding.

Examples

library("pRolocdata")
data(dunkley2006)
marker vectors
myVmarkers <- getMarkers(dunkley2006)
head(myVmarkers)
marker matrix
dunkley2006 <- mrkVecToMat(dunkley2006, mfcol = "Markers")
myMmarkers <- getMarkers(dunkley2006, fcol = "Markers")
head(myMmarkers)

getNormDist Extract Distances from a "ClustDistList" object

Description

This function computes and outputs normalised distances from a "ClustDistList" object.

Usage

getNormDist(object, p = 1/3)

Arguments

object An instance of class "ClustDistList".

p The normalisation factor. Default is 1/3.

Value

An numeric of normalised distances, one per protein set in the ClustDistList.

Author(s)

Lisa Breckels

See Also

"ClustDistList", "ClustDist", and examples in clustDist.

getPredictions 27

getPredictions Returns the predictions in an ’MSnSet’

Description

Convenience accessor to the predicted feature localisation in an ’MSnSet’. This function returns
the predictions of an MSnSet instance. As a side effect, it prints out a prediction table.

Usage

getPredictions(object, fcol, scol, mcol = "markers", t = 0,
verbose = TRUE)

Arguments

object An instance of class "MSnSet".

fcol The name of the prediction column in the featureData slot.

scol The name of the prediction score column in the featureData slot. If missing,
created by pasting ’.scores’ after fcol.

mcol The feature meta data column containing the labelled training data.

t The score threshold. Predictions with score < t are set to ’unknown’. Default
is 0. It is also possible to define thresholds for each prediction class, in which
case, t is a named numeric with names exactly matching the unique prediction
class names.

verbose If TRUE, a prediction table is printed and the predictions are returned invisibly.
If FALSE, the predictions are returned.

Value

An instance of class "MSnSet" with fcol.pred feature variable storing the prediction results ac-
cording to the chosen threshold.

Author(s)

Laurent Gatto and Lisa Breckels

See Also

orgQuants for calculating organelle-specific thresholds.

Examples

library("pRolocdata")
data(dunkley2006)
res <- svmClassification(dunkley2006, fcol = "pd.markers",

sigma = 0.1, cost = 0.5)
fData(res)$svm[500:510]
fData(res)$svm.scores[500:510]
getPredictions(res, fcol = "svm", t = 0) ## all predictions
getPredictions(res, fcol = "svm", t = .9) ## single threshold
50% top predictions per class

28 goIdToTerm

ts <- orgQuants(res, fcol = "svm", t = .5)
getPredictions(res, fcol = "svm", t = ts)

goIdToTerm Convert GO ids to/from terms

Description

Converts GO identifiers to/from GO terms, either explicitly or by checking if (any items in) the
input contains "GO:".

Usage

goIdToTerm(x, names = TRUE, keepNA = TRUE)

goTermToId(x, names = TRUE, keepNA = TRUE)

flipGoTermId(x, names = TRUE, keepNA = TRUE)

prettyGoTermId(x)

Arguments

x A character of GO ids or terms.

names Should a named character be returned? Default is TRUE.

keepNA Should any GO term/id names that are missing or obsolete be replaced with a
NA? Default is TRUE. If FALSE then the GO term/id names is kept.

Value

A character of GO terms (ids) if x were ids (terms).

Author(s)

Laurent Gatto

Examples

goIdToTerm("GO:0000001")
goIdToTerm("GO:0000001", names = FALSE)
goIdToTerm(c("GO:0000001", "novalid"))
goIdToTerm(c("GO:0000001", "GO:0000002", "notvalid"))
goTermToId("mitochondrion inheritance")
goTermToId("mitochondrion inheritance", name = FALSE)
goTermToId(c("mitochondrion inheritance", "notvalid"))
prettyGoTermId("mitochondrion inheritance")
prettyGoTermId("GO:0000001")
flipGoTermId("mitochondrion inheritance")
flipGoTermId("GO:0000001")
flipGoTermId("GO:0000001", names = FALSE)

highlightOnPlot 29

highlightOnPlot Highlight features of interest on a spatial proteomics plot

Description

Highlights a set of features of interest given as a FeaturesOfInterest instance on a PCA plot
produced by codeplot2D or plot3D. If none of the features of interest are found in the MSnset’s
featureNames, an warning is thrown.

Usage

highlightOnPlot(object, foi, labels, args = list(), ...)

highlightOnPlot3D(object, foi, labels, args = list(), radius = 0.1 * 3, ...)

Arguments

object The main dataset described as an MSnSet or a matrix with the coordinates of
the features on the PCA plot produced (and invisibly returned) by plot2D.

foi An instance of FeaturesOfInterest, or, alternatively, a character of feautre
names.

labels A character of length 1 with a feature variable name to be used to label the
features of interest. This is only valid if object is an MSnSet. Alternatively, if
TRUE, then featureNames(object) (or coderownames(object), if object is a
matrix) are used. Default is missing, which does not add any label.s

args A named list of arguments to be passed to plot2D if the PCA coordinates are to
be calculated. Ignored if the PCA coordinates are passed directly, i.e. object is
a matrix.

... Additional parameters passed to points or text (when labels is TRUE) when
adding to plot2D, or spheres3d or text3d when adding the plot3D

radius Radius of the spheres to be added to the visualisation produced by plot3D. De-
fault is 0.3 (i.e plot3D’s radius1 * 3), to emphasise the features with regard to
uknown (radius1 = 0.1) and marker (radius1 * 2) features.

Value

NULL; used for its side effects.

Author(s)

Laurent Gatto

Examples

library("pRolocdata")
data("tan2009r1")
x <- FeaturesOfInterest(description = "A test set of features of interest",

fnames = featureNames(tan2009r1)[1:10],
object = tan2009r1)

using FeaturesOfInterest or feature names

30 knnClassification

par(mfrow = c(2, 1))
plot2D(tan2009r1)
highlightOnPlot(tan2009r1, x)
plot2D(tan2009r1)
highlightOnPlot(tan2009r1, featureNames(tan2009r1)[1:10])

.pca <- plot2D(tan2009r1)
head(.pca)
highlightOnPlot(.pca, x, col = "red")
highlightOnPlot(tan2009r1, x, col = "red", cex = 1.5)
highlightOnPlot(tan2009r1, x, labels = TRUE)

.pca <- plot2D(tan2009r1, dims = c(1, 3))
highlightOnPlot(.pca, x, pch = "+", dims = c(1, 3))
highlightOnPlot(tan2009r1, x, args = list(dims = c(1, 3)))

.pca2 <- plot2D(tan2009r1, mirrorX = TRUE, dims = c(1, 3))
previous pca matrix, need to mirror X axis
highlightOnPlot(.pca, x, pch = "+", args = list(mirrorX = TRUE))
new pca matrix, with X mirrors (and 1st and 3rd PCs)
highlightOnPlot(.pca2, x, col = "red")

plot2D(tan2009r1)
highlightOnPlot(tan2009r1, x)
highlightOnPlot(tan2009r1, x, labels = TRUE, pos = 3)
highlightOnPlot(tan2009r1, x, labels = "Flybase.Symbol", pos = 1)

in 3 dimensions
plot3D(tan2009r1, radius1 = 0.05)
highlightOnPlot3D(tan2009r1, x, labels = TRUE)
highlightOnPlot3D(tan2009r1, x)

knnClassification knn classification

Description

Classification using for the k-nearest neighbours algorithm.

Usage

knnClassification(object, assessRes, scores = c("prediction", "all", "none"),
k, fcol = "markers", ...)

Arguments

object An instance of class "MSnSet".

assessRes An instance of class "GenRegRes", as generated by knnOptimisation.

scores One of "prediction", "all" or "none" to report the score for the predicted
class only, for all cluster or none.

k If assessRes is missing, a k must be provided.

fcol The feature meta-data containing marker definitions. Default is markers.

... Additional parameters passed to knn from package class.

knnOptimisation 31

Value

An instance of class "MSnSet" with knn and knn.scores feature variables storing the classification
results and scores respectively.

Author(s)

Laurent Gatto

Examples

library(pRolocdata)
data(dunkley2006)
reducing parameter search space and iterations
params <- knnOptimisation(dunkley2006, k = c(3, 10), times = 3)
params
plot(params)
f1Count(params)
levelPlot(params)
getParams(params)
res <- knnClassification(dunkley2006, params)
getPredictions(res, fcol = "knn")
getPredictions(res, fcol = "knn", t = 0.75)
plot2D(res, fcol = "knn")

knnOptimisation knn parameter optimisation

Description

Classification parameter optimisation for the k-nearest neighbours algorithm.

Usage

knnOptimisation(object, fcol = "markers", k = seq(3, 15, 2), times = 100,
test.size = 0.2, xval = 5, fun = mean, seed, verbose = TRUE, ...)

Arguments

object An instance of class "MSnSet".

fcol The feature meta-data containing marker definitions. Default is markers.

k The hyper-parameter. Default values are seq(3, 15, 2).

times The number of times internal cross-validation is performed. Default is 100.

test.size The size of test data. Default is 0.2 (20 percent).

xval The n-cross validation. Default is 5.

fun The function used to summarise the xval macro F1 matrices.

seed The optional random number generator seed.

verbose A logical defining whether a progress bar is displayed.

... Additional parameters passed to knn from package class.

32 knntlClassification

Details

Note that when performance scores precision, recall and (macro) F1 are calculated, any NA values
are replaced by 0. This decision is motivated by the fact that any class that would have either a NA
precision or recall would result in an NA F1 score and, eventually, a NA macro F1 (i.e. mean(F1)).
Replacing NAs by 0s leads to F1 values of 0 and a reduced yet defined final macro F1 score.

Value

An instance of class "GenRegRes".

Author(s)

Laurent Gatto

See Also

knnClassification and example therein.

knntlClassification knn transfer learning classification

Description

Classification using a variation of the KNN implementation of Wu and Dietterich’s transfer learning
schema

Usage

knntlClassification(primary, auxiliary, fcol = "markers", bestTheta, k,
scores = c("prediction", "all", "none"), seed)

Arguments

primary An instance of class "MSnSet".

auxiliary An instance of class "MSnSet".

fcol The feature meta-data containing marker definitions. Default is markers.

bestTheta Best theta vector as output from knntlOptimisation, see knntlOptimisation
for details

k Numeric vector of length 2, containing the best k parameters to use for the pri-
mary and auxiliary datasets. If k k is not specified it will be calculated internally.

scores One of "prediction", "all" or "none" to report the score for the predicted
class only, for all cluster or none.

seed The optional random number generator seed.

Value

A character vector of the classifications for the unknowns

knntlOptimisation 33

Author(s)

Lisa Breckels

See Also

knntlOptimisation

Examples

library(pRolocdata)
data(andy2011)
data(andy2011goCC)
reducing calculation time of k by pre-running knnOptimisation
x <- c(andy2011, andy2011goCC)
k <- lapply(x, function(z)

knnOptimisation(z, times=5,
fcol = "markers.orig",
verbose = FALSE))

k <- sapply(k, function(z) getParams(z))
k
reducing parameter search with theta = 1,
weights of only 1 or 0 will be considered
opt <- knntlOptimisation(andy2011, andy2011goCC,

fcol = "markers.orig",
times = 2,
by = 1, k = k)

opt
th <- getParams(opt)
plot(opt)
res <- knntlClassification(andy2011, andy2011goCC,

fcol = "markers.orig", th, k)
res

knntlOptimisation theta parameter optimisation

Description

Classification parameter optimisation for the KNN implementation of Wu and Dietterich’s transfer
learning schema

Usage

knntlOptimisation(primary, auxiliary, fcol = "markers", k, times = 50,
test.size = 0.2, xval = 5, by = 0.5, length.out, th, xfolds,
BPPARAM = BiocParallel::bpparam(), method = "Breckels", log = FALSE,
seed)

34 knntlOptimisation

Arguments

primary An instance of class "MSnSet".
auxiliary An instance of class "MSnSet".
fcol The feature meta-data containing marker definitions. Default is markers.
k Numeric vector of length 2, containing the best k parameters to use for the pri-

mary (k[1]) and auxiliary (k[2]) datasets. See knnOptimisation for generat-
ing best k.

times The number of times cross-validation is performed. Default is 50.
test.size The size of test (validation) data. Default is 0.2 (20 percent).
xval The number of rounds of cross-validation to perform.
by The increment for theta, must be one of c(1, 0.5,0.25, 0.2, 0.15, 0.1, 0.05)

length.out Alternative to using by parameter. Specifies the desired length of the sequence
of theta to test.

th A matrix of theta values to test for each class as generated from the function
thetas, the number of columns should be equal to the number of classes con-
tained in fcol. Note: columns will be ordered according to getMarkerClasses(primary, fcol).
This argument is only valid if the default method ’Breckels’ is used.

xfolds Option to pass specific folds for the cross validation.
BPPARAM Required for parallelisation. If not specified selects a default BiocParallelParam,

from global options or, if that fails, the most recently registered() back-end.
method The k-NN transfer learning method to use. The default is ’Breckels’ as described

in the Breckels et al (2016). If ’Wu’ is specificed then the original method
implemented Wu and Dietterich (2004) is implemented.

log A logical defining whether logging should be enabled. Default is FALSE. Note
that logging produes considerably bigger objects.

seed The optional random number generator seed.

Details

knntlOptimisation implements a variation of Wu and Dietterich’s transfer learning schema: P.
Wu and T. G. Dietterich. Improving SVM accuracy by training on auxiliary data sources. In Pro-
ceedings of the Twenty-First International Conference on Machine Learning, pages 871 - 878. Mor-
gan Kaufmann, 2004. A grid search for the best theta is performed.

Value

A list of containing the theta combinations tested, associated macro F1 score and accuracy for each
combination over each round (specified by times).

Author(s)

Lisa Breckels

References

Breckels LM, Holden S, Wonjar D, Mulvey CM, Christoforou A, Groen AJ, Kohlbacher O, Lil-
ley KS, Gatto L. Learning from heterogeneous data sources: an application in spatial proteomics.
bioRxiv. doi: http://dx.doi.org/10.1101/022152

Wu P, Dietterich TG. Improving SVM Accuracy by Training on Auxiliary Data Sources. Proceed-
ings of the 21st International Conference on Machine Learning (ICML); 2004.

ksvmClassification 35

See Also

knntlClassification and example therein.

ksvmClassification ksvm classification

Description

Classification using the support vector machine algorithm.

Usage

ksvmClassification(object, assessRes, scores = c("prediction", "all", "none"),
cost, fcol = "markers", ...)

Arguments

object An instance of class "MSnSet".

assessRes An instance of class "GenRegRes", as generated by ksvmOptimisation.

scores One of "prediction", "all" or "none" to report the score for the predicted
class only, for all cluster or none.

cost If assessRes is missing, a cost must be provided.

fcol The feature meta-data containing marker definitions. Default is markers.

... Additional parameters passed to ksvm from package kernlab.

Value

An instance of class "MSnSet" with ksvm and ksvm.scores feature variables storing the classifica-
tion results and scores respectively.

Author(s)

Laurent Gatto

Examples

library(pRolocdata)
data(dunkley2006)
reducing parameter search space and iterations
params <- ksvmOptimisation(dunkley2006, cost = 2^seq(-1,4,5), times = 3)
params
plot(params)
f1Count(params)
levelPlot(params)
getParams(params)
res <- ksvmClassification(dunkley2006, params)
getPredictions(res, fcol = "ksvm")
getPredictions(res, fcol = "ksvm", t = 0.75)
plot2D(res, fcol = "ksvm")

36 ksvmOptimisation

ksvmOptimisation ksvm parameter optimisation

Description

Classification parameter optimisation for the support vector machine algorithm.

Usage

ksvmOptimisation(object, fcol = "markers", cost = 2^(-4:4), times = 100,
test.size = 0.2, xval = 5, fun = mean, seed, verbose = TRUE, ...)

Arguments

object An instance of class "MSnSet".

fcol The feature meta-data containing marker definitions. Default is markers.

cost The hyper-parameter. Default values are 2^-4:4.

times The number of times internal cross-validation is performed. Default is 100.

test.size The size of test data. Default is 0.2 (20 percent).

xval The n-cross validation. Default is 5.

fun The function used to summarise the xval macro F1 matrices.

seed The optional random number generator seed.

verbose A logical defining whether a progress bar is displayed.

... Additional parameters passed to ksvm from package kernlab.

Details

Note that when performance scores precision, recall and (macro) F1 are calculated, any NA values
are replaced by 0. This decision is motivated by the fact that any class that would have either a NA
precision or recall would result in an NA F1 score and, eventually, a NA macro F1 (i.e. mean(F1)).
Replacing NAs by 0s leads to F1 values of 0 and a reduced yet defined final macro F1 score.

Value

An instance of class "GenRegRes".

Author(s)

Laurent Gatto

See Also

ksvmClassification and example therein.

lopims 37

lopims A complete LOPIMS pipeline

Description

The function processes MSe data using the synergise function of the synapter package and com-
bines resulting Synapter instances into one "MSnSet" and organelle marker data is added as a
feature-level annotation variable.

Usage

lopims(hdmsedir = "HDMSE", msedir = "MSE", pep3ddir = "pep3D", fastafile,
markerfile, mfdr = 0.025, ...)

Arguments

hdmsedir A character identifying the directory containing the HDMSe final peptide files.
Default is HDMSe.

msedir A character identifying the directory containing the MSe final peptide files.
Default is MSe.

pep3ddir A character identifying the directory containing the MSe pep 3D files. Default
is pep3D.

fastafile A character identifying the protein fasta database. Default is to use the fasta
file in the current directory. If several such files exist, the function reports an
error.

markerfile A character identifying the marker file (see details for format). Default is to
use a csv file starting with marker in the current directory. If several such files
exist, the function reports an error.

mfdr The master FDR value. Default is 0.025.

... Additional paramters passed to synergise.

Details

The LOPIMS pipeline is composed of 5 steps:

1. The HDMSe final peptide files are used to compute false discovery rates uppon all possible
combinations of HDMSe final peptides files and the best combination smaller or equal to mfdr
is chosen. See estimateMasterFdr for details. The corresponding master run is then created
as descibed in makeMaster. (function lopims1)

2. Each MSe/pep3D pair is processed using the HDMSe master file using synergise. (function
lopims2)

3. The respective peptide-level synergise output objects are converted and combined into an
single "MSnSet" instance. (function lopims3)

4. Protein-level quantitation is inferred as follows. For each protein, a reference sample/fraction
is chosen based on the number of missing values (NA). If several samples have a same minimal
number of NAs, ties are broken using the sum of counts. The peptides that do not display
any missing values for each (frac_i, frac_ref) pair are summed and the ratio is reported (see
pRoloc:::refNormMeanOfNonNAPepSum for details). (function lopims4)

38 makeGoSet

5. The markers defined in the markerfile are collated as feature meta-data in the markers
variable. See addMarkers for details. (function lopims5)

Intermediate synergise reports as well as resulting objects are stored in a LOPIMS_pipeline di-
rectory. For details, please refer to the synapter vignette and reference papers.

Value

An instance of class "MSnSet" with protein level quantitation and respective organelle markers.

Author(s)

Laurent Gatto

References

Improving qualitative and quantitative performance for MSE-based label free proteomics N.J. Bond,
P.V. Shliaha, K.S. Lilley and L. Gatto Journal of Proteome Research, 2013;12(6):2340-53. PMID:
23510225.

The Effects of Travelling Wave Ion Mobility Separation on Data Independent Acquisition in Pro-
teomics Studies P.V. Shliaha, N.J. Bond, L. Gatto and K.S. Lilley Journal of Proteome Research,
2013;12(6):2323-39. PMID: 23514362.

MSnbase-an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, pro-
cessing and quantitation. L. Gatto and KS. Lilley. Bioinformatics. 2012 Jan 15;28(2):288-9. doi:
10.1093/bioinformatics/btr645. Epub 2011 Nov 22. PubMed PMID: 22113085.

makeGoSet Creates a GO feature MSnSet

Description

Creates a new "MSnSet" instance populated with a GO term binary matrix based on an original
object.

Usage

makeGoSet(object, params, namespace = "cellular_component", evidence = NULL)

Arguments

object An instance of class "MSnSet" or a character of feature names.

params An instance of class "AnnotationParams", compatible with featureNames(object)’s
format.

namespace The ontology name space. One or several of "biological_process", "cellular_component"
or "molecular_function".

evidence GO evidence filtering.

Value

A new "MSnSet" with the GO terms for the respective features in the original object.

markerMSnSet 39

Author(s)

Laurent Gatto

Examples

library("pRolocdata")
data(dunkley2006)
data(dunkley2006params)
goset <- makeGoSet(dunkley2006[1:10,],

dunkley2006params)
goset
exprs(goset)[1:10, 1:5]
image(goset)

markerMSnSet Extract marker/unknown subsets

Description

These function extract the marker or unknown proteins into a new MSnSet.

Usage

markerMSnSet(object, fcol = "markers")

unknownMSnSet(object, fcol = "markers")

Arguments

object An instance of class MSnSet

fcol The name of the feature data column, that will be used to separate the markers
from the proteins of unknown localisation. When the markers are encoded as
vectors, features of unknown localisation are defined as fData(object)[, fcol] ==
"unknown". For matrix-encoded markers, unlabelled proteins are defined as
rowSums(fData(object)[, fcol]) == 0. Default is "markers".

Value

An new MSnSet with marker/unknown proteins only.

Author(s)

Laurent Gatto

See Also

sampleMSnSet testMSnSet and markers for markers encoding.

40 minMarkers

Examples

library("pRolocdata")
data(dunkley2006)
mrk <- markerMSnSet(dunkley2006)
unk <- unknownMSnSet(dunkley2006)
dim(dunkley2006)
dim(mrk)
dim(unk)
table(fData(dunkley2006)$markers)
table(fData(mrk)$markers)
table(fData(unk)$markers)
matrix-encoded markers
dunkley2006 <- mrkVecToMat(dunkley2006)
dim(markerMSnSet(dunkley2006, "Markers"))
stopifnot(all.equal(featureNames(markerMSnSet(dunkley2006, "Markers")),

featureNames(markerMSnSet(dunkley2006, "markers"))))
dim(unknownMSnSet(dunkley2006, "Markers"))
stopifnot(all.equal(featureNames(unknownMSnSet(dunkley2006, "Markers")),

featureNames(unknownMSnSet(dunkley2006, "markers"))))

MartInstance-class Class "MartInstance"

Description

Internal infrastructure to query/handle several individual mart instance. See MartInterface.R for
details.

Author(s)

Laurent Gatto <lg390@cam.ac.uk>

minMarkers Creates a reduced marker variable

Description

This function updates an MSnSet instances and sets markers class to unknown if there are less than
n instances.

Usage

minMarkers(object, n = 10, fcol = "markers")

Arguments

object An instance of class "MSnSet".

n Minumum of marker instances per class.

fcol The name of the markers column in the featureData slot. Default is markers.

MLearn-methods 41

Value

An instance of class "MSnSet" with a new feature variables, named after the original fcol variable
and the n value.

Author(s)

Laurent Gatto

See Also

getPredictions to filter based on classification scores.

Examples

library(pRolocdata)
data(dunkley2006)
d2 <- minMarkers(dunkley2006, 20)
getMarkers(dunkley2006)
getMarkers(d2, fcol = "markers20")

MLearn-methods The MLearn interface for machine learning

Description

This method implements MLInterfaces’ MLean method for instances of the class "MSnSet".

Methods

signature(formula = "formula", data = "MSnSet", .method = "learnerSchema", trainInd = "numeric")
The learning problem is stated with the formula and applies the .method schema on the
MSnSet data input using the trainInd numeric indices as train data.

signature(formula = "formula", data = "MSnSet", .method = "learnerSchema", trainInd = "xvalSpec")
In this case, an instance of xvalSpec is used for cross-validation.

signature(formula = "formula", data = "MSnSet", .method = "clusteringSchema", trainInd = "missing")
Hierarchical (hclustI), k-means (kmeansI) and partitioning around medoids (pamI) cluster-
ing algorithms using MLInterface’s MLearn interface.

See Also

The MLInterfaces package documentation, in particular MLearn.

42 move2Ds

move2Ds Displays a spatial proteomics animation

Description

Given two MSnSet instances of one MSnSetList with at least two items, this function produces an
animation that shows the transition from the first data to the second.

Usage

move2Ds(object, pcol, fcol = "markers", n = 25, hl)

Arguments

object An linkS4class{MSnSet} or a MSnSetList. In the latter case, only the two
first elements of the list will be used for plotting and the others will be silently
ignored.

pcol If object is an MSnSet, a factor or the name of a phenotype variable (phenoData
slot) defining how to split the single MSnSet into two or more data sets. Ignored
if object is a MSnSetList.

fcol Feature meta-data label (fData column name) defining the groups to be differ-
entiated using different colours. Default is markers. Use NULL to suppress any
colouring.

n Number of frames, Default is 25.

hl An optional instance of class linkS4class{FeaturesOfInterest} to track
features of interest.

Value

Used for its side effect of producing a short animation.

Author(s)

Laurent Gatto

See Also

plot2Ds to a single figure with the two datasets.

Examples

library("pRolocdata")
data(dunkley2006)

Create a relevant MSnSetList using the dunkley2006 data
xx <- split(dunkley2006, "replicate")
xx1 <- xx[[1]]
xx2 <- xx[[2]]
fData(xx1)$markers[374] <- "Golgi"
fData(xx2)$markers[412] <- "unknown"
xx@x[[1]] <- xx1

mrkHClust 43

xx@x[[2]] <- xx2

The features we want to track
foi <- FeaturesOfInterest(description = "test",

fnames = featureNames(xx[[1]])[c(374, 412)])

(1) visualise each experiment separately
par(mfrow = c(2, 1))
plot2D(xx[[1]], main = "condition A")
highlightOnPlot(xx[[1]], foi)
plot2D(xx[[2]], mirrorY = TRUE, main = "condition B")
highlightOnPlot(xx[[2]], foi, args = list(mirrorY = TRUE))

(2) plot both data on the same plot
par(mfrow = c(1, 1))
tmp <- plot2Ds(xx)
highlightOnPlot(data1(tmp), foi, lwd = 2)
highlightOnPlot(data2(tmp), foi, pch = 5, lwd = 2)

(3) create an animation
move2Ds(xx, pcol = "replicate")
move2Ds(xx, pcol = "replicate", hl = foi)

mrkHClust Draw a dendrogram of subcellular clusters

Description

This functions calculates an average protein profile for each marker class (proteins of unknown lo-
calisation are ignored) and then generates a dendrogram representing the relation between marker
classes. The colours used for the dendrogram labels are taken from the default colours (see getStockcol)
so as to match the colours with other spatial proteomics visualisations such as plot2D.

Usage

mrkHClust(object, fcol = "markers", distargs, hclustargs, plot = TRUE, ...)

Arguments

object An instance of class MSnSet.

fcol Feature meta-data label (fData column name) defining the groups to be differ-
entiated using different colours. Default is markers.

distargs A list of arguments to be passed to the dist function.

hclustargs A list of arguments to be passed to the hclust function.

plot A logical defining whether the dendrogram should be plotted. Default is TRUE.

... Additional parameters passed when plotting the dendrogram.

Value

Invisibly returns a matrix of average occupancy profiles for all marker classes defined in fcol.

44 mrkVecToMat

Author(s)

Laurent Gatto

Examples

library("pRolocdata")
data(dunkley2006)
mrkHClust(dunkley2006)

mrkVecToMat Create a marker vector or matrix.

Description

Functions producing a new vector (matrix) marker vector set from an existing matrix (vector)
marker set.

Usage

mrkVecToMat(object, vfcol = "markers", mfcol = "Markers")

mrkMatToVec(object, mfcol = "Markers", vfcol = "markers")

mrkMatAndVec(object, vfcol = "markers", mfcol = "Markers")

showMrkMat(object, mfcol = "Markers")

isMrkMat(object, fcol = "Markers")

isMrkVec(object, fcol = "markers")

mrkEncoding(object, fcol = "markers")

Arguments

object An MSnSet object

vfcol The name of the vector marker feature variable. Default is "markers".

mfcol The name of the matrix marker feature variable. Default is "Markers".

fcol A marker feature variable name.

Details

Sub-cellular markers can be encoded in two different ways. Sets of spatial markers can be rep-
resented as character vectors (character or factor, to be accurate), stored as feature metadata,
and proteins of unknown or uncertain localisation (unlabelled, to be classified) are marked with the
"unknown" character. While very handy, this encoding suffers from some drawbacks, in particular
the difficulty to label proteins that reside in multiple (possible or actual) localisations. The markers
vector feature data is typically named markers. A new matrix encoding is also supported. Each
spatial compartment is defined in a column in a binary markers matrix and the resident proteins
are encoded with 1s. The markers matrix feature data is typically named Markers. If proteins are

nbClassification 45

assigned unique localisations only (i.e. no multi-localisation) or their localisation is unknown (un-
labelled), then both encodings are equivalent. When the markers are encoded as vectors, features of
unknown localisation are defined as fData(object)[, fcol] == "unknown". For matrix-encoded
markers, unlabelled proteins are defined as rowSums(fData(object)[, fcol]) == 0.

The mrkMatToVec and mrkVecToMat functions enable the conversion from matrix (vector) to vector
(matrix). The mrkMatAndVec function generates the missing encoding from the existing one. If
the destination encoding already exists, or, more accurately, if the feature variable of the destina-
tion encoding exists, an error is thrown. During the conversion from matrix to vector, if multiple
possible label exists, they are dropped, i.e. they are converted to "unknown". Function isMrkVec
and isMrkMat can be used to test if a marker set is encoded as a vector or a matrix. mrkEncoding
returns either "vector" or "matrix" depending on the nature of the markers.

Value

An updated MSnSet with a new vector (matrix) marker set.

Author(s)

Laurent Gatto and Lisa Breckels

See Also

Other functions that operate on markers are getMarkers, getMarkerClasses and markerMSnSet.
To add markers to an existing MSnSet, see the addMarkers function and pRolocmarkers, for a list
of suggested markers.

Examples

library("pRolocdata")
data(dunkley2006)
dunk <- mrkVecToMat(dunkley2006)
head(fData(dunk)$Markers)
fData(dunk)$markers <- NULL
dunk <- mrkMatToVec(dunk)
stopifnot(all.equal(fData(dunkley2006)$markers,

fData(dunk)$markers))

nbClassification nb classification

Description

Classification using the naive Bayes algorithm.

Usage

nbClassification(object, assessRes, scores = c("prediction", "all", "none"),
laplace, fcol = "markers", ...)

46 nbOptimisation

Arguments

object An instance of class "MSnSet".

assessRes An instance of class "GenRegRes", as generated by nbOptimisation.

scores One of "prediction", "all" or "none" to report the score for the predicted
class only, for all cluster or none.

laplace If assessRes is missing, a laplace must be provided.

fcol The feature meta-data containing marker definitions. Default is markers.

... Additional parameters passed to naiveBayes from package e1071.

Value

An instance of class "MSnSet" with nb and nb.scores feature variables storing the classification
results and scores respectively.

Author(s)

Laurent Gatto

Examples

library(pRolocdata)
data(dunkley2006)
reducing parameter search space and iterations
params <- nbOptimisation(dunkley2006, laplace = c(0, 5), times = 3)
params
plot(params)
f1Count(params)
levelPlot(params)
getParams(params)
res <- nbClassification(dunkley2006, params)
getPredictions(res, fcol = "naiveBayes")
getPredictions(res, fcol = "naiveBayes", t = 1)
plot2D(res, fcol = "naiveBayes")

nbOptimisation nb paramter optimisation

Description

Classification algorithm parameter for the naive Bayes algorithm.

Usage

nbOptimisation(object, fcol = "markers", laplace = seq(0, 5, 0.5),
times = 100, test.size = 0.2, xval = 5, fun = mean, seed,
verbose = TRUE, ...)

nndist-methods 47

Arguments

object An instance of class "MSnSet".

fcol The feature meta-data containing marker definitions. Default is markers.

laplace The hyper-parameter. Default values are seq(0, 5, 0.5).

times The number of times internal cross-validation is performed. Default is 100.

test.size The size of test data. Default is 0.2 (20 percent).

xval The n-cross validation. Default is 5.

fun The function used to summarise the xval macro F1 matrices.

seed The optional random number generator seed.

verbose A logical defining whether a progress bar is displayed.

... Additional parameters passed to naiveBayes from package e1071.

Details

Note that when performance scores precision, recall and (macro) F1 are calculated, any NA values
are replaced by 0. This decision is motivated by the fact that any class that would have either a NA
precision or recall would result in an NA F1 score and, eventually, a NA macro F1 (i.e. mean(F1)).
Replacing NAs by 0s leads to F1 values of 0 and a reduced yet defined final macro F1 score.

Value

An instance of class "GenRegRes".

Author(s)

Laurent Gatto

See Also

nbClassification and example therein.

nndist-methods Nearest neighbour distances

Description

Methods computing the nearest neighbour indices and distances for matrix and MSnSet instances.

Methods

signature(object = "matrix", k = "numeric", dist = "character", ...) Calculates in-
dices and distances to the k (default is 3) nearest neighbours of each feature (row) in the input
matrix object. The distance dist can be either of "euclidean" or "mahalanobis". Addi-
tional parameters can be passed to the internal function FNN::get.knn. Output is a matrix
with 2 * k columns and nrow(object) rows.

signature(object = "MSnSet", k = "numeric", dist = "character", ...) As above, but
for an MSnSet input. The indices and distances to the k nearest neighbours are added to the
object’s feature metadata.

48 nnetClassification

signature(object = "matrix", query = "matrix", k = "numeric", ...) If two matrix
instances are provided as input, the k (default is 3) indices and distances of the nearest neigh-
bours of query in object are returned as a matrix of dimensions 2 * k by nrow(query).
Additional parameters are passed to FNN::get.knnx. Only euclidean distance is available.

Examples

library("pRolocdata")
data(dunkley2006)

Using a matrix as input
m <- exprs(dunkley2006)
m[1:4, 1:3]
head(nndist(m, k = 5))
tail(nndist(m[1:100,], k = 2, dist = "mahalanobis"))

Same as above for MSnSet
d <- nndist(dunkley2006, k = 5)
head(fData(d))

d <- nndist(dunkley2006[1:100,], k = 2, dist = "mahalanobis")
tail(fData(d))

Using a query
nndist(m[1:100,], m[101:110,], k = 2)

nnetClassification nnet classification

Description

Classification using the artificial neural network algorithm.

Usage

nnetClassification(object, assessRes, scores = c("prediction", "all", "none"),
decay, size, fcol = "markers", ...)

Arguments

object An instance of class "MSnSet".

assessRes An instance of class "GenRegRes", as generated by nnetOptimisation.

scores One of "prediction", "all" or "none" to report the score for the predicted
class only, for all cluster or none.

decay If assessRes is missing, a decay must be provided.

size If assessRes is missing, a size must be provided.

fcol The feature meta-data containing marker definitions. Default is markers.

... Additional parameters passed to nnet from package nnet.

nnetOptimisation 49

Value

An instance of class "MSnSet" with nnet and nnet.scores feature variables storing the classifica-
tion results and scores respectively.

Author(s)

Laurent Gatto

Examples

library(pRolocdata)
data(dunkley2006)
reducing parameter search space and iterations
params <- nnetOptimisation(dunkley2006, decay = 10^(c(-1, -5)), size = c(5, 10), times = 3)
params
plot(params)
f1Count(params)
levelPlot(params)
getParams(params)
res <- nnetClassification(dunkley2006, params)
getPredictions(res, fcol = "nnet")
getPredictions(res, fcol = "nnet", t = 0.75)
plot2D(res, fcol = "nnet")

nnetOptimisation nnet parameter optimisation

Description

Classification parameter optimisation for artificial neural network algorithm.

Usage

nnetOptimisation(object, fcol = "markers", decay = c(0, 10^(-1:-5)),
size = seq(1, 10, 2), times = 100, test.size = 0.2, xval = 5,
fun = mean, seed, verbose = TRUE, ...)

Arguments

object An instance of class "MSnSet".

fcol The feature meta-data containing marker definitions. Default is markers.

decay The hyper-parameter. Default values are c(0, 10^(-1:-5)).

size The hyper-parameter. Default values are seq(1, 10, 2).

times The number of times internal cross-validation is performed. Default is 100.

test.size The size of test data. Default is 0.2 (20 percent).

xval The n-cross validation. Default is 5.

fun The function used to summarise the xval macro F1 matrices.

seed The optional random number generator seed.

verbose A logical defining whether a progress bar is displayed.

... Additional parameters passed to nnet from package nnet.

50 orderGoAnnotations

Details

Note that when performance scores precision, recall and (macro) F1 are calculated, any NA values
are replaced by 0. This decision is motivated by the fact that any class that would have either a NA
precision or recall would result in an NA F1 score and, eventually, a NA macro F1 (i.e. mean(F1)).
Replacing NAs by 0s leads to F1 values of 0 and a reduced yet defined final macro F1 score.

Value

An instance of class "GenRegRes".

Author(s)

Laurent Gatto

See Also

nnetClassification and example therein.

orderGoAnnotations Orders annotation information

Description

For a given matrix of annotation information, this function returns the information ordered accord-
ing to the best fit with the data.

Usage

orderGoAnnotations(object, fcol = "GOAnnotations", k = 1:5, n = 5,
p = 1/3, verbose = TRUE, seed)

Arguments

object An instance of class MSnSet.

fcol The name of the annotations matrix. Default is GOAnnotations.

k The number of clusters to test. Default is k = 1:5

n The minimum number of proteins per component cluster.

p The normalisation factor, per k tested

verbose A logical indicating if a progress bar should be displayed. Default is TRUE.

seed An optional random number generation seed.

orgQuants 51

Details

As there are typically many protein/annotation sets that may fit the data we order protein sets by
best fit i.e. cluster tightness, by computing the mean normalised Euclidean distance for all instances
per protein set.

For each protein set i.e. proteins that have been labelled with a specified term/information criteria,
we find the best k cluster components for the set (the default is to testk = 1:5) according to the
minimum mean normalised pairwise Euclidean distance over all component clusters. (Note: when
testing k if any components are found to have less than n proteins these components are not included
and k is reduced by 1).

Each component cluster is normalised by N^p (where N is the total number of proteins per com-
ponent, and p is the power). Hueristally, p = 1/3 and normalising by N^1/3 has been found the
optimum normalisation factor.

Candidates in the matrix are ordered according to lowest mean normalised pairwise Euclidean dis-
tance as we expect high density, tight clusters to have the smallest mean normalised distance.

This function is a wrapper for running clustDist, getNormDist, see the "Annotating spatial pro-
teomics data" vignette for more details.

Value

An updated MSnSet containing the newly ordered fcol matrix.

Author(s)

Lisa M Breckels

See Also

addGoAnnotations and example therein.

orgQuants Returns organelle-specific quantile scores

Description

This function produces organelle-specific quantiles corresponding to the given classification scores.

Usage

orgQuants(object, fcol, scol, mcol = "markers", t, verbose = TRUE)

Arguments

object An instance of class "MSnSet".
fcol The name of the prediction column in the featureData slot.
scol The name of the prediction score column in the featureData slot. If missing,

created by pasting ’.scores’ after fcol.
mcol The name of the column containing the training data in the featureData slot.

Default is markers.
t The quantile threshold.
verbose If TRUE, the calculated threholds are printed.

52 perTurboClassification

Value

A named vector of organelle thresholds.

Author(s)

Lisa Breckels

See Also

getPredictions to get organelle predictions based on calculated thresholds.

Examples

library("pRolocdata")
data(dunkley2006)
res <- svmClassification(dunkley2006, fcol = "pd.markers",

sigma = 0.1, cost = 0.5)
50% top predictions per class
ts <- orgQuants(res, fcol = "svm", t = .5)
getPredictions(res, fcol = "svm", t = ts)

perTurboClassification

perTurbo classification

Description

Classification using the PerTurbo algorithm.

Usage

perTurboClassification(object, assessRes, scores = c("prediction", "all",
"none"), pRegul, sigma, inv, reg, fcol = "markers")

Arguments

object An instance of class "MSnSet".

assessRes An instance of class "GenRegRes", as generated by svmRegularisation.

scores One of "prediction", "all" or "none" to report the score for the predicted
class only, for all cluster or none.

pRegul If assessRes is missing, a pRegul must be provided. See perTurboOptimisation
for details.

sigma If assessRes is missing, a sigma must be provided. See perTurboOptimisation
for details.

inv The type of algorithm used to invert the matrix. Values are : "Inversion Cholesky"
(chol2inv), "Moore Penrose" (ginv), "solve" (solve), "svd" (svd). Default
value is "Inversion Cholesky".

reg The type of regularisation of matrix. Values are "none", "trunc" or "tikhonov".
Default value is "tikhonov".

fcol The feature meta-data containing marker definitions. Default is markers.

perTurboOptimisation 53

Value

An instance of class "MSnSet" with perTurbo and perTurbo.scores feature variables storing the
classification results and scores respectively.

Author(s)

Thomas Burger and Samuel Wieczorek

References

N. Courty, T. Burger, J. Laurent. "PerTurbo: a new classification algorithm based on the spectrum
perturbations of the Laplace-Beltrami operator", The European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2011), D. Gunop-
ulos et al. (Eds.): ECML PKDD 2011, Part I, LNAI 6911, pp. 359 - 374, Athens, Greece, September
2011.

Examples

library(pRolocdata)
data(dunkley2006)
reducing parameter search space
params <- perTurboOptimisation(dunkley2006,

pRegul = 2^seq(-2,2,2),
sigma = 10^seq(-1, 1, 1),
inv = "Inversion Cholesky",
reg ="tikhonov",
times = 3)

params
plot(params)
f1Count(params)
levelPlot(params)
getParams(params)
res <- perTurboClassification(dunkley2006, params)
getPredictions(res, fcol = "perTurbo")
getPredictions(res, fcol = "perTurbo", t = 0.75)
plot2D(res, fcol = "perTurbo")

perTurboOptimisation PerTurbo parameter optimisation

Description

Classification parameter optimisation for the PerTurbo algorithm

Usage

perTurboOptimisation(object, fcol = "markers", pRegul = 10^(seq(from = -1,
to = 0, by = 0.2)), sigma = 10^(seq(from = -1, to = 1, by = 0.5)),
inv = c("Inversion Cholesky", "Moore Penrose", "solve", "svd"),
reg = c("tikhonov", "none", "trunc"), times = 1, test.size = 0.2,
xval = 5, fun = mean, seed, verbose = TRUE)

54 perTurboOptimisation

Arguments

object An instance of class "MSnSet".

fcol The feature meta-data containing marker definitions. Default is markers.

pRegul The hyper-parameter for the regularisation (values are in]0,1]). If reg =="trunc",
pRegul is for the percentage of eigen values in matrix. If reg =="tikhonov", then
’pRegul’ is the parameter for the tikhonov regularisation. Available configu-
rations are : "Inversion Cholesky" - ("tikhonov" / "none"), "Moore Penrose"
- ("tikhonov" / "none"), "solve" - ("tikhonov" / "none"), "svd" - ("tikhonov" /
"none" / "trunc").

sigma The hyper-parameter.

inv The type of algorithm used to invert the matrix. Values are : "Inversion Cholesky"
(chol2inv), "Moore Penrose" (ginv), "solve" (solve), "svd" (svd). Default
value is "Inversion Cholesky".

reg The type of regularisation of matrix. Values are "none", "trunc" or "tikhonov".
Default value is "tikhonov".

times The number of times internal cross-validation is performed. Default is 100.

test.size The size of test data. Default is 0.2 (20 percent).

xval The n-cross validation. Default is 5.

fun The function used to summarise the times macro F1 matrices.

seed The optional random number generator seed.

verbose A logical defining whether a progress bar is displayed.

Details

Note that when performance scores precision, recall and (macro) F1 are calculated, any NA values
are replaced by 0. This decision is motivated by the fact that any class that would have either a NA
precision or recall would result in an NA F1 score and, eventually, a NA macro F1 (i.e. mean(F1)).
Replacing NAs by 0s leads to F1 values of 0 and a reduced yet defined final macro F1 score.

Value

An instance of class "GenRegRes".

Author(s)

Thomas Burger and Samuel Wieczorek

See Also

perTurboClassification and example therein.

phenoDisco 55

phenoDisco Runs the phenoDisco algorithm.

Description

phenoDisco is a semi-supervised iterative approach to detect new protein clusters.

Usage

phenoDisco(object, fcol = "markers", times = 100, GS = 10,
allIter = FALSE, p = 0.05, ndims = 2,
modelNames = mclust.options("emModelNames"), G = 1:9, BPPARAM, tmpfile,
seed, verbose = TRUE)

Arguments

object An instance of class MSnSet.
fcol A character indicating the organellar markers column name in feature meta-

data. Default is markers.
times Number of runs of tracking. Default is 100.
GS Group size, i.e how many proteins make a group. Default is 10 (the minimum

group size is 4).
allIter logical, defining if predictions for all iterations should be saved. Default is

FALSE.
p Significance level for outlier detection. Default is 0.05.
ndims Number of principal components to use as input for the disocvery analysis. De-

fault is 2. Added in version 1.3.9.
modelNames A vector of characters indicating the models to be fitted in the EM phase of clus-

tering using Mclust. The help file for mclustModelNames describes the avail-
able models. Default model names are c("EII", "VII", "EEI","VEI", "EVI", "VVI", "EEE", "EEV", "VEV", "VVV"),
as returned by mclust.options("emModelNames"). Note that using all these
possible models substantially increases the running time. Legacy models are
c("EEE","EEV","VEV","VVV"), i.e. only ellipsoidal models.

G An integer vector specifying the numbers of mixture components (clusters) for
which the BIC is to be calculated. The default is G=1:9 (as in Mclust).

BPPARAM Support for parallel processing using the BiocParallel infrastructure. When
missing (default), the default registered BiocParallelParam parameters are
used. Alternatively, one can pass a valid BiocParallelParam parameter in-
stance: SnowParam, MulticoreParam, DoparParam, . . . see the BiocParallel
package for details. To revert to the origianl serial implementation, use NULL.

tmpfile An optional character to save a temporary MSnSet after each iteration. Ignored
if missing. This is useful for long runs to track phenotypes and possibly kill the
run when convergence is observed. If the run completes, the temporary file is
deleted before returning the final result.

seed An optional numeric of length 1 specifing the random number generator seed to
be used. Only relevant when executed in serialised mode with BPPARAM = NULL.
See BPPARAM for details.

verbose Logical, indicating if messages are to be printed out during execution of the
algorithm.

56 plot2D

Details

The algorithm performs a phenotype discovery analysis as described in Breckels et al. Using this
approach one can identify putative subcellular groupings in organelle proteomics experiments for
more comprehensive validation in an unbiased fashion. The method is based on the work of Yin et
al. and used iterated rounds of Gaussian Mixture Modelling using the Expectation Maximisation
algorithm combined with a non-parametric outlier detection test to identify new phenotype clusters.

One requires 2 or more classes to be labelled in the data and at a very minimum of 6 markers per
class to run the algorithm. The function will check and remove features with missing values using
the filterNA method.

A parallel implementation, relying on the BiocParallel package, has been added in version 1.3.9.
See the BPPARAM arguent for details.

Important: Prior to version 1.1.2 the row order in the output was different from the row order in the
input. This has now been fixed and row ordering is now the same in both input and output objects.

Value

An instance of class MSnSet containing the phenoDisco predictions.

Author(s)

Lisa M. Breckels <lms79@cam.ac.uk>

References

Yin Z, Zhou X, Bakal C, Li F, Sun Y, Perrimon N, Wong ST. Using iterative cluster merging with
improved gap statistics to perform online phenotype discovery in the context of high-throughput
RNAi screens. BMC Bioinformatics. 2008 Jun 5;9:264. PubMed PMID: 18534020.

Breckels LM, Gatto L, Christoforou A, Groen AJ, Lilley KS and Trotter MWB. The Effect of
Organelle Discovery upon Sub-Cellular Protein Localisation. J Proteomics. 2013 Aug 2;88:129-
40. doi: 10.1016/j.jprot.2013.02.019. Epub 2013 Mar 21. PubMed PMID: 23523639.

Examples

Not run:
library(pRolocdata)
data(tan2009r1)
pdres <- phenoDisco(tan2009r1, fcol = "PLSDA")
getPredictions(pdres, fcol = "pd", scol = NULL)
plot2D(pdres, fcol = "pd")

End(Not run)

plot2D Plot organelle assignment data and results.

Description

Generate 2 or 3 dimensional feature distribution plots to illustrate localistation clusters. Rows/features
containing NA values are removed prior to dimention reduction. plot3D relies on the rgl package,
that will be loaded automatically.

plot2D 57

Usage

plot2D(object, fcol = "markers", fpch, unknown = "unknown", dims = 1:2,
score = 1, method = "PCA", methargs, axsSwitch = FALSE,
mirrorX = FALSE, mirrorY = FALSE, col, pch, cex, index = FALSE,
idx.cex = 0.75, addLegend, identify = FALSE, plot = TRUE, ...)

S4 method for signature 'MSnSet'
plot3D(object, fcol = "markers", dims = c(1, 2, 3),
radius1 = 0.1, radius2 = radius1 * 2, plot = TRUE, ...)

Arguments

object An instance of class MSnSet.

fcol Feature meta-data label (fData column name) defining the groups to be differ-
entiated using different colours. Default is markers. Use NULL to suppress any
colouring.

fpch Featre meta-data label (fData column name) desining the groups to be differen-
tiated using different point symbols.

unknown A character (default is "unknown") defining how proteins of unknown/un-
labelled localisation are labelled.

dims A numeric of length 2 (or 3 for plot3D) defining the dimensions to be plotted.
Defaults are c(1,2) and c(1, 2, 3). Always 1:2 for MDS.

score A numeric specifying the minimum organelle assignment score to consider fea-
tures to be assigned an organelle. (not yet implemented).

method A character describe how to transform the data or what to plot. One of "PCA"
(default), "MDS", "kpca", "t-SNE" or "lda", defining what dimensionality re-
duction is applied: principal component analysis (see prcomp), classical multi-
dimensional scaling (see cmdscale), kernel PCA (see kpca), t-SNE (see tsne)
or linear discriminant analysis (see lda). The last method uses fcol to defined
the sub-cellular clusters so that the ration between within ad between cluster
variance is maximised. All the other methods are unsupervised and make use
fcol only to annotate the plot. "scree" can also be used to produce a scree
plot. "hexbin" applies PCA to the data and uses bivariate binning into hexago-
nal cells from hexbin to emphasise cluster density.
If none is used, the data is plotted as is, i.e. without any transformation. In
this case, object can either be an MSnSet or a matrix (as invisibly returned
by plot2D). This enables to re-generate the figure without computing the di-
mensionality reduction over and over again, which can be time consuming for
certain methods. If object is a matrix, an MSnSet containing the feature meta-
data must be provided in methargs (see below for details).
Available methods are listed in plot2Dmethods.

methargs A list of arguments to be passed when method is called. If missing, the data
will be scaled and centred prior to PCA. If method = "none" and object is a
matrix, then the first and only argument of methargs must be an MSnSet with
matching features with object.

axsSwitch A logical indicating whether the axes should be switched.

mirrorX A logical indicating whether the x axis should be mirrored?

mirrorY A logical indicating whether the y axis should be mirrored?

col A character of appropriate length defining colours.

58 plot2D

pch A character of appropriate length defining point character.

cex Character expansion.

index A logical (default is FALSE, indicating of the feature indices should be plotted
on top of the symbols.

idx.cex A numeric specifying the character expansion (default is 0.75) for the feature
indices. Only relevant when index is TRUE.

addLegend A character indicating where to add the legend. See addLegendfor details. If
missing (default), no legend is added.

identify A logical (default is TRUE) defining if user interaction will be expected to identify
individual data points on the plot. See also identify.

plot A logical defining if the figure should be plotted. Useful when retrieving data
only. Default is TRUE.

... Additional parameters passed to plot and points.

radius1 A numeric specifying the radius of feature of unknown localisation. Default is
0.1, which is specidied on the data scale. See plot3d for details.

radius2 A numeric specifying the radius of marker feature. Default is radius * 2.

Details

• Note that plot2D has been update in version 1.3.6 to support more organelle classes than
colours defined in getStockcol. In such cases, the default colours are recycled using the
default plotting characters defined in getStockpch. See the example for an illustration. The
alpha argument is also depreciated in version 1.3.6. Use setStockcol to set colours with
transparency instead. See example below.

• Version 1.11.3: to plot data as is, i.e. without any transformation, method can be set to "none"
(as opposed to passing pre-computed values to method as a matrix, in previous versions). If
object is an MSnSet, the untransformed values in the assay data will be plotted. If object is
a matrix with coordinates, then a matching MSnSet must be passed to methargs.

Value

Used for its side effects of generating a plot. Invisibly returns the 2 or 3 dimensions that are plotted.

Author(s)

Laurent Gatto <lg390@cam.ac.uk>

See Also

addLegend to add a legend to plot2D figures (the legend is added by default on plot3D) and
plotDist for alternative graphical representation of quantitative organelle proteomics data. plot2Ds
to overlay 2 data sets on the same PCA plot.

Examples

library("pRolocdata")
data(dunkley2006)
plot2D(dunkley2006, fcol = NULL)
plot2D(dunkley2006, fcol = NULL, col = "black")
plot2D(dunkley2006, fcol = "markers")
addLegend(dunkley2006,

plot2Ds 59

fcol = "markers",
where = "topright",
cex = 0.5, bty = "n", ncol = 3)

title(main = "plot2D example")
available methods
plot2Dmethods
plot2D(dunkley2006, fcol = NULL, method = "kpca", col = "black")
plot2D(dunkley2006, fcol = NULL, method = "kpca", col = "black",

methargs = list(kpar = list(sigma = 1)))
plot2D(dunkley2006, method = "lda")
plot2D(dunkley2006, method = "hexbin")
Using transparent colours
setStockcol(paste0(getStockcol(), "80"))
plot2D(dunkley2006, fcol = "markers")
New behavious in 1.3.6 when not enough colours
setStockcol(c("blue", "red", "green"))
getStockcol() ## only 3 colours to be recycled
getMarkers(dunkley2006)
plot2D(dunkley2006)
reset colours
setStockcol(NULL)
plot2D(dunkley2006, method = "none") ## plotting along 2 first fractions
plot2D(dunkley2006, dims = c(3, 5), method = "none") ## plotting along fractions 3 and 5
pre-calculate PC1 and PC2 coordinates
pca <- plot2D(dunkley2006, plot=FALSE)
head(pca)
plot2D(pca, method = "none", methargs = list(dunkley2006))

plotting in 3 dimenstions
plot3D(dunkley2006)
plot3D(dunkley2006, radius2 = 0.3)
plot3D(dunkley2006, dims = c(2, 4, 6))

plot2Ds Draw 2 data sets on one PCA plot

Description

Takes 2 linkS4class{MSnSet} instances as input to plot the two data sets on the same PCA plot.
The second data points are projected on the PC1 and PC2 dimensions calculated for the first data
set.

Usage

plot2Ds(object, pcol, fcol = "markers", cex.x = 1, cex.y = 1,
pch.x = 21, pch.y = 23, col, mirrorX = FALSE, mirrorY = FALSE,
plot = TRUE, ...)

Arguments

object An MSnSet or a MSnSetList. In the latter case, only the two first elements of
the list will be used for plotting and the others will be silently ignored.

60 plot2Ds

pcol If object is an MSnSet, a factor or the name of a phenotype variable (phenoData
slot) defining how to split the single MSnSet into two or more data sets. Ignored
if object is a MSnSetList.

fcol Feature meta-data label (fData column name) defining the groups to be differ-
entiated using different colours. Default is markers. Use NULL to suppress any
colouring.

cex.x Character expansion for the first data set. Default is 1.

cex.y Character expansion for the second data set. Default is 1.

pch.x Plotting character for the first data set. Default is 21.

pch.y Plotting character for the second data set. Default is 23.

col A vector of colours to highlight the different classes defined by fcol. If missing
(default), default colours are used (see getStockcol).

mirrorX A logical indicating whether the x axis should be mirrored?

mirrorY A logical indicating whether the y axis should be mirrored?

plot If TRUE (default), a plot is produced.

... Additinal parameters passed to plot and points.

Value

Used for its side effects of producing a plot. Invisibly returns an object of class plot2Ds, which
is a list with the PCA analyses results (see prcomp) of the first data set and the new coordinates of
the second data sets, as used to produce the plot and the respective point colours. Each of these
elements can be accessed with data1, data2, col1 and code2 respectively.

Author(s)

Laurent Gatto

See Also

See plot2D to plot a single data set and move2Ds for a animation.

Examples

library("pRolocdata")
data(tan2009r1)
data(tan2009r2)
msnl <- MSnSetList(list(tan2009r1, tan2009r2))
plot2Ds(msnl)
tweaking the parameters
plot2Ds(list(tan2009r1, tan2009r2),

fcol = NULL, cex.x = 1.5)
input is 1 MSnSet containing 2 data sets
data(dunkley2006)
plot2Ds(dunkley2006, pcol = "replicate")
no plot, just the data
res <- plot2Ds(dunkley2006, pcol = "replicate",

plot = FALSE)
res
head(data1(res))
head(col1(res))

plotDist 61

plotDist Plots the distribution of features across fractions

Description

Produces a line plot showing the feature abundances across the fractions.

Usage

plotDist(object, markers, mcol = "steelblue", pcol = getUnknowncol(),
alpha = 0.3, type = "b", lty = 1, fractions = sampleNames(object),
ylab = "Intensity", xlab = "Fractions", ylim, ...)

Arguments

object An instance of class MSnSet.
markers A character, numeric or logical of appropriate length and or content used to

subset object and define the organelle markers.
mcol A character define the colour of the marker features. Default is "steelblue".
pcol A character define the colour of the non-markers features. Default is the colour

used for features of unknown localisation, as returned by getUnknowncol.
alpha A numeric defining the alpha channel (transparency) of the points, where 0 <= alpha <= 1,

0 and 1 being completely transparent and opaque.
type Character string defining the type of lines. For example "p" for points, "l" for

lines, "b" for both. See plot for all possible types.
lty Vector of line types for the marker profiles. Default is 1 (solid). See par for

details.
fractions A character defining the phenoData variable to be used to label the fraction

along the x axis. Default is to use sampleNames(object).
ylab y-axis label. Default is "Intensity".
xlab x-axis label. Default is "Fractions".
ylim A numeric vector of length 2, giving the y coordinates range.
... Additional parameters passed to plot.

Value

Used for its side effect of producing a feature distribution plot. Invisibly returns the data matrix.

Author(s)

Laurent Gatto

Examples

library("pRolocdata")
data(tan2009r1)
j <- which(fData(tan2009r1)$markers == "mitochondrion")
i <- which(fData(tan2009r1)$PLSDA == "mitochondrion")
plotDist(tan2009r1[i,],markers = featureNames(tan2009r1)[j])
plotDist(tan2009r1[i,],markers = featureNames(tan2009r1)[j],

fractions = "Fractions")

62 plsdaClassification

plsdaClassification plsda classification

Description

Classification using the partial least square distcriminant analysis algorithm.

Usage

plsdaClassification(object, assessRes, scores = c("prediction", "all",
"none"), ncomp, fcol = "markers", ...)

Arguments

object An instance of class "MSnSet".

assessRes An instance of class "GenRegRes", as generated by plsdaOptimisation.

scores One of "prediction", "all" or "none" to report the score for the predicted
class only, for all cluster or none.

ncomp If assessRes is missing, a ncomp must be provided.

fcol The feature meta-data containing marker definitions. Default is markers.

... Additional parameters passed to plsda from package caret.

Value

An instance of class "MSnSet" with plsda and plsda.scores feature variables storing the classi-
fication results and scores respectively.

Author(s)

Laurent Gatto

Examples

not running this one for time considerations
library(pRolocdata)
data(dunkley2006)
reducing parameter search space and iterations
params <- plsdaOptimisation(dunkley2006, ncomp = c(3, 10), times = 2)
params
plot(params)
f1Count(params)
levelPlot(params)
getParams(params)
res <- plsdaClassification(dunkley2006, params)
getPredictions(res, fcol = "plsda")
getPredictions(res, fcol = "plsda", t = 0.9)
plot2D(res, fcol = "plsda")

plsdaOptimisation 63

plsdaOptimisation plsda parameter optimisation

Description

Classification parameter optimisation for the partial least square distcriminant analysis algorithm.

Usage

plsdaOptimisation(object, fcol = "markers", ncomp = 2:6, times = 100,
test.size = 0.2, xval = 5, fun = mean, seed, verbose = TRUE, ...)

Arguments

object An instance of class "MSnSet".

fcol The feature meta-data containing marker definitions. Default is markers.

ncomp The hyper-parameter. Default values are 2:6.

times The number of times internal cross-validation is performed. Default is 100.

test.size The size of test data. Default is 0.2 (20 percent).

xval The n-cross validation. Default is 5.

fun The function used to summarise the xval macro F1 matrices.

seed The optional random number generator seed.

verbose A logical defining whether a progress bar is displayed.

... Additional parameters passed to plsda from package caret.

Details

Note that when performance scores precision, recall and (macro) F1 are calculated, any NA values
are replaced by 0. This decision is motivated by the fact that any class that would have either a NA
precision or recall would result in an NA F1 score and, eventually, a NA macro F1 (i.e. mean(F1)).
Replacing NAs by 0s leads to F1 values of 0 and a reduced yet defined final macro F1 score.

Value

An instance of class "GenRegRes".

Author(s)

Laurent Gatto

See Also

plsdaClassification and example therein.

64 pRolocmarkers

pRolocmarkers Organelle markers

Description

This function retrieves a list of organelle markers or, if no species is provided, prints a description
of available marker sets. The markers can be added to and MSnSet using the addMarkers function.

Usage

pRolocmarkers(species)

Arguments

species The species of interest.

Details

The markers have been contributed by various members of the Cambridge Centre for Proteomics,
in particular Dan Nightingale for yeast, Dr Andy Christoforou for human, Dr Arnoud Groen for
Arabodopsis and Dr Claire Mulvey for mouse. In addition, original (curated) markers from the
pRolocdata datasets have been extracted (see pRolocdata for details and references). Curation
involved verification of publicly available subcellular localisation annotation based on the curators
knowledge of the organelles/proteins considered and tracing the original statement in the literature.

These markers are provided as a starting point to generate reliable sets of organelle markers but still
need to be verified against any new data in the light of the quantitative data and the study conditions.

Value

Prints a description of the available marker lists if species is missing or a named character with
organelle markers.

Author(s)

Laurent Gatto

See Also

addMarkers to add markers to an MSnSet and markers for more information about marker encod-
ing.

Examples

pRolocmarkers()
table(pRolocmarkers("atha"))
table(pRolocmarkers("hsap"))

QSep-class 65

QSep-class Quantify resolution of a spatial proteomics experiment

Description

The QSep infrastructure provide a way to quantify the resolution of a spatial proteomics experiment,
i.e. to quantify how well annotated sub-cellular clusters are separated from each other.

The QSep function calculates all between and within cluster average distances. These distances are
then divided column-wise by the respective within cluster average distance. For example, for a
dataset with only 2 spatial clusters, we would obtain

c1 c2
c1 d11 d12
c2 d21 d22

Normalised distance represent the ratio of between to within average distances, i.e. how much
bigger the average distance between cluster ci and cj is compared to the average distance within
cluster ci.

c1 c2
c1 1 d12

d22

c2
d21
d11

1

Note that the normalised distance matrix is not symmetric anymore and the normalised distance
ratios are proportional to the tightness of the reference cluster (along the columns).

Objects from the Class

Objects can be created by calls using the constructor QSep (see below).

Slots

x: Object of class "matrix" containing the pairwise distance matrix, accessible with qseq(., norm =
FALSE).

xnorm: Object of class "matrix" containinf the normalised pairwise distance matrix, accessible
with qsep(.,norm = TRUE) or qsep(.).

object: Object of class "character" with the variable name of MSnSet object that was used to
generate the QSep object.

.__classVersion__: Object of class "Versions" storing the class vesion of the object.

Extends

Class "Versioned", directly.

Methods and functions

QSeq signature(object = "MSnSet", fcol = "character"): constructor for QSep objects.
The fcol argument defines the name of the feature variable that annotates the sub-cellular
clusters. Non-marker proteins, that are marked as "unknown" are automatically removed prior
to distance calculation.

66 QSep-class

qsep signature{object = "QSep", norm = "logical"}: accessor for the normalised (when
norm is TRUE, which is default) and raw (when norm is FALSE) pairwise distance matrices.

names signature{object = "QSep"}: method to retrieve the names of the sub-celluar clusters
originally defined in QSep’s fcol argument. A replacement method names(.) <- is also
available.

summary signature(object = "QSep", ..., verbose = "logical"): Invisible return all
between cluster average distances and prints (when verbose is TRUE, default) a summary of
those.

levelPlot signature(object = "QSep", norm = "logical",...): plots an annotated heatmap
of all normalised pairwaise distances. norm (default is TRUE) defines whether normalised
distances should be plotted. Additional arguments ... are passed to the levelplot.

plot signature(object = "QSep", norm = "logical"...): produces a boxplot of all nor-
malised pairwise distances. The red points represent the within average distance and black
points between average distances. norm (default is TRUE) defines whether normalised dis-
tances should be plotted.

Author(s)

Laurent Gatto <lg390@cam.ac.uk>

Examples

Test data from Christoforou et al. 2016
library("pRolocdata")
data(hyperLOPIT2015)

Create the object and get a summary
hlq <- QSep(hyperLOPIT2015)
hlq
summary(hlq)

mean distance matrix
qsep(hlq, norm = FALSE)

normalised average distance matrix
qsep(hlq)

Update the organelle cluster names for better
rendering on the plots
names(hlq) <- sub("/", "\n", names(hlq))
names(hlq) <- sub(" - ", "\n", names(hlq))
names(hlq)

Heatmap of the normalised intensities
levelPlot(hlq)

Boxplot of the normalised intensities
par(mar = c(3, 10, 2, 1))
plot(hlq)

Boxplot of all between cluster average distances
x <- summary(hlq, verbose = FALSE)
boxplot(x)

rfClassification 67

rfClassification rf classification

Description

Classification using the random forest algorithm.

Usage

rfClassification(object, assessRes, scores = c("prediction", "all", "none"),
mtry, fcol = "markers", ...)

Arguments

object An instance of class "MSnSet".

assessRes An instance of class "GenRegRes", as generated by rfOptimisation.

scores One of "prediction", "all" or "none" to report the score for the predicted
class only, for all cluster or none.

mtry If assessRes is missing, a mtry must be provided.

fcol The feature meta-data containing marker definitions. Default is markers.

... Additional parameters passed to randomForest from package randomForest.

Value

An instance of class "MSnSet" with rf and rf.scores feature variables storing the classification
results and scores respectively.

Author(s)

Laurent Gatto

Examples

library(pRolocdata)
data(dunkley2006)
reducing parameter search space and iterations
params <- rfOptimisation(dunkley2006, mtry = c(2, 5, 10), times = 3)
params
plot(params)
f1Count(params)
levelPlot(params)
getParams(params)
res <- rfClassification(dunkley2006, params)
getPredictions(res, fcol = "rf")
getPredictions(res, fcol = "rf", t = 0.75)
plot2D(res, fcol = "rf")

68 rfOptimisation

rfOptimisation svm parameter optimisation

Description

Classification parameter optimisation for the random forest algorithm.

Usage

rfOptimisation(object, fcol = "markers", mtry = NULL, times = 100,
test.size = 0.2, xval = 5, fun = mean, seed, verbose = TRUE, ...)

Arguments

object An instance of class "MSnSet".

fcol The feature meta-data containing marker definitions. Default is markers.

mtry The hyper-parameter. Default value is NULL.

times The number of times internal cross-validation is performed. Default is 100.

test.size The size of test data. Default is 0.2 (20 percent).

xval The n-cross validation. Default is 5.

fun The function used to summarise the xval macro F1 matrices.

seed The optional random number generator seed.

verbose A logical defining whether a progress bar is displayed.

... Additional parameters passed to randomForest from package randomForest.

Details

Note that when performance scores precision, recall and (macro) F1 are calculated, any NA values
are replaced by 0. This decision is motivated by the fact that any class that would have either a NA
precision or recall would result in an NA F1 score and, eventually, a NA macro F1 (i.e. mean(F1)).
Replacing NAs by 0s leads to F1 values of 0 and a reduced yet defined final macro F1 score.

Value

An instance of class "GenRegRes".

Author(s)

Laurent Gatto

See Also

rfClassification and example therein.

sampleMSnSet 69

sampleMSnSet Extract a stratified sample of an MSnSet

Description

This function extracts a stratified sample of an MSnSet.

Usage

sampleMSnSet(object, fcol = "markers", size = 0.2, seed)

Arguments

object An instance of class MSnSet

fcol The feature meta-data column name containing the marker (vector or matrix)
definitions on which the MSnSet will be stratified. Default is markers.

size The size of the stratified sample to be extracted. Default is 0.2 (20 percent).

seed The optional random number generator seed.

Value

A stratified sample (according to the defined fcol) which is an instance of class "MSnSet".

Author(s)

Lisa Breckels

See Also

testMSnSet unknownMSnSet markerMSnSet. See markers for details about markers encoding.

Examples

library(pRolocdata)
data(tan2009r1)
dim(tan2009r1)
smp <- sampleMSnSet(tan2009r1, fcol = "markers")
dim(smp)
getMarkers(tan2009r1)
getMarkers(smp)

70 setLisacol

setLisacol Manage default colours and point characters

Description

These functions allow to get/set the colours and point character that are used when plotting organelle
clusters and unknown features. These values are parametrised at the session level. Two palettes are
available: the default palette (previously Lisa’s colours) containing 30 colours and the old (original)
palette, containing 13 colours.

Usage

setLisacol()

getLisacol()

getOldcol()

setOldcol()

getStockcol()

setStockcol(cols)

getStockpch()

setStockpch(pchs)

getUnknowncol()

setUnknowncol(col)

getUnknownpch()

setUnknownpch(pch)

Arguments

cols A vector of colour characters or NULL, which sets the colours to the default
values.

pchs A vector of numeric or NULL, which sets the point characters to the default
values.

col A colour character or NULL, which sets the colour to #E7E7E7 (grey91), the
default colour for unknown features.

pch A numeric vector of length 1 or NULL, which sets the point character to 21, the
default.

Value

The set functions set (and invisibly returns) colours. The get functions returns a character vector
of colours. For the pch functions, numerics rather than characters.

showGOEvidenceCodes 71

Author(s)

Laurent Gatto

Examples

defaults for clusters
getStockcol()
getStockpch()
unknown features
getUnknownpch()
getUnknowncol()
an example
library(pRolocdata)
data(dunkley2006)
par(mfrow = c(2, 1))
plot2D(dunkley2006, fcol = "markers", main = 'Default colours')
setUnknowncol("black")
plot2D(dunkley2006, fcol = "markers", main = 'setUnknowncol("black")')
getUnknowncol()
setUnknowncol(NULL)
getUnknowncol()
getStockcol()
getOldcol()

showGOEvidenceCodes GO Evidence Codes

Description

This function prints a textual description of the Gene Ontology evidence codes.

Usage

showGOEvidenceCodes()

getGOEvidenceCodes()

Value

These functions are used for their side effects of printing evidence codes and their description.

Author(s)

Laurent Gatto

Examples

showGOEvidenceCodes()
getGOEvidenceCodes()

72 SpatProtVis-class

SpatProtVis-class Class SpatProtVis

Description

A class for spatial proteomics visualisation, that upon instantiation, pre-computes all defined visu-
alisations. Objects can be created with the SpatProtVis constructor and visualised with the plot
method.

The class is essentially a wrapper around several calls to plot2D that stores the dimensionality
reduction outputs, and is likely to be updated in the future.

Usage

SpatProtVis(x, methods, dims, methargs, ...)

Arguments

x An instance of class MSnSet to visualise.

methods Dimensionality reduction methods to be used to visualise the data. Must be
contained in plot2Dmethods (except "scree"). See plot2D for details.

dims A list of numerics defining dimensions used for plotting. Default are 1 and 2. If
provided, the length of this list must be identical to the length of methods.

methargs A list of additional arguments to be passed for each visualisation method. If
provided, the length of this list must be identical to the length of methods.

... Additional arguments. Currently ignored.

Slots

vismats: A "list" of matrices containing the feature projections in 2 dimensions.

data: The original spatial proteomics data stored as an "MSnSet".

methargs: A "list" of additional plotting arguments.

objname: A "character" defining how to name the dataset. By default, this is set using the
variable name used at object creation.

Methods

plot: Generates the figures for the respective methods and additional arguments defined in the
constructor. If used in an interactive session, the user is prompted to press ’Return’ before
new figures are displayed.

show: A simple textual summary of the object.

Author(s)

Laurent Gatto <lg390@cam.ac.uk>

See Also

The data for the individual visualisations is created by plot2D.

subsetMarkers 73

Examples

library("pRolocdata")
data(dunkley2006)
Default parameters for a set of methods
(in the interest of time, don't use t-SNE)
m <- c("PCA", "MDS", "kpca")
vis <- SpatProtVis(dunkley2006, methods = m)
vis
plot(vis)
plot(vis, legend = "topleft")

Setting method arguments
margs <- c(list(kpar = list(sigma = 0.1)),

list(kpar = list(sigma = 1.0)),
list(kpar = list(sigma = 10)),
list(kpar = list(sigma = 100)))

vis <- SpatProtVis(dunkley2006,
methods = rep("kpca", 4),
methargs = margs)

par(mfrow = c(2, 2))
plot(vis)

Multiple PCA plots but different PCs
dims <- list(c(1, 2), c(3, 4))
vis <- SpatProtVis(dunkley2006, methods = c("PCA", "PCA"), dims = dims)
plot(vis)

subsetMarkers Subsets markers

Description

Subsets a matrix of markers by specific terms

Usage

subsetMarkers(object, fcol = "GOAnnotations", keep)

Arguments

object An instance of class MSnSet.

fcol The name of the markers matrix. Default is GOAnnotations.

keep Integer or character vector specifying the columns to keep in the markers matrix,
as defined by fcol.

Value

An updated MSnSet

Author(s)

Lisa M Breckels

74 svmClassification

See Also

addGoAnnotations and example therein.

svmClassification svm classification

Description

Classification using the support vector machine algorithm.

Usage

svmClassification(object, assessRes, scores = c("prediction", "all", "none"),
cost, sigma, fcol = "markers", ...)

Arguments

object An instance of class "MSnSet".

assessRes An instance of class "GenRegRes", as generated by svmOptimisation.

scores One of "prediction", "all" or "none" to report the score for the predicted
class only, for all cluster or none.

cost If assessRes is missing, a cost must be provided.

sigma If assessRes is missing, a sigma must be provided.

fcol The feature meta-data containing marker definitions. Default is markers.

... Additional parameters passed to svm from package e1071.

Value

An instance of class "MSnSet" with svm and svm.scores feature variables storing the classification
results and scores respectively.

Author(s)

Laurent Gatto

Examples

library(pRolocdata)
data(dunkley2006)
reducing parameter search space and iterations
params <- svmOptimisation(dunkley2006, cost = 2^seq(-2,2,2), sigma = 10^seq(-1, 1, 1), times = 3)
params
plot(params)
f1Count(params)
levelPlot(params)
getParams(params)
res <- svmClassification(dunkley2006, params)
getPredictions(res, fcol = "svm")
getPredictions(res, fcol = "svm", t = 0.75)
plot2D(res, fcol = "svm")

svmOptimisation 75

svmOptimisation svm parameter optimisation

Description

Classification parameter optimisation for the support vector machine algorithm.

Usage

svmOptimisation(object, fcol = "markers", cost = 2^(-4:4),
sigma = 10^(-3:2), times = 100, test.size = 0.2, xval = 5,
fun = mean, seed, verbose = TRUE, ...)

Arguments

object An instance of class "MSnSet".

fcol The feature meta-data containing marker definitions. Default is markers.

cost The hyper-parameter. Default values are 2^-4:4.

sigma The hyper-parameter. Default values are 10^(-2:3).

times The number of times internal cross-validation is performed. Default is 100.

test.size The size of test data. Default is 0.2 (20 percent).

xval The n-cross validation. Default is 5.

fun The function used to summarise the xval macro F1 matrices.

seed The optional random number generator seed.

verbose A logical defining whether a progress bar is displayed.

... Additional parameters passed to svm from package e1071.

Details

Note that when performance scores precision, recall and (macro) F1 are calculated, any NA values
are replaced by 0. This decision is motivated by the fact that any class that would have either a NA
precision or recall would result in an NA F1 score and, eventually, a NA macro F1 (i.e. mean(F1)).
Replacing NAs by 0s leads to F1 values of 0 and a reduced yet defined final macro F1 score.

Value

An instance of class "GenRegRes".

Author(s)

Laurent Gatto

See Also

svmClassification and example therein.

76 testMarkers

testMarkers Tests marker class sizes

Description

Tests if the marker class sizes are large enough for the parameter optimisation scheme, i.e. the size
is greater that xval + n, where the default xval is 5 and n is 2. If the test is unsuccessful, a warning
is thrown.

Usage

testMarkers(object, xval = 5, n = 2, fcol = "markers", error = FALSE)

Arguments

object An instance of class "MSnSet".

xval The number cross-validation partitions. See the xval argument in the parameter
optimisation function(s). Default is 5.

n Number of additional examples.

fcol The name of the prediction column in the featureData slot. Default is "markers".

error A logical specifying if an error should be thown, instead of a warning.

Details

In case the test indicates that a class contains too few examples, it is advised to either add some or,
if not possible, to remove the class altogether (see minMarkers) as the parameter optimisation is
likely to fail or, at least, produce unreliable results for that class.

Value

If successfull, the test invisibly returns NULL. Else, it invisibly returns the names of the classes that
have too few examples.

Author(s)

Laurent Gatto

See Also

getMarkers and minMarkers

Examples

library("pRolocdata")
data(dunkley2006)
getMarkers(dunkley2006)
testMarkers(dunkley2006)
toosmall <- testMarkers(dunkley2006, xval = 15)
toosmall
try(testMarkers(dunkley2006, xval = 15, error = TRUE))

testMSnSet 77

testMSnSet Create a stratified ’test’ MSnSet

Description

This function creates a stratified ’test’ MSnSet which can be used for algorihtmic development. A
"MSnSet" containing only the marker proteins, as defined in fcol, is returned with a new feature
data column appended called test in which a stratified subset of these markers has been relabelled
as ’unknowns’.

Usage

testMSnSet(object, fcol = "markers", size = 0.2, seed)

Arguments

object An instance of class "MSnSet"

fcol The feature meta-data column name containing the marker definitions on which
the data will be stratified. Default is markers.

size The size of the data set to be extracted. Default is 0.2 (20 percent).

seed The optional random number generator seed.

Value

An instance of class "MSnSet" which contains only the proteins that have a labelled localisation i.e.
the marker proteins, as defined in fcol and a new column in the feature data slot called test which
has part of the labels relabelled as "unknown" class (the number of proteins renamed as "unknown"
is according to the parameter size).

Author(s)

Lisa Breckels

See Also

sampleMSnSet unknownMSnSet markerMSnSet

Examples

library(pRolocdata)
data(tan2009r1)
sample <- testMSnSet(tan2009r1)
getMarkers(sample, "test")
all(dim(sample) == dim(markerMSnSet(tan2009r1)))

78 undocumented

thetas Draw matrix of thetas to test

Description

The possible weights to be considered is a sequence from 0 (favour auxiliary data) to 1 (favour
primary data). Each possible combination of weights for nclass classes must be tested. The thetas
function produces a weight matrix for nclass columns (one for each class) with all possible weight
combinations (number of rows).

Usage

thetas(nclass, by = 0.5, length.out, verbose = TRUE)

Arguments

nclass Number of marker classes

by The increment of the weights. One of 1, 0.5, 0.25, 2, 0.1 or 0.05.

length.out The desired length of the weight sequence.

verbose A logical indicating if the weight sequences should be printed out. Default is
TRUE.

Value

A matrix with all possible theta weight combinations.

Author(s)

Lisa Breckels

Examples

dim(thetas(4, by = 0.5))
dim(thetas(4, by = 0.2))
dim(thetas(5, by = 0.2))
dim(thetas(5, length.out = 5))
dim(thetas(6, by = 0.2))

undocumented Undocumented/unexported entries

Description

This is just a dummy entry for methods from unexported classes that generate warnings during
package checking.

Author(s)

Laurent Gatto <lg390@cam.ac.uk>

zerosInBinMSnSet 79

zerosInBinMSnSet Compute the number of non-zero values in each marker classes

Description

The function assumes that its input is a binary MSnSet and computes, for each marker class, the
number of non-zero expression profiles. The function is meant to be used to produce heatmaps (see
the example) and visualise binary (such as GO) MSnSet objects and assess their utility: all zero
features/classes will not be informative at all (and can be filtered out with filterBinMSnSet) while
features/classes with many annotations (GO terms) are likely not be be informative either.

Usage

zerosInBinMSnSet(object, fcol = "markers", as.matrix = TRUE,
percent = TRUE)

Arguments

object An instance of class MSnSet with binary data.

fcol A character defining the feature data variable to be used as markers. Default
is "markers".

as.matrix If TRUE (default) the data is formatted and returned as a matrix. Otherwise, a
list is returned.

percent If TRUE, percentages are returned. Otherwise, absolute values.

Value

A matrix or a list indicating the number of non-zero value per marker class.

Author(s)

Laurent Gatto

See Also

filterBinMSnSet

Examples

library(pRolocdata)
data(hyperLOPIT2015goCC)
zerosInBinMSnSet(hyperLOPIT2015goCC)
zerosInBinMSnSet(hyperLOPIT2015goCC, percent = FALSE)
pal <- colorRampPalette(c("white", "blue"))
library(lattice)
levelplot(zerosInBinMSnSet(hyperLOPIT2015goCC),

xlab = "Number of non-0s",
ylab = "Marker class",
col.regions = pal(140))

Index

∗Topic classes
AnnotationParams-class, 8
ClustDist-class, 14
ClustDistList-class, 15
GenRegRes-class, 22
QSep-class, 65
SpatProtVis-class, 72

∗Topic methods
chi2-methods, 11
exprsToRatios-methods, 18
MLearn-methods, 41
nndist-methods, 47

∗Topic package
pRoloc-package, 3

[,ClustDistList,ANY,ANY,ANY-method
(ClustDistList-class), 15

[,ClustDistList,ANY,missing,missing-method
(ClustDistList-class), 15

[,MartInstanceList,ANY,ANY,ANY-method
(MartInstance-class), 40

[,MartInstanceList,ANY,ANY-method
(MartInstance-class), 40

[,MartInstanceList-method
(MartInstance-class), 40

[[,ClustDistList,ANY,ANY-method
(ClustDistList-class), 15

[[,ClustDistList,ANY,missing-method
(ClustDistList-class), 15

[[,MartInstanceList,ANY,ANY-method
(MartInstance-class), 40

[[,MartInstanceList-method
(MartInstance-class), 40

addGoAnnotations, 4
addLegend, 6, 58
addMarkers, 6, 38, 45, 64
andy2011params

(AnnotationParams-class), 8
AnnotationParams, 24, 38
AnnotationParams

(AnnotationParams-class), 8
AnnotationParams-class, 8
as.data.frame.MartInstance

(MartInstance-class), 40

as.data.frame.MartInstanceList
(MartInstance-class), 40

checkFeatureNamesOverlap, 9
checkFvarOverlap, 10
chi2, 17
chi2 (chi2-methods), 11
chi2,matrix,matrix-method

(chi2-methods), 11
chi2,matrix,numeric-method

(chi2-methods), 11
chi2,numeric,matrix-method

(chi2-methods), 11
chi2,numeric,numeric-method

(chi2-methods), 11
chi2-methods, 11
chol2inv, 52, 54
class::QSep (QSep-class), 65
class:AnnotationParams

(AnnotationParams-class), 8
class:ClustDist (ClustDist-class), 14
class:ClustDistList

(ClustDistList-class), 15
class:GenRegRes (GenRegRes-class), 22
class:SpatProtVis (SpatProtVis-class),

72
class:ThetaRegRes (GenRegRes-class), 22
classWeights, 12
ClustDist, 13–15, 26
ClustDist (ClustDist-class), 14
clustDist, 13
ClustDist-class, 14
ClustDistList, 13, 14, 26
ClustDistList (ClustDistList-class), 15
ClustDistList-class, 15
cmdscale, 57
col1 (plot2Ds), 59
col2 (plot2Ds), 59
combineThetaRegRes (GenRegRes-class), 22

data1 (plot2Ds), 59
data2 (plot2Ds), 59
dendrogram, 43
dist, 43

80

INDEX 81

dunkley2006params
(AnnotationParams-class), 8

empPvalues, 11, 17
estimateMasterFdr, 37
exprsToRatios (exprsToRatios-methods),

18
exprsToRatios,MSnSet-method

(exprsToRatios-methods), 18
exprsToRatios-methods, 18

f1Count (GenRegRes-class), 22
f1Count,GenRegRes-method

(GenRegRes-class), 22
f1Count,ThetaRegRes-method

(GenRegRes-class), 22
favourPrimary (GenRegRes-class), 22
fDataToUnknown, 18
FeaturesOfInterest, 29
filterAttrs (MartInstance-class), 40
filterBinMSnSet, 19, 79
filterMaxMarkers, 20
filterMinMarkers, 21
filterNA, 56
filterZeroCols, 19, 21
filterZeroRows, 19
filterZeroRows (filterZeroCols), 21
flipGoTermId (goIdToTerm), 28

GenRegRes, 30, 32, 35, 36, 46–48, 50, 52, 54,
62, 63, 67, 68, 74, 75

GenRegRes (GenRegRes-class), 22
GenRegRes-class, 22
getAnnotationParams, 5
getAnnotationParams

(AnnotationParams-class), 8
getF1Scores (GenRegRes-class), 22
getF1Scores,GenRegRes-method

(GenRegRes-class), 22
getF1Scores,ThetaRegRes-method

(GenRegRes-class), 22
getFilterList (MartInstance-class), 40
getGOEvidenceCodes

(showGOEvidenceCodes), 71
getGOFromFeatures, 8, 9, 23
getLisacol (setLisacol), 70
getMarkerClasses, 24, 26, 45
getMarkers, 25, 25, 45, 76
getMartInstanceList

(MartInstance-class), 40
getMartTab (MartInstance-class), 40
getNormDist, 26
getOldcol (setLisacol), 70

getParams (GenRegRes-class), 22
getParams,ClustRegRes-method

(undocumented), 78
getParams,GenRegRes-method

(GenRegRes-class), 22
getParams,ThetaRegRes-method

(GenRegRes-class), 22
getPredictions, 27, 41, 52
getRegularisedParams (GenRegRes-class),

22
getRegularisedParams,GenRegRes-method

(GenRegRes-class), 22
getRegularizedParams (GenRegRes-class),

22
getRegularizedParams,GenRegRes-method

(GenRegRes-class), 22
getSeed (GenRegRes-class), 22
getSeed,GenRegRes-method

(GenRegRes-class), 22
getStockcol, 43, 58, 60
getStockcol (setLisacol), 70
getStockpch, 58
getStockpch (setLisacol), 70
getUnknowncol, 61
getUnknowncol (setLisacol), 70
getUnknownpch (setLisacol), 70
getWarnings (GenRegRes-class), 22
getWarnings,GenRegRes-method

(GenRegRes-class), 22
ginv, 52, 54
goIdToTerm, 28
goTermToId (goIdToTerm), 28

hclust, 43
hexbin, 57
highlightOnPlot, 29
highlightOnPlot3D (highlightOnPlot), 29

identify, 58
isMrkMat (mrkVecToMat), 44
isMrkVec (mrkVecToMat), 44

knn, 30, 31
knnClassification, 30, 32
knnOptimisation, 22, 30, 31
knnOptimization (knnOptimisation), 31
knnPrediction (knnClassification), 30
knnRegularisation (knnOptimisation), 31
knntlClassification, 32, 35
knntlOptimisation, 22, 33, 33
kpca, 57
ksvm, 35, 36
ksvmClassification, 35, 36

82 INDEX

ksvmOptimisation, 35, 36
ksvmOptimization (ksvmOptimisation), 36
ksvmPrediction (ksvmClassification), 35
ksvmRegularisation (ksvmOptimisation),

36

lapply,ClustDistList-method
(ClustDistList-class), 15

lapply,MartInstanceList,ANY-method
(MartInstance-class), 40

lapply,MartInstanceList-method
(MartInstance-class), 40

lda, 57
legend, 6
length,ClustDistList-method

(ClustDistList-class), 15
levelPlot (GenRegRes-class), 22
levelplot, 66
levelPlot,ClustRegRes-method

(undocumented), 78
levelPlot,GenRegRes-method

(GenRegRes-class), 22
levelPlot,QSep-method (QSep-class), 65
lopims, 37
lopims1 (lopims), 37
lopims2 (lopims), 37
lopims3 (lopims), 37
lopims4 (lopims), 37
lopims5 (lopims), 37

makeGoSet, 8, 9, 38
makeMaster, 37
markerMSnSet, 39, 45, 69, 77
markers, 7, 25, 26, 39, 64, 69
markers (mrkVecToMat), 44
MartInstance (MartInstance-class), 40
MartInstance-class, 40
MartInstanceList (MartInstance-class),

40
MartInstanceList-class

(MartInstance-class), 40
minMarkers, 40, 76
MLearn, 41
MLearn,formula,MSnSet,clusteringSchema,missing-method

(MLearn-methods), 41
MLearn,formula,MSnSet,learnerSchema,numeric-method

(MLearn-methods), 41
MLearn,formula,MSnSet,learnerSchema,xvalSpec-method

(MLearn-methods), 41
MLearn-methods, 41
MLearnMSnSet (MLearn-methods), 41
move2Ds, 42, 60
mrkEncoding (mrkVecToMat), 44

mrkHClust, 43
mrkMatAndVec (mrkVecToMat), 44
mrkMatToVec (mrkVecToMat), 44
mrkVecToMat, 44
MSnbase, 4
MSnSet, 13, 18, 23, 25, 27, 30–32, 34–38, 40,

41, 46–49, 51–54, 59, 62, 63, 65,
67–69, 72, 74–77

MSnSetList, 42, 60
MSnSetMLean (MLearn-methods), 41

naiveBayes, 46, 47
names,ClustDistList-method

(ClustDistList-class), 15
names,QSep-method (QSep-class), 65
names<-,ClustDistList,ANY-method

(ClustDistList-class), 15
names<-,QSep,character-method

(QSep-class), 65
nbClassification, 45, 47
nbOptimisation, 46, 46
nbOptimization (nbOptimisation), 46
nbPrediction (nbClassification), 45
nbRegularisation (nbOptimisation), 46
nDatasets (MartInstance-class), 40
nndist (nndist-methods), 47
nndist,matrix,matrix-method

(nndist-methods), 47
nndist,matrix,missing-method

(nndist-methods), 47
nndist,MSnSet,missing-method

(nndist-methods), 47
nndist-methods, 47
nnet, 48, 49
nnetClassification, 48, 50
nnetOptimisation, 48, 49
nnetOptimization (nnetOptimisation), 49
nnetPrediction (nnetClassification), 48
nnetRegularisation (nnetOptimisation),

49

orderGoAnnotations, 50
orgQuants, 27, 51

par, 61
perTurboClassification, 52, 54
perTurboOptimisation, 52, 53
perTurboOptimization

(perTurboOptimisation), 53
phenoDisco, 55
plot, 61
plot,ClustDist,MSnSet-method

(ClustDist-class), 14

INDEX 83

plot,ClustDistList,missing-method
(ClustDistList-class), 15

plot,ClustRegRes,missing-method
(undocumented), 78

plot,GenRegRes,missing-method
(GenRegRes-class), 22

plot,QSep,missing-method (QSep-class),
65

plot,QSep-method (QSep-class), 65
plot,SpatProtVis,missing-method

(SpatProtVis-class), 72
plot,ThetaRegRes,missing-method

(GenRegRes-class), 22
plot2D, 6, 43, 56, 60, 72
plot2Dmethods, 72
plot2Dmethods (plot2D), 56
plot2Ds, 42, 58, 59
plot3d, 58
plot3D,MSnSet-method (plot2D), 56
plotDist, 58, 61
plsda, 62, 63
plsdaClassification, 62, 63
plsdaOptimisation, 22, 62, 63
plsdaOptimization (plsdaOptimisation),

63
plsdaPrediction (plsdaClassification),

62
plsdaRegularisation

(plsdaOptimisation), 63
prcomp, 57, 60
prettyGoTermId (goIdToTerm), 28
pRoloc (pRoloc-package), 3
pRoloc-package, 3
pRolocmarkers, 6, 7, 45, 64

QSep (QSep-class), 65
qsep (QSep-class), 65
QSep-class, 65

randomForest, 67, 68
rfClassification, 67, 68
rfOptimisation, 67, 68
rfOptimization (rfOptimisation), 68
rfPrediction (rfClassification), 67
rfRegularisation (rfOptimisation), 68

sampleMSnSet, 39, 69, 77
sapply,ClustDistList-method

(ClustDistList-class), 15
sapply,MartInstanceList,ANY-method

(MartInstance-class), 40
sapply,MartInstanceList-method

(MartInstance-class), 40

setAnnotationParams
(AnnotationParams-class), 8

setLisacol, 70
setOldcol (setLisacol), 70
setStockcol (setLisacol), 70
setStockpch (setLisacol), 70
setUnknowncol (setLisacol), 70
setUnknownpch (setLisacol), 70
show,AnnotationParams-method

(AnnotationParams-class), 8
show,ClustDist-method

(ClustDist-class), 14
show,ClustDistList-method

(ClustDistList-class), 15
show,ClustRegRes-method (undocumented),

78
show,GenRegRes-method

(GenRegRes-class), 22
show,MartInstance-method

(MartInstance-class), 40
show,QSep-method (QSep-class), 65
show,SpatProtVis-method

(SpatProtVis-class), 72
show,ThetaRegRes-method

(GenRegRes-class), 22
showGOEvidenceCodes, 71
showMrkMat (mrkVecToMat), 44
solve, 52, 54
SpatProtVis (SpatProtVis-class), 72
SpatProtVis-class, 72
sub, 18
subsetMarkers, 73
summary,QSep-method (QSep-class), 65
svd, 52, 54
svm, 74, 75
svmClassification, 12, 74, 75
svmOptimisation, 12, 22, 74, 75
svmOptimization (svmOptimisation), 75
svmPrediction (svmClassification), 74
svmRegularisation, 52
svmRegularisation (svmOptimisation), 75
Synapter, 37
synapter, 37
synergise, 37

testMarkers, 76
testMSnSet, 39, 69, 77
ThetaRegRes (GenRegRes-class), 22
ThetaRegRes-class (GenRegRes-class), 22
thetas, 34, 78
tsne, 57

undocumented, 78

84 INDEX

unknownMSnSet, 69, 77
unknownMSnSet (markerMSnSet), 39

Versioned, 65

xvalSpec, 41

zerosInBinMSnSet, 19, 79

	pRoloc-package
	addGoAnnotations
	addLegend
	addMarkers
	AnnotationParams-class
	checkFeatureNamesOverlap
	checkFvarOverlap
	chi2-methods
	classWeights
	clustDist
	ClustDist-class
	ClustDistList-class
	empPvalues
	exprsToRatios-methods
	fDataToUnknown
	filterBinMSnSet
	filterMaxMarkers
	filterMinMarkers
	filterZeroCols
	GenRegRes-class
	getGOFromFeatures
	getMarkerClasses
	getMarkers
	getNormDist
	getPredictions
	goIdToTerm
	highlightOnPlot
	knnClassification
	knnOptimisation
	knntlClassification
	knntlOptimisation
	ksvmClassification
	ksvmOptimisation
	lopims
	makeGoSet
	markerMSnSet
	MartInstance-class
	minMarkers
	MLearn-methods
	move2Ds
	mrkHClust
	mrkVecToMat
	nbClassification
	nbOptimisation
	nndist-methods
	nnetClassification
	nnetOptimisation
	orderGoAnnotations
	orgQuants
	perTurboClassification
	perTurboOptimisation
	phenoDisco
	plot2D
	plot2Ds
	plotDist
	plsdaClassification
	plsdaOptimisation
	pRolocmarkers
	QSep-class
	rfClassification
	rfOptimisation
	sampleMSnSet
	setLisacol
	showGOEvidenceCodes
	SpatProtVis-class
	subsetMarkers
	svmClassification
	svmOptimisation
	testMarkers
	testMSnSet
	thetas
	undocumented
	zerosInBinMSnSet
	Index

