Package 'maftools'

April 14, 2017

Type Package

Title Summarize, Analyze and Visualize MAF files

Version 1.0.55

Date 2015-12-14

Author Anand Mayakonda <anand_mt@hotmail.com>

Maintainer Anand Mayakonda <anand_mt@hotmail.com>

Description Analyze and visualize Mutation Annotation Format (MAF) files from large scale sequencing studies. This package provides various functions to perform most commonly used analyses in cancer genomics and to create feature rich customizable visualzations with minimal effort.

URL https://github.com/PoisonAlien/maftools

BugReports https://github.com/PoisonAlien/maftools/issues

License MIT + file LICENSE

LazyData TRUE

Depends R (>= 3.3)

Imports data.table, ggplot2(>= 2.0), cowplot, cometExactTest, RColorBrewer, NMF, ggrepel, methods, ComplexHeatmap, mclust, VariantAnnotation, Biostrings, Rsamtools, rjson, grid, DPpackage, wordcloud, grDevices, changepoint

RoxygenNote 5.0.1

Suggests knitr, rmarkdown

- VignetteBuilder knitr
- **biocViews** DataRepresentation, DNASeq, Visualization, DriverMutation, VariantAnnotation, FeatureExtraction, Classification, SomaticMutation, Sequencing, FunctionalGenomics

NeedsCompilation no

R topics documented:

novarToMaf	2
Oncoplot	3
tractSignatures	4
restPlot	5
neCloud	6

annovarToMaf

genesToBarcodes	7
getCytobandSummary	7
getFields	8
	9
	9
GISTIC-class	0
gisticPlot	0
icgcSimpleMutationToMAF	1
inferHeterogeneity	2
lollipopPlot	4
MAF-class	5
mafCompare	6
math.score	7
mutExclusive	8
oncodrive	8
oncoplot	0
oncostrip	1
oncotate	2
pfamDomains	3
plotCBSsegments	3
plotClusters	4
plotGisticResults	5
plotmafSummary	6
plotOncodrive	7
plotSignatures	8
plotTiTv	8
plotVaf	9
rainfallPlot	0
read.maf	1
readGistic	2
subsetMaf	3
titv	4
trinucleotideMatrix	5
vcr	6
write.GisticSummary	6
write.mafSummary	7
	~
3	8

Index

annovarToMaf

Converts annovar annotations into MAF.

Description

Converts variant annotations from Annovar into a basic MAF.

Usage

```
annovarToMaf(annovar, Center = NULL, refBuild = "hg19", tsbCol = NULL,
table = "refGene", basename = NULL, sep = "\t", MAFobj = FALSE)
```

coOncoplot

Arguments

annovar	input annovar annotation file.
Center	Center field in MAF file will be filled with this value. Default NA.
refBuild	NCBI_Build field in MAF file will be filled with this value. Default hg19.
tsbCol	column name containing Tumor_Sample_Barcode or sample names in input file.
table	reference table used for gene-based annotations. Can be 'ensGene' or 'refGene'. Default 'refGene'
basename	If provided writes resulting MAF file to an output file.
sep	field seperator for input file. Default tab seperated.
MAFobj	If TRUE, returns results as an MAF object.

Details

Annovar is one of the most widely used Variant Annotation tools in Genomics. Annovar output is generally in a tabular format with various annotation columns. This function converts such annovar output files into MAF. This function requires that annovar was run with gene based annotation as a first operation, before including any filter or region based annotations. Please be aware that this function performs no transcript prioritization.

e.g, table_annovar.pl example/ex1.avinput humandb/ -buildver hg19 -out myanno -remove -protocol (refGene),cytoBand,dbnsfp30a -operation (g),r,f -nastring NA

This function mainly uses gene based annotations for processing, rest of the annotation columns from input file will be attached to the end of the resulting MAF.

Value

MAF table.

References

Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38, e164 (2010).

Examples

```
var.annovar <- system.file("extdata", "variants.hg19_multianno.txt", package = "maftools")
var.annovar.maf <- annovarToMaf(annovar = var.annovar, Center = 'CSI-NUS', refBuild = 'hg19',
tsbCol = 'Tumor_Sample_Barcode', table = 'ensGene')</pre>
```

coOncoplot

Draw two oncoplots side by side for cohort comparision.

Description

Draw two oncoplots side by side for cohort comparision.

Usage

```
coOncoplot(m1, m2, genes = NULL, colors = NULL, removeNonMutated = TRUE,
m1Name = NULL, m2Name = NULL)
```

Arguments

m1	first MAF object	
m2	second MAF object	
genes	draw these genes. Default plots top 5 mutated genes from two cohorts.	
colors	named vector of colors for each Variant_Classification.	
removeNonMutated		
	Logical. If TRUE removes samples with no mutations in the oncoplot for better visualization. Default TRUE.	
m1Name	optional name for first cohort	
m2Name	optional name for second cohort	

Details

Draws two oncoplots side by side to display difference between two cohorts.

Value

Returns nothing. Just draws plot.

Examples

```
#' ##Primary and Relapse APL
primary.apl <- system.file("extdata", "APL_primary.maf.gz", package = "maftools")
relapse.apl <- system.file("extdata", "APL_relapse.maf.gz", package = "maftools")
##Read mafs
primary.apl <- read.maf(maf = primary.apl)
relapse.apl <- read.maf(maf = relapse.apl)
##Plot
coOncoplot(m1 = primary.apl, m2 = relapse.apl, m1Name = 'Primary APL', m2Name = 'Relapse APL')
dev.off()</pre>
```

extractSignatures *Extract mutational signatures from trinucletide context.*

Description

Decompose a matrix of 96 substitution classes into n signatures.

Usage

```
extractSignatures(mat, n = NULL, nTry = 6, plotBestFitRes = FALSE,
parallel = NULL)
```

Arguments

mat	Input matrix of diemnsion nx96 generated by trinucleotideMatrix
n	decompose matrix into n signatures. Default NULL. Tries to predict best value for n by running NMF on a range of values and chooses based on cophenetic correlation coefficient.
nTry	tries upto this number of signatures before choosing best n. Default 6.

forestPlot

plotBestFitRes	plots consensus heatmap for range of values tried. Default FALSE
parallel	calls to .opt argument of nmf. e.g, 'P4' for using 4 cores. See note on nmf for
	MAC users.

Details

This function decomposes a non-negative matrix into n signatures. Extracted signatures are compared against 30 experimentally validated signatures by calculating cosine similarity. See http://cancer.sanger.ac.uk/cosm for details.

Value

a list with decomposed scaled signatures, signature contributions in each sample and a cosine similarity table against validated signatures.

See Also

trinucleotideMatrix plotSignatures

Examples

```
## Not run:
laml.tnm <- trinucleotideMatrix(maf = laml, ref_genome = 'hg19.fa', prefix = 'chr',
add = TRUE, useSyn = TRUE)
laml.sign <- extractSignatures(mat = laml.tnm, plotBestFitRes = FALSE)</pre>
```

End(Not run)

forestPlot Draw forest plot for differences betweeen cohorts.

Description

Draw forest plot for differences betweeen cohorts.

Usage

```
forestPlot(mafCompareRes, pVal = 0.05, show = NULL, color = NULL,
file = NULL, width = 5, height = 6)
```

Arguments

mafCompareRes	results from mafCompare
pVal	p-value threshold. Default 0.05.
show	can be either stat or pval
color	vector of colors for cohorts. Default NULL.
file	basename for output file. Plot will saved to an output pdf.
width	width of plot to be generated
height	height of plot to be generated

Details

Plots results from link{mafCompare} as a forest plot with x-axis as log10 converted odds ratio and differentially mutated genes on y-axis.

Value

ggplot object of the plot.

See Also

mafCompare

Examples

```
##Primary and Relapse APL
primary.apl <- system.file("extdata", "APL_primary.maf.gz", package = "maftools")
relapse.apl <- system.file("extdata", "APL_relapse.maf.gz", package = "maftools")
##Read mafs
primary.apl <- read.maf(maf = primary.apl)
relapse.apl <- read.maf(maf = relapse.apl)
##Perform analysis and draw forest plot.
pt.vs.rt <- mafCompare(m1 = primary.apl, m2 = relapse.apl, m1Name = 'Primary',
m2Name = 'Relapse', minMut = 5)
forestPlot(mafCompareRes = pt.vs.rt, show = 'stat')</pre>
```

geneCloud	Plots wordcloud.	

Description

Plots word cloud of mutated genes or altered cytobands with size proportional to the event frequency.

Usage

```
geneCloud(input, minMut = 3, col = NULL, top = NULL,
genesToIgnore = NULL, ...)
```

Arguments

input	an MAF or GISTIC object generated by read.maf or readGistic
minMut	Minimum number of samples in which a gene is required to be mutated.
col	vector of colors to choose from.
top	Just plot these top n number of mutated genes.
genesToIgnore	Ignore these genes.
	Other options passed to wordcloud

Value

nothing.

genesToBarcodes

Examples

```
laml.input <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.input, useAll = FALSE)
geneCloud(input = laml, minMut = 5)</pre>
```

genesToBarcodes Extracts Tumor Sample Barcodes where the given genes are mutated.

Description

Extracts Tumor Sample Barcodes where the given genes are mutated.

Usage

```
genesToBarcodes(maf, genes = NULL, justNames = FALSE)
```

Arguments

maf	an MAF object generated by read.maf
genes	Hogo_Symbol for which sample names to be extracted.
justNames	if TRUE, just returns samples names instead of summarized tables.

Value

list of data.tables with samples in which given genes are mutated.

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
genesToBarcodes(maf = laml, genes = 'DNMT3A')</pre>
```

getCytobandSummary extract cytoband summary from GISTIC object

Description

extract cytoband summary from GISTIC object

Usage

```
getCytobandSummary(x)
```

```
## S4 method for signature 'GISTIC'
getCytobandSummary(x)
```

Arguments ×

An object of class GISTIC

Value

summarized gistic results by altered cytobands.

Examples

```
all.lesions <- system.file("extdata", "all_lesions.conf_99.txt", package = "maftools")
amp.genes <- system.file("extdata", "amp_genes.conf_99.txt", package = "maftools")
del.genes <- system.file("extdata", "del_genes.conf_99.txt", package = "maftools")
laml.gistic = readGistic(gisticAllLesionsFile = all.lesions, gisticAmpGenesFile = amp.genes, gisticDelGenesF
getCytobandSummary(laml.gistic)</pre>
```

getFields

extract available fields from MAF object

Description

extract available fields from MAF object

Usage

```
getFields(x)
```

S4 method for signature 'MAF'
getFields(x)

Arguments

x An object of class MAF

Value

Field names in MAF file

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
getFields(x = laml)</pre>
```

8

getGeneSummary extract gene summary from MAF or GISTIC object

Description

extract gene summary from MAF or GISTIC object

Usage

```
getGeneSummary(x)
```

S4 method for signature 'MAF'
getGeneSummary(x)

S4 method for signature 'GISTIC'
getGeneSummary(x)

Arguments

Х

An object of class MAF or GISTIC

Value

gene summary table

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
getGeneSummary(laml)</pre>
```

getSampleSummary extract sample summary from MAF or GISTIC object

Description

extract sample summary from MAF or GISTIC object

Usage

```
getSampleSummary(x)
## S4 method for signature 'MAF'
getSampleSummary(x)
## S4 method for signature 'GISTIC'
getSampleSummary(x)
```

Arguments

х

An object of class MAF or GISTIC

Value

sample summary table

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
getSampleSummary(x = laml)</pre>
```

GISTIC-class Class GISTIC

Description

S4 class for storing summarized MAF.

Slots

data data.table of summarized GISTIC file.

cnv. summary table containing alterations per sample

cytoband.summary table containing alterations per cytoband

gene.summary table containing alterations per gene

- cnMatrix character matrix of dimension n*m where n is number of genes and m is number of samples
- numericMatrix numeric matrix of dimension n*m where n is number of genes and m is number of samples

summary table with basic GISTIC summary stats

classCode mapping between numeric values in numericMatrix and copy number events.

See Also

getGeneSummary getSampleSummary getCytobandSummary

gisticPlot Plot gistic results.

Description

takes output generated by readGistic and draws a plot similar to oncoplot.

Usage

```
gisticPlot(gistic, top = NULL, showTumorSampleBarcodes = FALSE,
annotation = NULL, bandsToIgnore = NULL, removeNonAltered = FALSE,
colors = NULL, fontSize = 10)
```

10

Arguments

gistic	an GISTIC object generated by readGistic	
top	how many top cytobands to be drawn. defaults to all.	
showTumorSample	eBarcodes	
	logical to include sample names.	
annotation	data.frame with first column containing Tumor_Sample_Barcodes and rest of columns with annotations.	
bandsToIgnore	do not show these bands in the plot Default NULL.	
removeNonAltered		
	Logical. If TRUE removes samples with no mutations in the oncoplot for better visualization. Default FALSE.	
colors	named vector of colors Amp and Del events.	
fontSize	font size for cytoband names. Default 10.	

Details

Takes gistic file as input and plots it as a matrix. Any desired annotations can be added at the bottom of the oncoplot by providing annotation

Value

None.

See Also

oncostrip

Examples

```
all.lesions <- system.file("extdata", "all_lesions.conf_99.txt", package = "maftools")
amp.genes <- system.file("extdata", "amp_genes.conf_99.txt", package = "maftools")
del.genes <- system.file("extdata", "del_genes.conf_99.txt", package = "maftools")
gistic.summary = readGistic(gisticAllLesionsFile = all.lesions, gisticAmpGenesFile = amp.genes, gisticDelGen
gisticPlot(gistic.summary)</pre>
```

 ${\tt icgcSimpleMutationToMAF}$

Converts ICGC Simple Somatic Mutation format file to MAF

Description

Converts ICGC Simple Somatic Mutation format file to Mutation Annotation Format. Basic fields are converted as per MAF specififcations, rest of the fields are retained as in the input file. Ensemble gene IDs are converted to HGNC Symbols. Note that by default Simple Somatic Mutation format contains all affected transcripts of a variant resulting in multiple entries of the same variant in same sample. It is hard to choose a single affected transcript based on annotations alone and by default this program removes repeated variants as duplicated entries. If you wish to keep all of them, set removeDuplicatedVariants to FALSE.

Usage

```
icgcSimpleMutationToMAF(icgc, basename = NA, MAFobj = FALSE,
  removeDuplicatedVariants = TRUE, addHugoSymbol = FALSE)
```

Arguments

icgc	Input data in ICGC Simple Somatic Mutation format. Can be gz compressed.	
basename	If given writes to output file with basename.	
MAFobj	If TRUE returns results as an MAF object.	
removeDuplicatedVariants		
	removes repeated variants in a particuar sample, mapped to multiple transcripts of same Gene. See Description. Default TRUE.	
addHugoSymbol	If TRUE replaces ensemble gene IDs with Hugo_Symbols. Default FALSE.	

Details

ICGC Simple Somatic Mutattion format specififcation can be found here: http://docs.icgc.org/submission/guide/icgc-simple-somatic-mutation-format/

Value

tab delimited MAF file.

Examples

```
esca.icgc <- system.file("extdata", "simple_somatic_mutation.open.ESCA-CN.sample.tsv.gz", package = "maftool
esca.maf <- icgcSimpleMutationToMAF(icgc = esca.icgc)</pre>
```

inferHeterogeneity Clusters variants based on Variant Allele Frequencies (VAF).

Description

takes output generated by read.maf and clusters variants to infer tumor heterogeneity. This function requires VAF for clustering and density estimation. VAF can be on the scale 0-1 or 0-100. Optionally if copy number information is available, it can be provided as a segmented file (e.g, from Circular Binary Segmentation). Those variants in copy number altered regions will be ignored.

Usage

```
inferHeterogeneity(maf, tsb = NULL, top = 5, vafCol = NULL,
    dirichlet = FALSE, segFile = NULL, ignChr = NULL, minVaf = 0,
    maxVaf = 1)
```

Arguments

maf	an MAF object generated by read.maf
tsb	specify sample names (Tumor_Sample_Barcodes) for which clustering has to be done.
top	if tsb is NULL, uses top n number of most mutated samples. Defaults to 5.
vafCol	manually specify column name for vafs. Default looks for column 't_vaf'
dirichlet	If TRUE uses nonparametric dirichlet process for clustering. Default FALSE, uses finite mixture models.
segFile	path to CBS segmented copy number file. Column names should be Sample, Chromosome, Start, End, Num_Probes and Segment_Mean (log2 scale).
ignChr	ignore these chromosomes from analysis. e.g, sex chromsomes chrX, chrY. Default NULL.
minVaf	filter low frequency variants. Low vaf variants maybe due to sequencing error. Default 0. (on the scale of 0 to 1)
maxVaf	filter high frequency variants. High vaf variants maybe due to copy number alterations or impure tumor. Default 1. (on the scale of 0 to 1)

Details

This function clusters variants based on VAF to estimate univariate density and cluster classification. There are two methods available for clustering. Default using parametric finite mixture models and another method using nonparametric inifinite mixture models (Dirichlet process).

Value

list of clustering tables.

References

Chris Fraley and Adrian E. Raftery (2002) Model-based Clustering, Discriminant Analysis and Density Estimation Journal of the American Statistical Association 97:611-631

Jara A, Hanson TE, Quintana FA, Muller P, Rosner GL. DPpackage: Bayesian Semi- and Nonparametric Modeling in R. Journal of statistical software. 2011;40(5):1-30.

Olshen AB, Venkatraman ES, Lucito R, Wigler M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics. 2004;5(4):557-72.

See Also

plotClusters

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
TCGA.AB.2972.clust <- inferHeterogeneity(maf = laml, tsb = 'TCGA.AB.2972', vafCol = 'i_TumorVAF_WU')</pre>
```

lollipopPlot

Description

Draws lollipop plot of amino acid changes.

Usage

```
lollipopPlot(maf, gene = NULL, AACol = NULL, labelPos = NULL,
showMutationRate = TRUE, fn = NULL, showDomainLabel = TRUE,
cBioPortal = FALSE, refSeqID = NULL, proteinID = NULL, repel = FALSE,
collapsePosLabel = TRUE, legendTxtSize = 10, labPosSize = 2,
labPosAngle = 0, domainLabelSize = 2.5, printCount = FALSE,
colors = NULL, domainColors = NULL, labelOnlyUniqueDoamins = TRUE,
defaultYaxis = TRUE)
```

Arguments

maf	an MAF object generated by read.maf
gene	HGNC symbol for which protein structure to be drawn.
AACol	manually specify column name for amino acid changes. Default looks for fields 'HGVSp_Short', 'AAChange' or 'Protein_Change'. Changes can be of any for- mat i.e, can be a numeric value or HGVSp annotations (e.g; p.P459L, p.L2195Pfs*30 or p.Leu2195ProfsTer30)
labelPos	Amino acid positions to label. If 'all', labels all variants.
showMutationRat	te
	Default TRUE
fn	basename for plot file to be saved. If provided a pdf will be generated. Default NULL.
showDomainLabe]	l
	Label domains within the plot. Default TRUE. If FALSE they will be annotated in legend.
cBioPortal	Adds annotations similar to cBioPortals MutationMapper and collapse Variants into Truncating and rest.
refSeqID	RefSeq transcript identifier for gene if known.
proteinID	RefSeq protein identifier for gene if known.
repel	If points are too close to each other, use this option to repel them. Default FALSE. Warning: naive method, might make plot ugly in case of too many variants!
collapsePosLabel	
	Collapses overlapping labels at same position. Default TRUE
legendTxtSize	Text size for legend. Default 10
labPosSize	Text size for labels. Default 2
labPosAngle	angle for labels. Defaults to horizonal 0 degree labels. Set to 90 for vertical; 45 for diagonal labels.

MAF-class

domainLabelSize		
	text size for domain labels. Default 2.	
printCount	If TRUE, prints number of summarized variants for the given protein.	
colors	named vector of colors for each Variant_Classification. Default NULL.	
domainColors	Manual colors for protein domains	
labelOnlyUniqueDoamins		
	Default TRUE only labels unique doamins.	
defaultYaxis	If FALSE, just labels min and maximum y values on y axis.	

Details

This function by default looks for fields 'HGVSp_Short', 'AAChange' or 'Protein_Change' in maf file. One can also manually specify field name containing amino acid changes.

Value

ggplot object of the plot, which can be futher modified.

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
lollipopPlot(maf = laml, gene = 'KIT', AACol = 'Protein_Change')</pre>
```

```
MAF-class
```

Description

S4 class for storing summarized MAF.

Slots

data data.table of original MAF file.

variants.per.sample table containing variants per sample

Class MAF

variant.type.summary table containing variant types per sample

variant.classification.summary table containing variant classification per sample

gene.summary table containing variant classification per gene

- oncoMatrix character matrix of dimension n*m where n is number of genes and m is number of variants
- numericMatrix numeric matrix of dimension n*m where n is number of genes and m is number of variants

summary table with basic MAF summary stats

classCode mapping between numeric values in numericMatrix and Variant Classification

maf.silent subset of main MAF containing only silent variants

See Also

getGeneSummary getSampleSummary getFields

mafCompare

Description

compare two cohorts (MAF).

Usage

```
mafCompare(m1, m2, m1Name = NULL, m2Name = NULL, minMut = 5)
```

Arguments

m1	first MAF object
m2	second MAF object
m1Name	optional name for first cohort
m2Name	optional name for second cohort
minMut	Consider only genes with minimum this number of samples mutated in atleast one of the cohort for analysis. Helful to ignore single mutated genes. Default 5.

Details

Performs fisher test on 2x2 contigency table generated from two cohorts to find differentially mutated genes.

Value

result list

See Also

forestPlot

```
primary.apl <- system.file("extdata", "APL_primary.maf.gz", package = "maftools")
relapse.apl <- system.file("extdata", "APL_relapse.maf.gz", package = "maftools")</pre>
primary.apl <- read.maf(maf = primary.apl)</pre>
relapse.apl <- read.maf(maf = relapse.apl)</pre>
pt.vs.rt <- mafCompare(m1 = primary.apl, m2 = relapse.apl, m1Name = 'Primary',</pre>
m2Name = 'Relapse', minMut = 5)
```

math.score

Description

calcuates MATH scores from variant allele frequencies. Mutant-Allele Tumor Heterogeneity (MATH) score is a measure of intra-tumor genetic heterogeneity. High MATH scores are related to lower survival rates. This function requies vafs.

Usage

```
math.score(maf, plotFile = NULL, vafCol = NULL, sampleName = NULL,
vafCutOff = 0.075)
```

Arguments

maf	an MAF object generated by read.maf
plotFile	file name for output plot.
vafCol	manually specify column name for vafs. Default looks for column 't_vaf'
sampleName	sample name for which MATH score to be calculated. If NULL, calculates for all samples.
vafCut0ff	minimum vaf for a variant to be considered for score calculation. Default 0.075

Value

data.table with MATH score for every Tumor_Sample_Barcode

References

Mroz, Edmund A. et al. Intra-Tumor Genetic Heterogeneity and Mortality in Head and Neck Cancer: Analysis of Data from The Cancer Genome Atlas. Ed. Andrew H. Beck. PLoS Medicine 12.2 (2015): e1001786.

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
laml.math <- math.score(maf = laml, vafCol = 'i_TumorVAF_WU',
sampleName = c('TCGA.AB.3009', 'TCGA.AB.2849', 'TCGA.AB.3002', 'TCGA.AB.2972'))</pre>
```

mutExclusive

Description

Performs statistical test between given set of genes for mutual excluisiveness.

Usage

```
mutExclusive(maf, genes = NULL, top = 10)
```

Arguments

maf	an MAF object generated by read.maf
genes	A pair of genes between which test should be performed. If its null, test will be performed between all combinations of top ten genes.
top	check for exclusiveness among top 'n' number of genes. Defaults to top 10. genes

Value

table with number of events in all possible combinations and p-value. Column header describes mutation status of gene1 and gene2 respectively. n.00 number of samples where both gene1 and gene2 are not mutated c.01 number of samples where gene1 is not mutated but gene2 is mutated and so on.

References

Leiserson, Mark DM et al. CoMEt: A Statistical Approach to Identify Combinations of Mutually Exclusive Alterations in Cancer. Genome Biology 16.1 (2015): 160.

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
mutExclusive(maf = laml, top = 5)</pre>
```

oncodrive	Detect cancer driver genes based on positional clustering of variants.	

Description

Clusters variants based on their position to detect disease causing genes.

Usage

```
oncodrive(maf, AACol = NULL, minMut = 5, pvalMethod = "zscore",
    nBgGenes = 100, bgEstimate = TRUE, ignoreGenes = NULL)
```

oncodrive

Arguments

maf	an MAF object generated by read.maf
AACol	manually specify column name for amino acid changes. Default looks for field 'AAChange'
minMut	minimum number of mutations required for a gene to be included in analysis. Default 5.
pvalMethod	either zscore (default method for oncodriveCLUST), poisson or combined (uses lowest of the two pvalues).
nBgGenes	minimum number of genes required to estimate background score. Default 100. Do not change this unless its necessary.
bgEstimate	If FALSE skips background estimation from synonymous variants and uses predifined values estimated from COSMIC synonymous variants.
ignoreGenes	Ignore these genes from analysis. Default NULL. Helpful in case data contains large number of variants belonging to polymorphic genes such as mucins and TTN.

Details

This is the re-implimentation of algorithm defined in OncodriveCLUST article. Concept is based on the fact that most of the variants in cancer causing genes are enriched at few specific loci (aka hotspots). This method takes advantage of such positions to identify cancer genes. Cluster score of 1 means, a single hotspot hosts all observed variants. If you use this function, please cite OncodriveCLUST article.

Value

data table of genes ordered according to p-values.

References

Tamborero D, Gonzalez-Perez A and Lopez-Bigas N. OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes. Bioinformatics. 2013; doi: 10.1093/bioinformatics/btt395s

See Also

plotOncodrive

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
laml.sig <- oncodrive(maf = laml, AACol = 'Protein_Change', minMut = 5)</pre>
```

oncoplot

Description

takes output generated by read.maf and draws an oncoplot (aka waterfall plot).

Usage

```
oncoplot(maf, writeMatrix = FALSE, top = 20, genes = NULL,
    drawRowBar = TRUE, drawColBar = TRUE, showTumorSampleBarcodes = FALSE,
    annotation = NULL, annotationColor = NULL, genesToIgnore = NULL,
    removeNonMutated = TRUE, colors = NULL, fontSize = 10,
    sortByMutation = FALSE, sortByAnnotation = FALSE)
```

Arguments

maf	an MAF object generated by read.maf
writeMatrix	writes character coded matrix used to generate the plot to an output file. This can be used as an input for ComplexHeatmap oncoPrint function if you wish to customize the plot.
top	how many top genes to be drawn. defaults to 20.
genes	Just draw oncoplot for these genes. defaults to NULL.
drawRowBar	logical plots barplot for each gene.
drawColBar	logical plots barplot for each sample.
showTumorSample	eBarcodes
	logical to include sample names.
annotation	data.frame with first column containing Tumor_Sample_Barcodes and rest of columns with annotations.
annotationColor	
	list of colors to use for annotation. Default NULL.
genesToIgnore	do not show these genes in Oncoplot. Default NULL.
removeNonMutate	
	Logical. If TRUE removes samples with no mutations in the oncoplot for better visualization. Default TRUE.
colors	named vector of colors for each Variant_Classification.
fontSize	font size for gene names. Default 10.
sortByMutation sortByAnnotatio	Helpful in case of MAF was read along with copy number data. Default FALSE.
	logical sort oncomatrix by provided annotations. Defaults to FALSE. This is mutually exclusive with sortByMutation.

Details

Takes maf file as input and plots it as a matrix. Any desired annotations can be added at the bottom of the oncoplot by providing annotation. Oncoplot can be sorted either by mutations or annotations using arguments sortByMutation and sortByAnnotation respectively.

 $Thanks \ to \ Ryan \ Morin \ for \ \texttt{sortByAnnotation} \ code.$

oncostrip

Value

None.

See Also

oncostrip

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
oncoplot(maf = laml, top = 3)</pre>
```

oncostrip

draw an oncostrip similar to cBioportal oncoprinter output.

Description

draw an oncostrip similar to cBioportal oncoprinter output.

Usage

```
oncostrip(maf, genes = NULL, sort = TRUE, sortByAnnotation = FALSE,
annotation = NULL, annotationColor = NULL, removeNonMutated = TRUE,
top = 5, showTumorSampleBarcodes = FALSE, colors = NULL)
```

Arguments

maf	an MAF object generated by read.maf
genes	draw oncoprint for these genes. default NULL. Plots top 5 genes.
sort	logical sort oncomatrix for enhanced visualization. Defaults to TRUE.
sortByAnnotatio	on
	logical sort oncomatrix by provided annotations. Defaults to FALSE. This is mutually exclusive with sort.
annotation	data.frame with first column containing Tumor_Sample_Barcodes and rest of columns with annotations.
annotationColor	
	list of colors to use for annotation. Default NULL.
removeNonMutated	
	Logical. If TRUE removes samples with no mutations in the oncoplot for better visualization. Default TRUE.
top	how many top genes to be drawn. defaults to 5.
showTumorSampleBarcodes	
	logical to include sample names.
colors	named vector of colors for each Variant_Classification.

Value

None.

oncotate

See Also

oncoplot

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
dev.new()
oncostrip(maf = laml, genes = c('NPM1', 'RUNX1'), removeNonMutated = TRUE)</pre>
```

oncotate

Annotates given variants using oncotator api.

Description

Takes variants as input and annotates them using Broad's oncotator api (http://www.broadinstitute.org/oncotator/). Output is a dataframe of annotated variants in maf format.

Input should be a five column file with chr, start, end, ref_allele, alt_allele (and so on, but only first five will used, rest will be attached to resulting maf file). Note: Time consuming if input is huge. Try to include necessary columns such as Tumor_Sample_Barcode along with above 5 fields.

Usage

```
oncotate(maflite, header = FALSE, basename = NULL)
```

Arguments

maflite	input tsv file with chr, start, end, ref_allele, alt_allele columns. (rest of the columns, if present will be attached to the output maf)
header	logical. Whether input has a header line. Default is FALSE.
basename	NULL. if basename is given, annotations will be written to basename>.maf file.

Value

returns a dataframe in maf format.

Examples

```
sample.var = data.frame(chromsome = c('chr4', 'chr15'), Start = c(55589774, 41961117),
end = c(55589774, 41961117), ref = c('A', 'TGGCTAA'), alt = c('G', '-'),
Tumor_Sample_Barcode = c('fake_1', 'fake2'))
write.table(sample.var, 'sampleVars.txt', sep='\t',quote = FALSE, row.names = FALSE)
##var.maf <- oncotate(maflite = 'sampleVars.txt', header = TRUE)</pre>
```

22

pfamDomains

Description

Summarizes amino acid positions and annotates them with pfam domain information.

Usage

```
pfamDomains(maf = NULL, AACol = NULL, summarizeBy = "AAPos", top = 5,
baseName = NULL, varClass = "nonSyn")
```

Arguments

maf	an MAF object generated by read.maf
AACol	manually specify column name for amino acid changes. Default looks for field 'AAChange'
summarizeBy	Summarize domains by amino acid position or conversions. Can be "AAPos" or "AAChange"
top	How many top mutated domains to label in the scatter plot. Defaults to 5.
baseName	If given writes the results to output file. Default NULL.
varClass	which variants to consider for summarization. Can be nonSyn, Syn or all. Default nonSyn.

Value

returns a list two tables summarized by amino acid positions and domains respectively. Also plots top 5 most mutated domains as scatter plot.

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
pfamDomains(maf = laml, AACol = 'Protein_Change')</pre>
```

plotCBSsegments Plots segmented copy number data.

Description

Plots segmented copy number data.

Usage

```
plotCBSsegments(cbsFile = NULL, maf = NULL, tsb = NULL, chr = NULL,
savePlot = FALSE, width = 6, height = 3, labelAll = FALSE,
genes = NULL, ref.build = "hg19", writeTable = FALSE,
removeXY = FALSE, color = NULL)
```

Arguments

cbsFile	CBS segmented copy number file. Column names should be Sample, Chromo- some, Start, End, Num_Probes and Segment_Mean (log2 scale).
maf	optional MAF
tsb	If segmentation file contains many samples (as in gistic input), specify sample name here. Defualt plots all samples. If you are maping maf, make sure sample names in Sample column of segmentation file matches to those Tumor_Sample_Barcodes in MAF.
chr	Just plot this chromosome.
savePlot	If true plot is saved as pdf.
width	width of plot
height	height of plot
labelAll	If true and if maf object is specified, maps all mutataions from maf onto seg- ments. Default FALSE, maps only variants on copy number altered regions.
genes	highlight only these variants
ref.build	Reference build for chromosome sizes. Can be hg18, hg19 or hg38. Default hg19.
writeTable	If true and if maf object is specified, writes plot data with each variant and its corresponding copynumber to an output file.
removeXY	don not plot sex chromosomes.
color	Manually specify color scheme for chromosomes. Default NULL.

Details

this function takes segmented copy number data and plots it. If MAF object is specified, all mutations are highlighted on the plot.

Value

ggplot object

Examples

tcga.ab.009.seg <- system.file("extdata", "TCGA.AB.3009.hg19.seg.txt", package = "maftools")
plotCBSsegments(cbsFile = tcga.ab.009.seg)</pre>

plotClusters Plot density plots from clutering results.

Description

Plots results from inferHeterogeneity.

Usage

```
plotClusters(clusters, tsb = NULL, genes = NULL, showCNvars = FALSE,
    savePlot = FALSE, width = 6, height = 5, colors = NULL)
```

plotGisticResults

Arguments

clusters	clustering results from inferHeterogeneity
tsb	sample to plot from clustering results. Default plots all samples from results.
genes	genes to highlight on the plot. Can be a vector of gene names, CN_altered to label copy number altered varinats. or all to label all genes. Default NULL.
showCNvars	show copy numbered altered variants on the plot. Default FALSE.
savePlot	If TRUE saves plot to output pdf
width	plot width. Default 6.
height	plot height. Default 5.
colors	manual colors for clusters. Default NULL.

Value

returns nothing.

See Also

inferHeterogeneity

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
seg = system.file('extdata', 'TCGA.AB.3009.hg19.seg.txt', package = 'maftools')
TCGA.AB.3009.clust <- inferHeterogeneity(maf = laml, tsb = 'TCGA.AB.3009',
segFile = seg, vafCol = 'i_TumorVAF_WU')
plotClusters(TCGA.AB.3009.clust, genes = c('NF1', 'SUZ12'), showCNvars = TRUE)
```

plotGisticResults *Plot gistic results as a bubble plot.*

Description

Plots significantly altered cytobands as a function of number samples in which it is altered and number genes it contains. Size of each bubble is according to -log10 transformed q values.

Usage

```
plotGisticResults(gistic, color = NULL, file = NULL, width = 6,
    height = 5, txtSize = 3)
```

Arguments

gistic	an object of class GISTIC generated by readGistic
color	colors for Amp and Del events.
file	if given saves plot as a pdf.
width	width of the file to be saved.
height	height of the file to be saved.
txtSize	label size for bubbles.

Value

nothing

Examples

```
all.lesions <- system.file("extdata", "all_lesions.conf_99.txt", package = "maftools")
amp.genes <- system.file("extdata", "amp_genes.conf_99.txt", package = "maftools")
del.genes <- system.file("extdata", "del_genes.conf_99.txt", package = "maftools")
laml.gistic = readGistic(gisticAllLesionsFile = all.lesions, gisticAmpGenesFile = amp.genes, gisticDelGenesF
plotGisticResults(gistic = laml.gistic)</pre>
```

plotmafSummary Plots maf summary.

Description

Plots maf summary.

Usage

```
plotmafSummary(maf, file = NULL, rmOutlier = TRUE, dashboard = TRUE,
width = 6, height = 5, addStat = NULL, showBarcodes = FALSE,
fs = 10, textSize = 2, color = NULL, statFontSize = 3,
titvColor = NULL, top = 10)
```

Arguments

maf	an MAF object generated by read.maf
file	If given pdf file will be generated.
rmOutlier	If TRUE removes outlier from boxplot.
dashboard	If FALSE plots simple summary instead of dashboard style.
width	plot parameter for output file.
height	plot parameter for output file.
addStat	Can be either mean or median. Default NULL.
showBarcodes	include sample names in the top bar plot.
fs	base size for text. Default 10.
textSize	font size if showBarcodes is TRUE. Default 2.
color	named vector of colors for each Variant_Classification.
statFontSize	font size if addStat is used. Default 3.
titvColor	colors for SNV classifications.
top	include top n genes dashboard plot. Default 10.

Value

Prints plot.

26

plotOncodrive

See Also

read.maf MAF

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, useAll = FALSE)
plotmafSummary(maf = laml, addStat = 'median')</pre>
```

plotOncodrive Plots results from oncodrive

Description

Takes results from oncodrive and plots them as a scatter plot. Size of the gene shows number of clusters (hotspots), x-axis can either be an absolute number of variants accumulated in these clusters or a fraction of total variants found in these clusters. y-axis is fdr values transformed into -log10 for better representation. Labels indicate Gene name with number clusters observed.

Usage

plotOncodrive(res = NULL, fdrCutOff = 0.05, useFraction = FALSE)

Arguments

res	results from oncodrive
fdrCut0ff	fdr cutoff to call a gene as a driver.
useFraction	if TRUE uses a fraction of total variants as X-axis scale instead of absolute counts.

Value

a ggplot object which can be further modified.

See Also

oncodrive

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
laml.sig <- oncodrive(maf = laml, AACol = 'Protein_Change', minMut = 5)
plotOncodrive(res = laml.sig, fdrCutOff = 0.1)</pre>
```

plotSignatures

Description

Plots decomposed mutational signatures as a barplot.

Usage

```
plotSignatures(nmfRes = NULL, contributions = FALSE, color = NULL, ...)
```

Arguments

nmfRes	results from extractSignatures
contributions	If TRUE plots contribution of signatures in each sample.
color	colors for each Ti/Tv conversion class. Default NULL
	further plot options passed to barplot

Value

ggplot object if contributions is TRUE

See Also

trinucleotideMatrix

plotTiTv

Plot Transition and Trasnversion ratios.

Description

Takes results generated from titv and plots the Ti/Tv ratios and contributions of 6 mutational conversion classes in each sample.

Usage

```
plotTiTv(res = NULL, plotType = "both", file = NULL, width = 6,
height = 5, color = NULL, showBarcodes = FALSE, textSize = 2)
```

Arguments

res	results generated by titv
plotType	Can be 'bar', 'box' or 'both'. Defaults to 'both'
file	basename for output file name. If given pdf will be generated.
width	width of the plot, in inches.
height	height of the plot, in inches.
color	named vector of colors for each coversion class.
showBarcodes	Whether to include sample names for barplot
textSize	fontsize if showBarcodes is TRUE. Deafult 2.

plot Vaf

Value

None.

See Also

titv

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
laml.titv = titv(maf = laml, useSyn = TRUE)
plotTiTv(laml.titv)</pre>
```

plotVaf

Plots vaf distribution of genes

Description

Plots vaf distribution of genes as a boxplot or violinplot.

Usage

```
plotVaf(maf, vafCol = NULL, genes = NULL, density = FALSE,
violin = FALSE, top = 5)
```

Arguments

maf	an MAF object generated by read.maf
vafCol	manually specify column name for vafs. Default looks for column 't_vaf'
genes	specify genes for which plots has to be generated
density	logical whether to plot density plot of vaf
violin	if TRUE plots violin plot
top	if genes is NULL plots top n number of genes. Defaults to 5.

Value

ggplot object which can be further modified.

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
plotVaf(maf = laml, vafCol = 'i_TumorVAF_WU')</pre>
```

rainfallPlot

Description

Plots inter variant distance as a function of genomic locus.

Usage

```
rainfallPlot(maf, tsb = NULL, detectChangePoints = FALSE,
ref.build = "hg19", color = NULL, savePlot = FALSE, width = 6,
height = 3, fontSize = 12, pointSize = 1)
```

Arguments

maf	an MAF object generated by read.maf. Required.
tsb	specify sample names (Tumor_Sample_Barcodes) for which plotting has to be done. If NULL, draws plot for most mutated sample.
detectChangePo	ints
	If TRUE, detectes genomic change points where potential kataegis are formed. Results are written to an output tab delimted file.
ref.build	Reference build for chromosome sizes. Can be hg18, hg19 or hg38. Default hg19.
color	named vector of colors for each coversion class.
savePlot	If TRUE plot is saved to output pdf. Default FALSE.
width	width of plot to be saved.
height	height of plot to be saved.
fontSize	Default 12.
pointSize	Default 2.

Details

Note that detected change points are only loci where the distribution of inter-event distance changes. Segments may have to be manually inferred by adjacent change-points.

Value

returns ggplot object of the plot which can be further modified.

read.maf

Description

Takes tab delimited MAF (can be plain text or gz compressed) file as an input and summarizes it in various ways. Also creates oncomatrix - helpful for visualization.

Usage

```
read.maf(maf, removeSilent = TRUE, useAll = TRUE,
gisticAllLesionsFile = NULL, gisticAmpGenesFile = NULL,
gisticDelGenesFile = NULL, cnTable = NULL,
removeDuplicatedVariants = TRUE, isTCGA = FALSE, verbose = TRUE)
```

Arguments

maf	tab delimited MAF file. File can also be gz compressed. Required. Alterna- tively, you can also provide already read MAF file as a dataframe.	
removeSilent	logical. Whether to discard silent (variants with Low/Modifier consequences) mutations ("3'UTR", "5'UTR", "3'Flank", "Targeted_Region", "Silent", "Intron", "RNA", "IGR", "Splice_Region", "5'Flank", "lincRNA"). Default is TRUE.	
useAll	logical. Whether to use all variants irrespective of values in Mutation_Status. Defaults to TRUE. If FALSE, only uses with values Somatic.	
gisticAllLesio	nsFile	
	All Lesions file generated by gistic. e.g; all_lesions.conf_XX.txt, where XX is the confidence level. Default NULL.	
gisticAmpGenes	File	
	Amplification Genes file generated by gistic. e.g; amp_genes.conf_XX.txt, where XX is the confidence level. Default NULL.	
gisticDelGenesFile		
	Deletion Genes file generated by gistic. e.g; del_genes.conf_XX.txt, where XX is the confidence level. Default NULL.	
cnTable	Custom copynumber data if gistic results are not available. Input file should a tab seperated three column table containing gene name, Sample name and copy number status (either 'Amp' or 'Del'). Default NULL.	
removeDuplicatedVariants		
	removes repeated variants in a particuar sample, mapped to multiple transcripts of same Gene. See Description. Default TRUE.	
isTCGA	Is input MAF file from TCGA source.	
verbose	TRUE logical. Default to be talkative and prints summary.	

Details

This function takes MAF file as input and summarizes them. If copy number data is available, e.g from GISTIC, it can be provided too via arguments gisticAllLesionsFile, gisticAmpGenesFile, and gisticDelGenesFile. Copy number data can also be provided as a custom table containing Gene name, Sample name and Copy Number status.

Note that if input MAF file contains multiple affected transcripts of a variant, this function by default removes them as duplicates, while keeping single unique entry per variant per sample. If you wish to keep all of them, set removeDuplicatedVariants to FALSE.

FLAGS - If you get a note on possible FLAGS while reading MAF, it means some of the top mutated genes are fishy. These genes are often non-pathogenic and passengers, but are frequently mutated in most of the public exome studies. Examples of such genes include TTN, MUC16, etc. This note can be ignored without any harm, it's only generated as to make user aware of such genes. See references for details on FLAGS.

Value

An object of class MAF.

References

Shyr C, Tarailo-Graovac M, Gottlieb M, Lee JJ, van Karnebeek C, Wasserman WW. FLAGS, frequently mutated genes in public exomes. BMC Med Genomics 2014; 7: 64.

See Also

plotmafSummary write.mafSummary

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)</pre>
```

readGistic *Read and summarize gistic output.*

Description

A little function to summarize gistic output files. Summarized output is returned as a list of tables.

Usage

```
readGistic(gisticAllLesionsFile, gisticAmpGenesFile = NULL,
  gisticDelGenesFile = NULL, isTCGA = FALSE)
```

Arguments

gisticAllLesion	sFile
	All Lesions file generated by gistic. e.g; all_lesions.conf_XX.txt, where XX is
	the confidence level. Default NULL.
gisticAmpGenesF	ile
	Amplification Genes file generated by gistic. e.g; amp_genes.conf_XX.txt, where
	XX is the confidence level. Default NULL.
gisticDelGenesF	ile
	Deletion Genes file generated by gistic. e.g; del_genes.conf_XX.txt, where XX is the confidence level. Default NULL.
isTCGA	Is the data from TCGA. Default FALSE.

32

subsetMaf

Details

Requires output files generated from GISTIC. Gistic documentation can be found here ftp://ftp.broadinstitute.org/pub/GIS

Value

A list of summarized data.

Examples

```
all.lesions <- system.file("extdata", "all_lesions.conf_99.txt", package = "maftools")
amp.genes <- system.file("extdata", "amp_genes.conf_99.txt", package = "maftools")
del.genes <- system.file("extdata", "del_genes.conf_99.txt", package = "maftools")
laml.gistic = readGistic(gisticAllLesionsFile = all.lesions, gisticAmpGenesFile = amp.genes, gisticDelGenesF</pre>
```

subsetMaf

Subset MAF

Description

Subsets MAF based on given conditions.

Usage

```
subsetMaf(maf, includeSyn = FALSE, tsb = NULL, genes = NULL,
fields = NULL, query = NULL, mafObj = FALSE, isTCGA = FALSE)
```

Arguments

maf	an MAF object generated by read.maf
includeSyn	to include sysnonymous variants in output
tsb	subset by these samples (Tumor Sample Barcodes)
genes	subset by these genes
fields	include only these fields along with necessary fields in the output
query	query string. e.g, "Variant_Classification == 'Missense_Mutation'" returns only Missense variants.
mafObj	returns output as MAF class MAF-class. Default FALSE
isTCGA	Is input MAF file from TCGA source.

Value

subset table or an object of class MAF-class

See Also

getFields

34

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
##Select all Splice_Site mutations from DNMT3A and NPM1
subsetMaf(maf = laml, genes = c('DNMT3A', 'NPM1'),
query = "Variant_Classification == 'Splice_Site'")
##Select all variants with VAF above 30%
subsetMaf(maf = laml, query = "i_TumorVAF_WU > 30")
##Extract data for samples 'TCGA.AB.3009' and 'TCGA.AB.2933' but only include vaf filed.
subsetMaf(maf = laml, tsb = c('TCGA.AB.3009', 'TCGA.AB.2933'), fields = 'i_TumorVAF_WU')
```

titv

Classifies SNPs into transitions and transversions

Description

takes output generated by read.maf and classifies Single Nucleotide Variants into Transitions and Transversions.

Usage

titv(maf, useSyn = FALSE, plot = TRUE, file = NULL)

Arguments

maf	an MAF object generated by read.maf
useSyn	Logical. Whether to include synonymous variants in analysis. Defaults to FALSE.
plot	plots a titv fractions. default TRUE.
file	basename for output file name. If given writes summaries to output file. Default NULL.

Value

list of data. frames with Transitions and Transversions summary.

See Also

plotTiTv

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
laml.titv = titv(maf = laml, useSyn = TRUE)</pre>
```

trinucleotideMatrix Extract single 5' and 3' bases flanking the mutated site.

Description

Extract single 5' and 3' bases flanking the mutated site.

Usage

```
trinucleotideMatrix(maf, ref_genome, prefix = NULL, add = TRUE,
    ignoreChr = NULL, useSyn = FALSE)
```

Arguments

maf	an MAF object generated by read.maf	
ref_genome	faidx indexed refrence fasta file.	
prefix	Prefix to add or remove from contig names in MAF file.	
add	If prefix is used, default is to add prefix to contig names in MAF file. If false prefix will be removed from contig names.	
ignoreChr	Chromsomes to remove from analysis. e.g. chrM	
useSyn	Logical. Whether to include synonymous variants in analysis. Defaults to FALSE.	

Details

Extracts immediate 5' and 3' bases flanking the mutated site and classifies them into 96 substitution classes. This function loads reference genome into memeory. Typical human geneome occupies a peak memory of \sim 3 gb while extracting bases.

Value

A matrix of dimension nx96, where n is the number of samples in the MAF.

See Also

extractSignatures

```
## Not run:
laml.tnm <- trinucleotideMatrix(maf = laml, ref_genome = 'hg19.fa',
prefix = 'chr', add = TRUE, useSyn = TRUE)
## End(Not run)
```

vcr

Description

Samll internal function to make complex events. Ignore this.

Usage

vcr(xstr, gis = FALSE)

Arguments

xstr	charcter to split
gis	Is input from gistic. Logical.

Value

split string

write.GisticSummary Writes GISTIC summaries to output tab-delimited text files.

Description

Writes GISTIC summaries to output tab-delimited text files.

Usage

```
write.GisticSummary(gistic, basename = NULL)
```

Arguments

gistic	an object of class GISTIC generated by readGistic
basename	basename for output file to be written.

Value

None. Writes output as tab delimited text files.

See Also

readGistic

```
all.lesions <- system.file("extdata", "all_lesions.conf_99.txt", package = "maftools")
amp.genes <- system.file("extdata", "amp_genes.conf_99.txt", package = "maftools")
del.genes <- system.file("extdata", "del_genes.conf_99.txt", package = "maftools")
laml.gistic <- readGistic(gisticAllLesionsFile = all.lesions, gisticAmpGenesFile = amp.genes, gisticDelGenes
write.GisticSummary(gistic = laml.gistic, basename = 'laml')</pre>
```

write.mafSummary Writes maf summaries to output tab-delimited text files.

Description

Writes maf summaries to output tab-delimited text files.

Usage

```
write.mafSummary(maf, basename = NULL)
```

Arguments

maf	an MAF object generated by read.maf
basename	basename for output file to be written.

Value

None. Writes output as text files.

See Also

read.maf

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
write.mafSummary(maf = laml, basename = 'laml')</pre>
```

Index

```
annovarToMaf, 2
barplot, 28
coOncoplot, 3
extractSignatures, 4, 28, 35
forestPlot, 5, 16
geneCloud, 6
genesToBarcodes, 7
getCytobandSummary, 7, 10
getCytobandSummary,GISTIC-method
        (getCytobandSummary), 7
getFields, 8, 15, 33
getFields, MAF-method (getFields), 8
getGeneSummary, 9, 10, 15
getGeneSummary, GISTIC-method
        (getGeneSummary), 9
getGeneSummary, MAF-method
        (getGeneSummary), 9
getSampleSummary, 9, 10, 15
getSampleSummary,GISTIC-method
        (getSampleSummary), 9
getSampleSummary, MAF-method
        (getSampleSummary), 9
GISTIC, 6, 11
GISTIC (GISTIC-class), 10
GISTIC-class, 10
gisticPlot, 10
icgcSimpleMutationToMAF, 11
inferHeterogeneity, 12, 25
lollipopPlot, 14
MAF, 3, 4, 6, 7, 12–14, 16–21, 23, 24, 26, 27,
         29, 30, 34, 35, 37
MAF (MAF-class), 15
MAF-class, 15
```

oncodrive, 18, 27 oncoplot, 20, 22 oncoPrint, 20 oncostrip, 11, 21, 21 oncotate, 22 pfamDomains, 23 plotCBSsegments, 23 plotClusters, 13, 24 plotGisticResults, 25 plotmafSummary, 26, 32 plotOncodrive, 19, 27 plotSignatures, 5, 28 plotTiTv, 28, 34 plotVaf, 29 rainfallPlot, 30 read.maf, 6, 7, 13, 14, 17-20, 23, 26, 27, 29, 30, 31, 33-35, 37 readGistic, 6, 11, 32, 36 subsetMaf, 33 titv, 28, 29, 34 trinucleotideMatrix, 4, 5, 28, 35 vcr. 36 wordcloud, 6 write.GisticSummary, 36 write.mafSummary, 32, 37

nmf, 5

mafCompare, 5, 6, 16
math.score, 17
mutExclusive, 18