
Package ‘ensembldb’
April 14, 2017

Type Package

Title Utilities to create and use an Ensembl based annotation database

Version 1.6.2

Author Johannes Rainer <johannes.rainer@eurac.edu>,
Tim Triche <tim.triche@usc.edu>

Maintainer Johannes Rainer <johannes.rainer@eurac.edu>

URL https://github.com/jotsetung/ensembldb

BugReports https://github.com/jotsetung/ensembldb/issues

Imports methods, RSQLite, DBI, Biobase, GenomeInfoDb, AnnotationDbi
(>= 1.31.19), rtracklayer, S4Vectors, AnnotationHub, Rsamtools,
IRanges

Depends BiocGenerics (>= 0.15.10), GenomicRanges (>= 1.23.21),
GenomicFeatures (>= 1.23.18)

Suggests BiocStyle, knitr, rmarkdown, EnsDb.Hsapiens.v75 (>= 0.99.7),
RUnit, shiny, Gviz, BSgenome.Hsapiens.UCSC.hg19

Enhances RMySQL

VignetteBuilder knitr

Description The package provides functions to create and use
transcript centric annotation databases/packages. The
annotation for the databases are directly fetched from Ensembl
using their Perl API. The functionality and data is similar to
that of the TxDb packages from the GenomicFeatures package,
but, in addition to retrieve all gene/transcript models and
annotations from the database, the ensembldb package provides
also a filter framework allowing to retrieve annotations for
specific entries like genes encoded on a chromosome region or
transcript models of lincRNA genes.

Collate Classes.R Generics.R functions-utils.R dbhelpers.R Methods.R
Methods-Filter.R loadEnsDb.R makeEnsemblDbPackage.R
EnsDbFromGTF.R runEnsDbApp.R select-methods.R seqname-utils.R
zzz.R

biocViews Genetics, AnnotationData, Sequencing, Coverage

License LGPL

RoxygenNote 5.0.1

NeedsCompilation no

1

https://github.com/jotsetung/ensembldb
https://github.com/jotsetung/ensembldb/issues

2 EnsDb

R topics documented:
EnsDb . 2
EnsDb-class . 3
exonsBy . 7
GeneidFilter-class . 14
getGeneRegionTrackForGviz . 18
getGenomeFaFile . 20
lengthOf . 21
listEnsDbs . 23
makeEnsembldbPackage . 24
runEnsDbApp . 27
select . 28
SeqendFilter . 31
seqlevelsStyle . 34
useMySQL,EnsDb-method . 36

Index 38

EnsDb Connect to an EnsDb object

Description

The EnsDb constructor function connects to the database specified with argument x and returns a
corresponding EnsDb object.

Usage

EnsDb(x)

Arguments

x Either a character specifying the SQLite database file, or a DBIConnection to
e.g. a MySQL database.

Details

By providing the connection to a MySQL database, it is possible to use MySQL as the database
backend and queries will be performed on that database. Note however that this requires the package
RMySQL to be installed. In addition, the user needs to have access to a MySQL server providing
already an EnsDb database, or must have write privileges on a MySQL server, in which case the
useMySQL method can be used to insert the annotations from an EnsDB package into a MySQL
database.

Value

A EnsDb object.

Author(s)

Johannes Rainer

EnsDb-class 3

Examples

"Standard" way to create an EnsDb object:
library(EnsDb.Hsapiens.v75)
EnsDb.Hsapiens.v75

Alternatively, provide the full file name of a SQLite database file
dbfile <- system.file("extdata/EnsDb.Hsapiens.v75.sqlite", package = "EnsDb.Hsapiens.v75")
edb <- EnsDb(dbfile)
edb

Third way: connect to a MySQL database
Not run:
library(RMySQL)
dbcon <- dbConnect(MySQL(), user = my_user, pass = my_pass, host = my_host, dbname = "ensdb_hsapiens_v75")
edb <- EnsDb(dbcon)

End(Not run)

EnsDb-class Basic usage of an Ensembl based annotation database

Description

Get some basic information from an Ensembl based annotation package generated with makeEnsembldbPackage.

Usage

S4 method for signature 'EnsDb'
buildQuery(x, columns=c("gene_id", "gene_biotype",

"gene_name"), filter=list(), order.by,
order.type="asc", skip.order.check=FALSE)

S4 method for signature 'EnsDb'
dbconn(x)

S4 method for signature 'EnsDb'
ensemblVersion(x)

S4 method for signature 'EnsDb'
listColumns(x, table, skip.keys=TRUE, ...)

S4 method for signature 'EnsDb'
listGenebiotypes(x, ...)

S4 method for signature 'EnsDb'
listTxbiotypes(x, ...)

S4 method for signature 'EnsDb'
listTables(x, ...)

S4 method for signature 'EnsDb'

4 EnsDb-class

metadata(x, ...)

S4 method for signature 'EnsDb'
organism(object)

S4 method for signature 'EnsDb'
returnFilterColumns(x)

S4 method for signature 'EnsDb'
returnFilterColumns(x)

S4 replacement method for signature 'EnsDb'
returnFilterColumns(x) <- value

S4 method for signature 'EnsDb'
seqinfo(x)

S4 method for signature 'EnsDb'
seqlevels(x)

S4 method for signature 'EnsDb'
updateEnsDb(x, ...)

Arguments

(in alphabetic order)

Additional arguments. Not used.

...columns Columns (attributes) to be retrieved from the database tables. Use the listColumns
or listTables method for a list of supported columns.

filter list of BasicFilter instance(s) to select specific entries from the database (see
examples below).

object For organism: an EnsDb instance.

order.by name of one of the columns above on which the results should be sorted.

order.type if the results should be ordered ascending (asc, default) or descending (desc).

skip.keys for listColumns: whether primary and foreign keys (not being e.g. "gene_id"
or alike) should be returned or not. By default these will not be returned.

skip.order.check

if paramter order.by should be checked for allowed column names. If TRUE the
function checks if the provided order criteria orders on columns present in the
database tables.

table For listColumns: optionally specify the table name for which the columns
should be returned.

value For returnFilterColumns: a logical of length one specifying whether columns
that are used for eventual filters should also be returned.

x An EnsDb instance.

Value

For buildQuery A character string with the SQL query.

EnsDb-class 5

For connection The SQL connection to the RSQLite database.

For EnsDb An EnsDb instance.

For lengthOf A named integer vector with the length of the genes or transcripts.

For listColumns A character vector with the column names.

For listGenebiotypes A character vector with the biotypes of the genes in the database.

For listTxbiotypes A character vector with the biotypes of the transcripts in the database.

For listTables A list with the names corresponding to the database table names and the elements
being the attribute (column) names of the table.

For metadata A data.frame.

For organism A character string.

For returnFilterColumns A logical of length 1.

For seqinfo A Seqinfo class.

For updateEnsDb A EnsDb object.

Objects from the Class

A connection to the respective annotation database is created upon loading of an annotation package
created with the makeEnsembldbPackage function. In addition, the EnsDb constructor specifying
the SQLite database file can be called to generate an instance of the object (see makeEnsemblSQLiteFromTables
for an example).

Slots

ensdb Object of class "DBIConnection": the connection to the database.

tables Named list of database table columns with the names being the database table names. The
tables are ordered by their degree, i.e. the number of other tables they can be joined with.

.properties Internal list storing user-defined properties. Should not be directly accessed.

Methods and Functions

buildQuery Helper function building the SQL query to be used to retrieve the wanted information.
Usually there is no need to call this method.

dbconn Returns the connection to the internal SQL database.

ensemblVersion Returns the Ensembl version on which the package was built.

listColumns Lists all columns of all tables in the database, or, if table is specified, of the respec-
tive table.

listGenebiotypes Lists all gene biotypes defined in the database.

listTxbiotypes Lists all transcript biotypes defined in the database.

listTables Returns a named list of database table columns (names of the list being the database
table names).

metadata Returns a data.frame with the metadata information from the database, i.e. informa-
tions about the Ensembl version or Genome build the database was build upon.

organism Returns the organism name (e.g. "homo_sapiens").

returnFilterColumns, returnFilterColumns<- Get or set the option which results in columns that
are used for eventually specified filters to be added as result columns. The default value is TRUE
(i.e. filter columns are returned).

6 EnsDb-class

seqinfo Returns the sequence/chromosome information from the database.

seqlevels Returns the chromosome/sequence names that are available in the database.

show Displays some informations from the database.

updateEnsDb Updates the EnsDb object to the most recent implementation.

Note

While a column named "tx_name" is listed by the listTables and listColumns method, no
such column is present in the database. Transcript names returned by the methods are actually the
transcript IDs. This virtual column was only introduced to be compliant with TxDb objects (which
provide transcript names).

Author(s)

Johannes Rainer

See Also

EnsDb, makeEnsembldbPackage, BasicFilter, exonsBy, genes, transcripts, makeEnsemblSQLiteFromTables

Examples

library(EnsDb.Hsapiens.v75)

Display some information:
EnsDb.Hsapiens.v75

Show the tables along with its columns
listTables(EnsDb.Hsapiens.v75)

For what species is this database?
organism(EnsDb.Hsapiens.v75)

What Ensembl version if the database based on?
ensemblVersion(EnsDb.Hsapiens.v75)

Get some more information from the database
metadata(EnsDb.Hsapiens.v75)

Get all the sequence names.
seqlevels(EnsDb.Hsapiens.v75)

buildQuery
##
Join tables gene and transcript and return gene_id and tx_id
buildQuery(EnsDb.Hsapiens.v75, columns=c("gene_id", "tx_id"))

Get all exon_ids and transcript ids of genes encoded on chromosome Y.
buildQuery(EnsDb.Hsapiens.v75, columns=c("exon_id", "tx_id"),

filter=list(SeqnameFilter("Y")))

List all available gene biotypes from the database:
listGenebiotypes(EnsDb.Hsapiens.v75)

exonsBy 7

List all available transcript biotypes:
listTxbiotypes(EnsDb.Hsapiens.v75)

Update the EnsDb; this is in most instances not necessary at all.
updateEnsDb(EnsDb.Hsapiens.v75)

returnFilterColumns
returnFilterColumns(EnsDb.Hsapiens.v75)

Get protein coding genes on chromosome X, specifying to return
only columns gene_name as additional column.
genes(EnsDb.Hsapiens.v75, filter=list(SeqnameFilter("X"),

GenebiotypeFilter("protein_coding")),
columns=c("gene_name"))

By default we get also the gene_biotype column as the data was filtered
on this column.

This can be changed using the returnFilterColumns option
returnFilterColumns(EnsDb.Hsapiens.v75) <- FALSE
genes(EnsDb.Hsapiens.v75, filter=list(SeqnameFilter("X"),

GenebiotypeFilter("protein_coding")),
columns=c("gene_name"))

exonsBy Retrieve annotation data from an Ensembl based package

Description

Retrieve gene/transcript/exons annotations stored in an Ensembl based database package generated
with the makeEnsembldbPackage function.

Usage

S4 method for signature 'EnsDb'
exons(x, columns=listColumns(x,"exon"),

filter, order.by, order.type="asc",
return.type="GRanges")

S4 method for signature 'EnsDb'
exonsBy(x, by=c("tx", "gene"),

columns=listColumns(x, "exon"), filter, use.names=FALSE)

S4 method for signature 'EnsDb'
exonsByOverlaps(x, ranges, maxgap=0L, minoverlap=1L,

type=c("any", "start", "end"),
columns=listColumns(x, "exon"),
filter)

S4 method for signature 'EnsDb'

8 exonsBy

transcripts(x, columns=listColumns(x, "tx"),
filter, order.by, order.type="asc",
return.type="GRanges")

S4 method for signature 'EnsDb'
transcriptsBy(x, by=c("gene", "exon"),

columns=listColumns(x, "tx"), filter)

S4 method for signature 'EnsDb'
transcriptsByOverlaps(x, ranges, maxgap=0L, minoverlap=1L,

type=c("any", "start", "end"),
columns=listColumns(x, "tx"),
filter)

S4 method for signature 'EnsDb'
promoters(x, upstream=2000, downstream=200, ...)

S4 method for signature 'EnsDb'
genes(x, columns=listColumns(x, "gene"), filter,

order.by, order.type="asc",
return.type="GRanges")

S4 method for signature 'EnsDb'
disjointExons(x, aggregateGenes=FALSE,

includeTranscripts=TRUE, filter, ...)

S4 method for signature 'EnsDb'
cdsBy(x, by=c("tx", "gene"), columns=NULL, filter,

use.names=FALSE)

S4 method for signature 'EnsDb'
fiveUTRsByTranscript(x, columns=NULL, filter)

S4 method for signature 'EnsDb'
threeUTRsByTranscript(x, columns=NULL, filter)

S4 method for signature 'GRangesList'
toSAF(x, ...)

Arguments

(In alphabetic order)

For promoters: additional arguments to be passed to the transcripts method.

...aggregateGenes For disjointExons: When FALSE (default) exon fragments that overlap mul-
tiple genes are dropped. When TRUE, all fragments are kept and the gene_id
metadata column includes all gene IDs that overlap the exon fragment.

by For exonsBy: wheter exons sould be fetched by genes or by transcripts; as in the
corresponding function of the GenomicFeatures package. For transcriptsBy:
whether transcripts should be fetched by genes or by exons; fetching transcripts
by cds as supported by the transcriptsBy method in the GenomicFeatures
package is currently not implemented. For cdsBy: whether cds should be fetched

exonsBy 9

by transcript of by gene.

columns Columns to be retrieved from the database tables.
Default values for genes are all columns from the gene database table, for
exons and exonsBy the column names of the exon database table table and
for transcript and transcriptBy the columns of the tx data base table (see
details below for more information).
Note that any of the column names of the database tables can be submitted to
any of the methods (use listTables or listColumns methods for a complete
list of allowed column names).
For cdsBy: this argument is only supported for for by="tx".

downstream For method promoters: the number of nucleotides downstream of the transcrip-
tion start site that should be included in the promoter region.

filter A filter object extending BasicFilter or a list of such object(s) to select specific
entries from the database (see examples below).

includeTranscripts

For disjointExons: When TRUE (default) a tx_name metadata column is in-
cluded that lists all transcript IDs that overlap the exon fragment. Note: this is
different to the disjointExons function in the GenomicFeatures package, that
lists the transcript names, not IDs.

maxgap For exonsByOverlaps and transcriptsByOverlaps: see exonsByOverlaps
help page in the GenomicFeatures package.

minoverlap For exonsByOverlaps and transcriptsByOverlaps: see exonsByOverlaps
help page in the GenomicFeatures package.

order.by Name of one of the columns above on which the results should be sorted.

order.type If the results should be ordered ascending (asc, default) or descending (desc).

ranges For exonsByOverlaps and transcriptsByOverlaps: a GRanges object speci-
fying the genomic regions.

return.type Type of the returned object. Can be either "data.frame", "DataFrame" or
"GRanges". In the latter case the return object will be a GRanges object with the
GRanges specifying the chromosomal start and end coordinates of the feature
(gene, transcript or exon, depending whether genes, transcripts or exons was
called). All additional columns are added as metadata columns to the GRanges
object.

type For exonsByOverlaps and transcriptsByOverlaps: see exonsByOverlaps
help page in the GenomicFeatures package.

upstream For method promoters: the number of nucleotides upstream of the transcription
start site that should be included in the promoter region.

use.names For cdsBy and exonsBy: only for by="gene": use the names of the genes instead
of their IDs as names of the resulting GRangesList.

x For toSAF a GRangesList object. For all other methods an EnsDb instance.

Details

A detailed description of all database tables and the associated attributes/column names is also given
in the vignette of this package. An overview of the columns is given below:

gene_id the Ensembl gene ID of the gene.

gene_name the name of the gene (in most cases its official symbol).

10 exonsBy

entrezid the NCBI Entrezgene ID of the gene; note that this can also be a ";" separated list of IDs
for Ensembl genes mapped to more than one Entrezgene.

gene_biotype the biotype of the gene.

gene_seq_start the start coordinate of the gene on the sequence (usually a chromosome).

gene_seq_end the end coordinate of the gene.

seq_name the name of the sequence the gene is encoded (usually a chromosome).

seq_strand the strand on which the gene is encoded

seq_coord_system the coordinate system of the sequence.

tx_id the Ensembl transcript ID.

tx_biotype the biotype of the transcript.

tx_seq_start the chromosomal start coordinate of the transcript.

tx_seq_end the chromosomal end coordinate of the transcript.

tx_cds_seq_start the start coordinate of the coding region of the transcript (NULL for non-coding
transcripts).

tx_cds_seq_end the end coordinate of the coding region.

exon_id the ID of the exon. In Ensembl, each exon specified by a unique chromosomal start and
end position has its own ID. Thus, the same exon might be part of several transcripts.

exon_seq_start the chromosomal start coordinate of the exon.

exon_seq_end the chromosomal end coordinate of the exon.

exon_idx the index of the exon in the transcript model. As noted above, an exon can be part of
several transcripts and thus its position inside these transcript might differ.

Also, the vignette provides examples on how to retrieve sequences for genes/transcripts/exons.

Value

For exons, transcripts and genes, a data.frame, DataFrame or a GRanges, depending on the
value of the return.type parameter. The result is ordered as specified by the parameter order.by
or, if not provided, by seq_name and chromosomal start coordinate, but NOT by any ordering of
values in eventually submitted filter objects.

For exonsBy, transcriptsBy: a GRangesList, depending on the value of the return.type pa-
rameter. The results are ordered by the value of the by parameter.

For exonsByOverlaps and transcriptsByOverlaps: a GRanges with the exons or transcripts
overlapping the specified regions.

For toSAF: a data.frame with column names "GeneID" (the group name from the GRangesList,
i.e. the ID by which the GRanges are split), "Chr" (the seqnames from the GRanges), "Start" (the
start coordinate), "End" (the end coordinate) and "Strand" (the strand).

For disjointExons: a GRanges of non-overlapping exon parts.

For cdsBy: a GRangesList with GRanges per either transcript or exon specifying the start and end
coordinates of the coding region of the transcript or gene.

For fiveUTRsByTranscript: a GRangesList with GRanges for each protein coding transcript rep-
resenting the start and end coordinates of full or partial exons that constitute the 5’ untranslated
region of the transcript.

For threeUTRsByTranscript: a GRangesList with GRanges for each protein coding transcript
representing the start and end coordinates of full or partial exons that constitute the 3’ untranslated
region of the transcript.

exonsBy 11

Methods and Functions

exons Retrieve exon information from the database. Additional columns from transcripts or genes
associated with the exons can be specified and are added to the respective exon annotation.

exonsBy Retrieve exons grouped by transcript or by gene. This function returns a GRangesList as
does the analogous function in the GenomicFeatures package. Using the columns parame-
ter it is possible to determine which additional values should be retrieved from the database.
These will be included in the GRanges object for the exons as metadata columns. The exons
in the inner GRanges are ordered by the exon index within the transcript (if by="tx"), or in-
creasingly by the chromosomal start position of the exon or decreasingly by the chromosomal
end position of the exon depending whether the gene is encoded on the + or - strand (for
by="gene"). The GRanges in the GRangesList will be ordered by the name of the gene or
transcript.

exonsByOverlaps Retrieve exons overlapping specified genomic ranges. For more information see
exonsByOverlaps method in the GenomicFeatures package. The functionality is to some
extent similar and redundant to the exons method in combination with GRangesFilter filter.

transcripts Retrieve transcript information from the database. Additional columns from genes or
exons associated with the transcripts can be specified and are added to the respective transcript
annotation.

transcriptsBy Retrieve transcripts grouped by gene or exon. This function returns a GRangesList
as does the analogous function in the GenomicFeatures package. Using the columns param-
eter it is possible to determine which additional values should be retrieved from the database.
These will be included in the GRanges object for the transcripts as metadata columns. The
transcripts in the inner GRanges are ordered increasingly by the chromosomal start position
of the transcript for genes encoded on the + strand and in a decreasing manner by the chro-
mosomal end position of the transcript for genes encoded on the - strand. The GRanges in the
GRangesList will be ordered by the name of the gene or exon.

transcriptsByOverlaps Retrieve transcripts overlapping specified genomic ranges. For more in-
formation see transcriptsByOverlaps method in the GenomicFeatures package. The func-
tionality is to some extent similar and redundant to the transcripts method in combination
with GRangesFilter filter.

promoters Retrieve promoter information from the database. Additional columns from genes or
exons associated with the promoters can be specified and are added to the respective promoter
annotation.

genes Retrieve gene information from the database. Additional columns from transcripts or exons
associated with the genes can be specified and are added to the respective gene annotation.

disjointExons This method is identical to disjointExons defined in the GenomicFeatures pack-
age. It creates a GRanges of non-overlapping exon parts with metadata columns of gene_id
and exonic_part. Exon parts that overlap more than one gene can be dropped with aggregateGenes=FALSE.

cdsBy Returns the coding region grouped either by transcript or by gene. Each element in the
GRangesList represents the cds for one transcript or gene, with the individual ranges corre-
sponding to the coding part of its exons. For by="tx" additional annotation columns can be
added to the individual GRanges (in addition to the default columns exon_id and exon_rank).
Note that the GRangesList is sorted by its names.

fiveUTRsByTranscript Returns the 5’ untranslated region for protein coding transcripts.

threeUTRsByTranscript Returns the 3’ untranslated region for protein coding transcripts.

toSAF Reformats a GRangesList object into a data.frame corresponding to a standard SAF (Sim-
plified Annotation Format) file (i.e. with column names "GeneID", "Chr", "Start", "End"
and "Strand"). Note: this method makes only sense on a GRangesList that groups features
(exons, transcripts) by gene.

12 exonsBy

Note

Ensembl defines genes not only on standard chromosomes, but also on patched chromosomes and
chromosome variants. Thus it might be advisable to restrict the queries to just those chromosomes
of interest (e.g. by specifying a SeqnameFilter(c(1:22, "X", "Y"))). In addition, also so called
LRG genes (Locus Reference Genomic) are defined in Ensembl. Their gene id starts with LRG
instead of ENS for Ensembl genes, thus, a filter can be applied to specifically select those genes or
exclude those genes (see examples below).

Depending on the value of the global option "ucscChromosomeNames" (use getOption(ucscChromosomeNames, FALSE)
to get its value or option(ucscChromosomeNames=TRUE) to change its value) the sequence/chromosome
names of the returned GRanges objects or provided in the returned data.frame or DataFrame cor-
respond to Ensembl chromosome names (if value is FALSE) or UCSC chromosome names (if TRUE).
This ensures a better integration with the Gviz package, in which this option is set by default to
TRUE.

Note

While it is possible to request values from a column "tx_name" (with the columns argument), no
such column is present in the database. The returned values correspond to the ID of the transcripts.

Author(s)

Johannes Rainer, Tim Triche

See Also

makeEnsembldbPackage, BasicFilter, listColumns, lengthOf

Examples

library(EnsDb.Hsapiens.v75)
edb <- EnsDb.Hsapiens.v75

genes
##
get all genes endcoded on chromosome Y
AllY <- genes(edb, filter=SeqnameFilter("Y"))
AllY

return result as DataFrame.
AllY.granges <- genes(edb,

filter=SeqnameFilter("Y"),
return.type="DataFrame")

AllY.granges

include all transcripts of the gene and their chromosomal
coordinates, sort by chrom start of transcripts and return as
GRanges.
AllY.granges.tx <- genes(edb,

filter=SeqnameFilter("Y"),
columns=c("gene_id", "seq_name",

"seq_strand", "tx_id", "tx_biotype",
"tx_seq_start", "tx_seq_end"),

order.by="tx_seq_start")
AllY.granges.tx

exonsBy 13

transcripts
##
get all transcripts of a gene
Tx <- transcripts(edb,

filter=GeneidFilter("ENSG00000184895"),
order.by="tx_seq_start")

Tx

get all transcripts of two genes along with some information on the
gene and transcript
Tx <- transcripts(edb,

filter=GeneidFilter(c("ENSG00000184895",
"ENSG00000092377")),
columns=c("gene_id", "gene_seq_start",

"gene_seq_end", "gene_biotype", "tx_biotype"))
Tx

promoters
##
get the bona-fide promoters (2k up- to 200nt downstream of TSS)
promoters(edb, filter=GeneidFilter(c("ENSG00000184895",

"ENSG00000092377")))

exons
##
get all exons of the provided genes
Exon <- exons(edb,

filter=GeneidFilter(c("ENSG00000184895",
"ENSG00000092377")),

order.by="exon_seq_start",
columns=c("gene_id", "gene_seq_start",

"gene_seq_end", "gene_biotype"))
Exon

exonsBy
##
get all exons for transcripts encoded on chromosomes X and Y.
ETx <- exonsBy(edb, by="tx",

filter=SeqnameFilter(c("X", "Y")))
ETx
get all exons for genes encoded on chromosome 1 to 22, X and Y and
include additional annotation columns in the result
EGenes <- exonsBy(edb, by="gene",

filter=SeqnameFilter(c("X", "Y")),
columns=c("gene_biotype", "gene_name"))

EGenes

Note that this might also contain "LRG" genes.
length(grep(names(EGenes), pattern="LRG"))

to fetch just Ensemblgenes, use an GeneidFilter with value
"ENS%" and condition "like"

14 GeneidFilter-class

transcriptsBy
##
TGenes <- transcriptsBy(edb, by="gene",

filter=SeqnameFilter(c("X", "Y")))
TGenes

convert this to a SAF formatted data.frame that can be used by the
featureCounts function from the Rsubreader package.
head(toSAF(TGenes))

transcriptsByOverlaps
##
ir <- IRanges(start=c(2654890, 2709520, 28111770),

end=c(2654900, 2709550, 28111790))
gr <- GRanges(rep("Y", length(ir)), ir)

Retrieve all transcripts overlapping any of the regions.
txs <- transcriptsByOverlaps(edb, gr)
txs

Alternatively, use a GRangesFilter
grf <- GRangesFilter(gr, condition="overlapping")
txs <- transcripts(edb, filter=grf)
txs

cdsBy
Get the coding region for all transcripts on chromosome Y.
Specifying also additional annotation columns (in addition to the default
exon_id and exon_rank).
cds <- cdsBy(edb, by="tx", filter=SeqnameFilter("Y"),

columns=c("tx_biotype", "gene_name"))

the 5' untranslated regions:
fUTRs <- fiveUTRsByTranscript(edb, filter=SeqnameFilter("Y"))

the 3' untranslated regions with additional column gene_name.
tUTRs <- threeUTRsByTranscript(edb, filter=SeqnameFilter("Y"),

columns="gene_name")

GeneidFilter-class Filter results fetched from the Ensembl database

Description

These classes allow to specify which entries (i.e. genes, transcripts or exons) should be retrieved
from the database.

GeneidFilter-class 15

Details

ExonidFilter Allows to filter based on the (Ensembl) exon identifier.

ExonrankFilter Allows to filter based on the rank (index) of the exon within the transcript model.
Exons are always numbered 5’ to 3’ end of the transcript, thus, also on the reverse strand, the
exon 1 is the most 5’ exon of the transcript.

EntrezidFilter Filter results based on the NCBI Entrezgene identifierts of the genes. Use the
listGenebiotypes method to get a complete list of all available gene biotypes.

GenebiotypeFilter Filter results based on the gene biotype as defined in the Ensembl database.

GeneidFilter Filter results based on the Ensembl gene identifiers.

GenenameFilter Allows to filter on the gene names (symbols) of the genes.

SymbolFilter Filter on gene symbols. Note that since no such database column is available in
an EnsDb database the gene names are used to filter. These do however correspond all to the
official gene symbols.

GRangesFilter Allows to fetch features within or overlapping specified genomic region(s)/range(s).
This filter takes a GRanges object as input and, if condition="within" (the default) will re-
strict results to features (genes, transcripts or exons) that are completely within the region.
Alternatively, by specifying condition="overlapping" it will return all features (i.e. genes
for a call to genes, transcripts for a call to transcripts and exons for a call to exons) that
are partially overlapping with the region, i.e. which start coordinate is smaller than the end
coordinate of the region and which end coordinate is larger than the start coordinate of the
region. Thus, genes and transcripts that have an intron overlapping the region will also be
returned.
Calls to the methods exonsBy, cdsBy and transcriptsBy use the start and end coordinates
of the feature type specified with argument by (i.e. "gene", "transcript" or "exon") for the
filtering.
Note: if the specified GRanges object defines multiple region, all features within (or overlap-
ping) any of these regions are returned.
Chromosome names/seqnames can be provided in UCSC format (e.g. "chrX") or Ensembl
format (e.g. "X"); see seqlevelsStyle for more information.

SeqendFilter Filter based on the chromosomal end coordinate of the exons, transcripts or genes.

SeqnameFilter Filter on the sequence name on which the features are encoded (mostly the chro-
mosome names). Supports UCSC chromosome names (e.g. "chrX") and Ensembl chromo-
some names (e.g. "X").

SeqstartFilter Filter based on the chromosomal start coordinates of the exons, transcripts or
genes.

SeqstrandFilter Filter based on the strand on which the features are encoded.

TxbiotypeFilter Filter on the transcript biotype defined in Ensembl. Use the listTxbiotypes
method to get a complete list of all available transcript biotypes.

TxidFilter Filter on the Ensembl transcript identifiers.

Objects from the Class

While objects can be created by calls e.g. of the form new("GeneidFilter", ...) users are
strongly encouraged to use the specific functions: GeneidFilter, EntrezidFilter, GenenameFilter,
GenebiotypeFilter, GRangesFilter, SymbolFilter, TxidFilter, TxbiotypeFilter, ExonidFilter,
ExonrankFilter, SeqnameFilter, SeqstrandFilter, SeqstartFilter and SeqendFilter.

See examples below for usage.

16 GeneidFilter-class

Slots

condition: Object of class "character": can be either "=", "in" or "like" to filter on character
values (e.g. gene id, gene biotype, seqname etc), or "=", ">" or "<" for numerical values
(chromosome/seq coordinates). Note that for "like" value should be a SQL pattern (e.g.
"ENS%").

value: Object of class "character": the value to be used for filtering.

Extends

Class BasicFilter, directly.

Methods for all BasicFilter objects

Note: these methods are applicable to all classes extending the BasicFilter class.

signature(object = "GeneidFilter", db = "EnsDb",with.tables = "character"):
returns the column (attribute name) to be used for the filtering. Submitting the db parameter
ensures that returned column is valid in the corresponding database schema. The optional
argument with.tables allows to specify which in which database table the function should
look for the attribute/column name. By default the method will check all database tables.

columncolumn signature(object = "GeneidFilter", db = "EnsDb",with.tables = "missing"):
returns the column (attribute name) to be used for the filtering. Submitting the db parameter
ensures that returned column is valid in the corresponding database schema.

column signature(object = "GeneidFilter", db = "missing",with.tables = "missing"):
returns the column (table column name) to be used for the filtering.

condition signature(x = "BasicFilter"): returns the value for the condition slot.

condition<- setter method for condition.

value signature(x = "BasicFilter", db = "EnsDb"): returns the value of the value slot of
the filter object.

value<- setter method for value.

where signature(object = "GeneidFilter", db = "EnsDb",with.tables = "character"):
returns the where condition for the SQL call. Submitting also the db parameter ensures
that the columns are valid in the corresponding database schema. The optional argument
with.tables allows to specify which in which database table the function should look for the
attribute/column name. By default the method will check all database tables.

where signature(object = "GeneidFilter", db = "EnsDb",with.tables = "missing"):
returns the where condition for the SQL call. Submitting also the db parameter ensures that
the columns are valid in the corresponding database schema.

where signature(object = "GeneidFilter", db = "missing",with.tables = "missing"):
returns the where condition for the SQL call.

Methods for GRangesFilter objects

start, end, strand Get the start and end coordinate and the strand from the GRanges within the
filter.

seqlevels, seqnames Get the names of the sequences from the GRanges of the filter.

GeneidFilter-class 17

Note

The column and where methods should be always called along with the EnsDb object, as this en-
sures that the returned column names are valid for the database schema. The optional argument
with.tables should on the other hand only be used rarely as it is more intended for internal use.

Note that the database column "entrezid" queried for EntrezidFilter classes can contain multi-
ple, ";" separated, Entrezgene IDs, thus, using this filter at present might not return all entries from
the database. Also, the database does not provide a column with the official gene symbols and a
SymbolFilter queries the gene names instead.

Author(s)

Johannes Rainer

See Also

genes, transcripts, exons, listGenebiotypes, listTxbiotypes

Examples

create a filter that could be used to retrieve all informations for
the respective gene.
Gif <- GeneidFilter("ENSG00000012817")
Gif
returns the where condition of the SQL querys
where(Gif)

create a filter for a chromosomal end position of a gene
Sef <- SeqendFilter(10000, condition=">", "gene")
Sef

for additional examples see the help page of "genes"

Example for GRangesFilter:
retrieve all genes overlapping the specified region
grf <- GRangesFilter(GRanges("11", ranges=IRanges(114000000, 114000050),

strand="+"), condition="overlapping")
library(EnsDb.Hsapiens.v75)
edb <- EnsDb.Hsapiens.v75
genes(edb, filter=grf)

Get also all transcripts overlapping that region
transcripts(edb, filter=grf)

Retrieve all transcripts for the above gene
gn <- genes(edb, filter=grf)
txs <- transcripts(edb, filter=GenenameFilter(gn$gene_name))
Next we simply plot their start and end coordinates.
plot(3, 3, pch=NA, xlim=c(start(gn), end(gn)), ylim=c(0, length(txs)), yaxt="n", ylab="")
Highlight the GRangesFilter region
rect(xleft=start(grf), xright=end(grf), ybottom=0, ytop=length(txs), col="red", border="red")
for(i in 1:length(txs)){

current <- txs[i]
rect(xleft=start(current), xright=end(current), ybottom=i-0.975, ytop=i-0.125, border="grey")

18 getGeneRegionTrackForGviz

text(start(current), y=i-0.5,pos=4, cex=0.75, labels=current$tx_id)
}
Thus, we can see that only 4 transcripts of that gene are indeed overlapping the region.

No exon is overlapping that region, thus we're not getting anything
exons(edb, filter=grf)

Example for ExonrankFilter
Extract all exons 1 and (if present) 2 for all genes encoded on the
Y chromosome
exons(edb, columns=c("tx_id", "exon_idx"),

filter=list(SeqnameFilter("Y"),
ExonrankFilter(3, condition="<")))

Get all transcripts for the gene SKA2
transcripts(edb, filter=GenenameFilter("SKA2"))

Which is the same as using a SymbolFilter
transcripts(edb, filter=SymbolFilter("SKA2"))

getGeneRegionTrackForGviz

Utility functions

Description

Utility functions integrating EnsDb objects with other Bioconductor packages.

Usage

S4 method for signature 'EnsDb'
getGeneRegionTrackForGviz(x, filter=list(),

chromosome=NULL,
start=NULL, end=NULL,
featureIs="gene_biotype")

Arguments

(In alphabetic order)

For getGeneRegionTrackForGviz: optional chromosome name to restrict the
returned entry to a specific chromosome.

chromosomeend For getGeneRegionTrackForGviz: optional chromosomal end coordinate spec-
ifying, together with start, the chromosomal region from which features should
be retrieved.

featureIs For getGeneRegionTrackForGviz: whether the gene ("gene_biotype") or the
transcript biotype ("tx_biotype") should be returned in column "feature".

getGeneRegionTrackForGviz 19

filter A filter object extending BasicFilter or a list of such object(s) to select specific
entries from the database (see examples below).

start For getGeneRegionTrackForGviz: optional chromosomal start coordinate spec-
ifying, together with end, the chromosomal region from which features should
be retrieved.

x For toSAF a GRangesList object. For all other methods an EnsDb instance.

Value

For getGeneRegionTrackForGviz: see method description above.

Methods and Functions

getGeneRegionTrackForGviz Retrieve a GRanges object with transcript features from the EnsDb
that can be used directly in the Gviz package to create a GeneRegionTrack. Using the filter,
chromosome, start and end arguments it is possible to fetch specific features (e.g. lincRNAs)
from the database.
If chromosome, start and end is provided the function internally first retrieves all transcripts
that have an exon or an intron in the specified chromosomal region and subsequently fetch all
of these transcripts. This ensures that all transcripts of the region are returned, even those that
have only an intron in the region.
The function returns a GRanges object with additional annotation columns "feature", "gene",
"exon", "exon_rank", "trancript", "symbol" specifying the feature type (either gene or
transcript biotype), the (Ensembl) gene ID, the exon ID, the rank/index of the exon in the
transcript, the transcript ID and the gene symbol/name.

Author(s)

Johannes Rainer

See Also

BasicFilter transcripts

Examples

library(EnsDb.Hsapiens.v75)
edb <- EnsDb.Hsapiens.v75
getGeneRegionTrackForGviz
##
Get all genes encoded on chromosome Y in the specifyed region.
AllY <- getGeneRegionTrackForGviz(edb, chromosome="Y", start=5000000,

end=7000000)
We could plot this now using plotTracks(GeneRegionTrack(AllY))

We can also use filters to further restrict the query to e.g.
all lincRNA genes encoded in that region.
lincsY <- getGeneRegionTrackForGviz(edb, chromosome="Y", start=5000000,

end=7000000,
filter=GenebiotypeFilter("lincRNA"))

20 getGenomeFaFile

getGenomeFaFile Functionality related to DNA/RNA sequences

Description

Utility functions related to RNA/DNA sequences, such as extracting RNA/DNA sequences for fea-
tures defined in Ensb.

Usage

S4 method for signature 'EnsDb'
getGenomeFaFile(x, pattern="dna.toplevel.fa")

Arguments

(In alphabetic order)

For method getGenomeFaFile: the pattern to be used to identify the fasta file
representing genomic DNA sequence.

patternx For all other methods an EnsDb instance.

Value

For getGenomeFaFile: a FaFile-class object with the genomic DNA sequence.

Methods and Functions

getGenomeFaFile Returns a FaFile-class (defined in Rsamtools) with the genomic sequence
of the genome build matching the Ensembl version of the EnsDb object. The file is retrieved
using the AnnotationHub package, thus, at least for the first invocation, an internet connection
is required to locate and download the file; subsequent calls will load the cached file instead.
If no fasta file for the actual Ensembl version is available the function tries to identify a file
matchint the species and genome build version of the closest Ensembl release and returns that
instead. See the vignette for an example to work with such files.

Author(s)

Johannes Rainer

See Also

BasicFilter transcripts exonsBy

lengthOf 21

Examples

Loading an EnsDb for Ensembl version 75 (genome GRCh37):
library(EnsDb.Hsapiens.v75)
edb <- EnsDb.Hsapiens.v75

Not run:
Retrieve a FaFile with the gneomic DNA sequence matching the organism,
genome release version and, if possible, the Ensembl version of the
EnsDb object.
Dna <- getGenomeFaFile(edb)
Extract the transcript sequence for all transcripts encoded on chromosome
Y.
##extractTranscriptSeqs(Dna, edb, filter=SeqnameFilter("Y"))

End(Not run)

lengthOf Calculating lengths of features

Description

These methods allow to calculate the lengths of features (transcripts, genes, CDS, 3’ or 5’ UTRs)
defined in an EnsDb object or database.

Usage

S4 method for signature 'EnsDb'
lengthOf(x, of="gene", filter=list())

Arguments

(In alphabetic order)

list of BasicFilter instance(s) to select specific entries from the database (see
examples below).

filterof for lengthOf: whether the length of genes or transcripts should be retrieved
from the database.

x For lengthOf: either an EnsDb or a GRangesList object. For all other methods
an EnsDb instance.

Value

For lengthOf: see method description above.

22 lengthOf

Methods and Functions

lengthOf Retrieve the length of genes or transcripts from the database. The length is the sum of
the lengths of all exons of a transcript or a gene. In the latter case the exons are first reduced
so that the length corresponds to the part of the genomic sequence covered by the exons.

Note: in addition to this method, also the transcriptLengths function in the GenomicFeatures
package can be used.

Author(s)

Johannes Rainer

See Also

exonsBy transcripts transcriptLengths

Examples

library(EnsDb.Hsapiens.v75)
edb <- EnsDb.Hsapiens.v75

lengthOf
##
length of a specific gene.
lengthOf(edb,

filter=list(GeneidFilter("ENSG00000000003")))

length of a transcript
lengthOf(edb, of="tx",

filter=list(TxidFilter("ENST00000494424")))

average length of all protein coding genes encoded on chromosomes X
and Y
mean(lengthOf(edb, of="gene",

filter=list(GenebiotypeFilter("protein_coding"),
SeqnameFilter(c("X", "Y")))))

average length of all snoRNAs
mean(lengthOf(edb, of="gene",

filter=list(GenebiotypeFilter("snoRNA"),
SeqnameFilter(c("X", "Y")))))

transcriptLengths
##
Calculate the length of transcripts encoded on chromosome Y, including
length of the CDS, 5' and 3' UTR.
##len <- transcriptLengths(edb, with.cds_len=TRUE, with.utr5_len=TRUE,
with.utr3_len=TRUE, filter=SeqnameFilter("Y"))
##head(len)

listEnsDbs 23

listEnsDbs List EnsDb databases in a MySQL server

Description

The listEnsDbs function lists EnsDb databases in a MySQL server.

Usage

listEnsDbs(dbcon, host, port, user, pass)

Arguments

dbcon A DBIConnection object providing access to a MySQL database. Either dbcon
or all of the other arguments have to be specified.

host Character specifying the host on which the MySQL server is running.

port The port of the MySQL server (usually 3306).

user The username for the MySQL server.

pass The password for the MySQL server.

Details

The use of this function requires that the RMySQL package is installed and that the user has either
access to a MySQL server with already installed EnsDb databases, or write access to a MySQL
server in which case EnsDb databases could be added with the useMySQL method. EnsDb databases
follow the same naming conventions than the EnsDb packages, with the exception that the name is
all lower case and that "." is replaced by "_".

Value

A data.frame listing the database names, organism name and Ensembl version of the EnsDb
databases found on the server.

Author(s)

Johannes Rainer

See Also

useMySQL

Examples

Not run:
library(RMySQL)
dbcon <- dbConnect(MySQL(), host = "localhost", user = my_user, pass = my_pass)
listEnsDbs(dbcon)

End(Not run)

24 makeEnsembldbPackage

makeEnsembldbPackage Generating a Ensembl annotation package from Ensembl

Description

The functions described on this page allow to build EnsDb annotation objects/databases from En-
sembl annotations. The most complete set of annotations, which include also the NCBI Entrezgene
identifiers for each gene, can be retrieved by the functions using the Ensembl Perl API (i.e. func-
tions fetchTablesFromEnsembl, makeEnsemblSQLiteFromTables). Alternatively the functions
ensDbFromAH, ensDbFromGRanges, ensDbFromGff and ensDbFromGtf can be used to build EnsDb
objects using GFF or GTF files from Ensembl, which can be either manually downloaded from
the Ensembl ftp server, or directly form within R using AnnotationHub. The generated SQLite
database can be packaged into an R package using the makeEnsembldbPackage.

Usage

ensDbFromAH(ah, outfile, path, organism, genomeVersion, version)

ensDbFromGRanges(x, outfile, path, organism, genomeVersion,
version)

ensDbFromGff(gff, outfile, path, organism, genomeVersion,
version)

ensDbFromGtf(gtf, outfile, path, organism, genomeVersion,
version)

fetchTablesFromEnsembl(version, ensemblapi, user="anonymous",
host="ensembldb.ensembl.org", pass="",
port=5306, species="human")

makeEnsemblSQLiteFromTables(path=".", dbname)

makeEnsembldbPackage(ensdb, version, maintainer, author,
destDir=".", license="Artistic-2.0")

Arguments

(in alphabetical order)

For ensDbFromAH: an AnnotationHub object representing a single resource (i.e.
GTF file from Ensembl) from AnnotationHub.

ahauthor The author of the package.

dbname The name for the database (optional). By default a name based on the species
and Ensembl version will be automatically generated (and returned by the func-
tion).

destDir Where the package should be saved to.

ensdb The file name of the SQLite database generated by makeEnsemblSQLiteFromTables.

makeEnsembldbPackage 25

ensemblapi The path to the Ensembl perl API installed locally on the system. The Ensembl
perl API version has to fit the version.

genomeVersion For ensDbFromAH, ensDbFromGtf and ensDbFromGff: the version of the genome
(e.g. "GRCh37"). If not provided the function will try to guess it from the file
name (assuming file name convention of Ensembl GTF files).

gff The GFF file to import.

gtf The GTF file name.

host The hostname to access the Ensembl database.

license The license of the package.

maintainer The maintainer of the package.

organism For ensDbFromAH, ensDbFromGff and ensDbFromGtf: the organism name (e.g.
"Homo_sapiens"). If not provided the function will try to guess it from the file
name (assuming file name convention of Ensembl GTF files).

outfile The desired file name of the SQLite file. If not provided the name of the GTF
file will be used.

pass The password for the Ensembl database.

path The directory in which the tables retrieved by fetchTablesFromEnsembl or the
SQLite database file generated by ensDbFromGtf are stored.

port The port to be used to connect to the Ensembl database.

species The species for which the annotations should be retrieved.

user The username for the Ensembl database.

version For fetchTablesFromEnsembl, ensDbFromGRanges and ensDbFromGtf: the
Ensembl version for which the annotation should be retrieved (e.g. 75). The
ensDbFromGtf function will try to guess the Ensembl version from the GTF file
name if not provided.
For makeEnsemblDbPackage: the version for the package.

x For ensDbFromGRanges: the GRanges object.

Details

The fetchTablesFromEnsembl function internally calls the perl script get_gene_transcript_exon_tables.pl
to retrieve all required information from the Ensembl database using the Ensembl perl API.

As an alternative way, a EnsDb database file can be generated by the ensDbFromGtf or ensDbFromGff
from a GTF or GFF file downloaded from the Ensembl ftp server or using the ensDbFromAH to build
a database directly from corresponding resources from the AnnotationHub. The returned database
file name can then be used as an input to the makeEnsembldbPackage or it can be directly loaded
and used by the EnsDb constructor.

Value

makeEnsemblSQLiteFromTables, ensDbFromAH, ensDbFromGRanges and ensDbFromGtf: the name
of the SQLite file.

Functions

ensDbFromAH Create an EnsDb (SQLite) database from a GTF file provided by AnnotationHub.
The function returns the file name of the generated database file. For usage see the examples
below.

26 makeEnsembldbPackage

ensDbFromGff Create an EnsDb (SQLite) database from a GFF file from Ensembl. The function
returns the file name of the generated database file. For usage see the examples below.

ensDbFromGtf Create an EnsDb (SQLite) database from a GTF file from Ensembl. The function
returns the file name of the generated database file. For usage see the examplesbelow.

ensDbFromGRanges Create an EnsDb (SQLite) database from a GRanges object (e.g. from
AnnotationHub). The function returns the file name of the generated database file. For usage
see the examples below.

fetchTablesFromEnsembl Uses the Ensembl Perl API to fetch all required data from an En-
sembl database server and stores them locally to text files (that can be used as input for the
makeEnsembldbSQLiteFromTables function).

makeEnsemblSQLiteFromTables Creates the SQLite EnsDb database from the tables generated
by the fetchTablesFromEnsembl.

makeEnsembldbPackage Creates an R package containing the EnsDb database from a EnsDb
SQLite database created by any of the above functions ensDbFromAH, ensDbFromGff, ensDbFromGtf
or makeEnsemblSQLiteFromTables.

Note

A local installation of the Ensembl perl API is required for the fetchTablesFromEnsembl. See
http://www.ensembl.org/info/docs/api/api_installation.html for installation inscructions.

A database generated from a GTF/GFF files lacks some features as they are not available in the
GTF files from Ensembl. These are: NCBI Entrezgene IDs.

Author(s)

Johannes Rainer

See Also

EnsDb, genes

Examples

Not run:

get all human gene/transcript/exon annotations from Ensembl (75)
the resulting tables will be stored by default to the current working
directory; if the correct Ensembl api (version 75) is defined in the
PERL5LIB environment variable, the ensemblapi parameter can also be omitted.
fetchTablesFromEnsembl(75,

ensemblapi="/home/bioinfo/ensembl/75/API/ensembl/modules",
species="human")

These tables can then be processed to generate a SQLite database
containing the annotations
DBFile <- makeEnsemblSQLiteFromTables()

and finally we can generate the package
makeEnsembldbPackage(ensdb=DBFile, version="0.0.1",

maintainer="Johannes Rainer <johannes.rainer@eurac.edu>",
author="J Rainer")

http://www.ensembl.org/info/docs/api/api_installation.html

runEnsDbApp 27

Build an annotation database form a GFF file from Ensembl.
ftp://ftp.ensembl.org/pub/release-83/gff3/rattus_norvegicus
gff <- "Rattus_norvegicus.Rnor_6.0.83.gff3.gz"
DB <- ensDbFromGff(gff=gff)
edb <- EnsDb(DB)
edb

Build an annotation file from a GTF file.
the GTF file can be downloaded from
ftp://ftp.ensembl.org/pub/release-75/gtf/homo_sapiens/
gtffile <- "Homo_sapiens.GRCh37.75.gtf.gz"
generate the SQLite database file
DB <- ensDbFromGtf(gtf=paste0(ensemblhost, gtffile))

load the DB file directly
EDB <- EnsDb(DB)

Alternatively, we could fetch a GTF file directly from AnnotationHub
and build the database from that:
library(AnnotationHub)
ah <- AnnotationHub()
Query for all GTF files from Ensembl for Ensembl version 81
query(ah, c("Ensembl", "release-81", "GTF"))
We could get the one from e.g. Bos taurus:
DB <- ensDbFromAH(ah["AH47941"])
edb <- EnsDb(DB)
edb

End(Not run)

Generate a sqlite database for genes encoded on chromosome Y
chrY <- system.file("chrY", package="ensembldb")
DBFile <- makeEnsemblSQLiteFromTables(path=chrY ,dbname=tempfile())
load this database:
edb <- EnsDb(DBFile)

edb

Generate a sqlite database from a GRanges object specifying
genes encoded on chromosome Y
load(system.file("YGRanges.RData", package="ensembldb"))

Y

DB <- ensDbFromGRanges(Y, path=tempdir(), version=75,
organism="Homo_sapiens")

edb <- EnsDb(DB)

runEnsDbApp Search annotations interactively

28 select

Description

This function starts the interactive EnsDb shiny web application that allows to look up gene/transcript/exon
annotations from an EnsDb annotation package installed locally.

Usage

runEnsDbApp(...)

Arguments

... Additional arguments passed to the runApp function from the shiny package.

Details

The shiny based web application allows to look up any annotation available in any of the locally
installed EnsDb annotation packages.

Value

If the button Return & close is clicked, the function returns the results of the present query either as
data.frame or as GRanges object.

Author(s)

Johannes Rainer

See Also

EnsDb, genes

select Integration into the AnnotationDbi framework

Description

Several of the methods available for AnnotationDbi objects are also implemented for EnsDb ob-
jects. This enables to extract data from EnsDb objects in a similar fashion than from objects inherit-
ing from the base annotation package class AnnotationDbi. In addition to the standard usage, the
select and mapIds for EnsDb objects support also the filter framework of the ensembdb package
and thus allow to perform more fine-grained queries to retrieve data.

Usage

S4 method for signature 'EnsDb'
columns(x)
S4 method for signature 'EnsDb'
keys(x, keytype, filter,...)
S4 method for signature 'EnsDb'
keytypes(x)

select 29

S4 method for signature 'EnsDb'
mapIds(x, keys, column, keytype, ..., multiVals)
S4 method for signature 'EnsDb'
select(x, keys, columns, keytype, ...)

Arguments

(In alphabetic order)

For mapIds: the column to search on, i.e. from which values should be retrieved.
columncolumns For select: the columns from which values should be retrieved. Use the

columns method to list all possible columns.
keys The keys/ids for which data should be retrieved from the database. This can be

either a character vector of keys/IDs, a single filter object extending BasicFilter
or a list of such objects.

keytype For mapIds and select: the type (column) that matches the provided keys.
This argument does not have to be specified if argument keys is a filter object
extending BasicFilter or a list of such objects.
For keys: which keys should be returned from the database.

filter For keys: either a single object extending BasicFilter or a list of such object
to retrieve only specific keys from the database.

multiVals What should mapIds do when there are multiple values that could be returned?
Options are: "first", "list", "filter", "asNA". See mapIds for a detailed
description.

x The EnsDb object.
... Not used.

Value

See method description above.

Methods and Functions

columns List all the columns that can be retrieved by the mapIds and select methods. Note that
these column names are different from the ones supported by the genes, transcripts etc.
methods that can be listed by the listColumns method.
Returns a character vector of supported column names.

keys Retrieves all keys from the column name specified with keytype. By default (if keytype is
not provided) it returns all gene IDs. Note that keytype="TXNAME" will return transcript ids,
since no transcript names are available in the database.
Returns a character vector of IDs.

keytypes List all supported key types (column names).
Returns a character vector of key types.

mapIds Retrieve the mapped ids for a set of keys that are of a particular keytype. Argument keys
can be either a character vector of keys/IDs, a single filter object extending BasicFilter or
a list of such objects. For the latter, the argument keytype does not have to be specified.
Importantly however, if the filtering system is used, the ordering of the results might not
represent the ordering of the keys.
The method usually returns a named character vector or, depending on the argument multiVals
a named list, with names corresponding to the keys (same ordering is only guaranteed if keys
is a character vector).

30 select

select Retrieve the data as a data.frame based on parameters for selected keys, columns and
keytype arguments. Multiple matches of the keys are returned in one row for each possible
match. Argument keys can be either a character vector of keys/IDs, a single filter object
extending BasicFilter or a list of such objects. For the latter, the argument keytype does
not have to be specified.
Note that values from a column "TXNAME" will be the same than for a column "TXID", since in-
ternally no database column "tx_name" is present and the column is thus mapped to "tx_id".
Returns a data.frame with the column names corresponding to the argument columns and
rows with all data matching the criteria specified with keys.

Author(s)

Johannes Rainer

See Also

BasicFilter listColumns transcripts

Examples

library(EnsDb.Hsapiens.v75)
edb <- EnsDb.Hsapiens.v75

List all supported keytypes.
keytypes(edb)

List all supported columns for the select and mapIds methods.
columns(edb)

List /real/ database column names.
listColumns(edb)

Retrieve all keys corresponding to transcript ids.
txids <- keys(edb, keytype="TXID")
length(txids)
head(txids)

Retrieve all keys corresponding to gene names of genes encoded on chromosome X
gids <- keys(edb, keytype="GENENAME", filter=SeqnameFilter("X"))
length(gids)
head(gids)

Get a mapping of the genes BCL2 and BCL2L11 to all of their
transcript ids and return the result as list
maps <- mapIds(edb, keys=c("BCL2", "BCL2L11"), column="TXID",

keytype="GENENAME", multiVals="list")
maps

Perform the same query using a combination of a GenenameFilter and a TxbiotypeFilter
to just retrieve protein coding transcripts for these two genes.
mapIds(edb, keys=list(GenenameFilter(c("BCL2", "BCL2L11")),

TxbiotypeFilter("protein_coding")), column="TXID",
multiVals="list")

select:

SeqendFilter 31

Retrieve all transcript and gene related information for the above example.
select(edb, keys=list(GenenameFilter(c("BCL2", "BCL2L11")),

TxbiotypeFilter("protein_coding")),
columns=c("GENEID", "GENENAME", "TXID", "TXBIOTYPE", "TXSEQSTART", "TXSEQEND",

"SEQNAME", "SEQSTRAND"))

Get all data for genes encoded on chromosome Y
Y <- select(edb, keys="Y", keytype="SEQNAME")
head(Y)
nrow(Y)

Get selected columns for all lincRNAs encoded on chromosome Y
Y <- select(edb, keys=list(SeqnameFilter("Y"), GenebiotypeFilter("lincRNA")),

columns=c("GENEID", "GENEBIOTYPE", "TXID", "GENENAME"))
head(Y)
nrow(Y)

SeqendFilter Constructor functions for filter objects

Description

These functions allow to create filter objects that can be used to retrieve specific elements from the
annotation database.

Usage

EntrezidFilter(value, condition = "=")

GeneidFilter(value, condition = "=")

GenenameFilter(value, condition = "=")

GenebiotypeFilter(value, condition = "=")

GRangesFilter(value, condition="within", feature="gene")

TxidFilter(value, condition = "=")

TxbiotypeFilter(value, condition = "=")

ExonidFilter(value, condition = "=")

ExonrankFilter(value, condition = "=")

SeqnameFilter(value, condition = "=")

SeqstrandFilter(value, condition = "=")

SeqstartFilter(value, condition = "=", feature = "gene")

32 SeqendFilter

SeqendFilter(value, condition = "=", feature = "gene")

SymbolFilter(value, condition = "=")

Arguments

value The filter value, e.g., for GeneidFilter the id of the gene for which the data
should be retrieved. For character values (all filters except SeqstartFilter and
SeqendFilter) also a character vector of values is allowed. Allowed values for
SeqstrandFilter are: "+", "-", "1" or "-1".
For GRangeFilter this has to be a GRanges object.

condition The condition to be used in the comparison. For character values "=", "in" and
"like" are allowed, for numeric values (SeqstartFilter and SeqendFilter)
"=", ">", ">=", "<" and "<=". Note that for "like" value should be a SQL
pattern (e.g. "ENS%").
For GRangesFilter, "within" and "overlapping" are allowed. See below for
details.

feature For SeqstartFilter and SeqendFilter: the chromosomal position of which
features should be used in the filter (either "gene", "transcript" or "exon").
For GRangesFilter: the submitted value is overwritten internally depending on
the called method, i.e. calling genes will set feature to "gene", transcripts
to "tx" and exons to "exon".

Details

EntrezidFilter Filter results based on the NCBI Entrezgene ID of the genes.

GeneidFilter Filter results based on Ensembl gene IDs.

GenenameFilter Filter results based on gene names (gene symbols).

GenebiotypeFilter Filter results based on the biotype of the genes. For a complete list of available
gene biotypes use the listGenebiotypes method.

GRangesFilter Allows to fetch features within or overlapping the specified genomic region(s)/range(s).
This filter takes a GRanges object as input and, if condition="within" (the default) will re-
strict results to features (genes, transcripts or exons) that are completely within the region.
Alternatively, by specifying condition="overlapping" it will return all features that are
partially overlapping with the region, i.e. which start coordinate is smaller than the end coor-
dinate of the region and which end coordinate is larger than the start coordinate of the region.
Thus, genes and transcripts that have an intron overlapping the region will also be returned.
Note: if the specified GRanges object defines multiple region, all features within (or overlap-
ping) any of these regions are returned.
See GRangesFilter for more details.

TxidFilter Filter results based on the Ensembl transcript IDs.

TxbiotypeFilter Filter results based on the biotype of the transcripts. For a complete list of avail-
able transcript biotypes use the listTxbiotypes method.

ExonidFilter Filter based on the Ensembl exon ID.

ExonrankFilter Filter results based on exon ranks (indices) of exons within transcripts.

SeqnameFilter Filter results based on the name of the sequence the features are encoded.

SeqstrandFilter Filter results based on the strand on which the features are encoded.

SeqendFilter 33

SeqstartFilter Filter results based on the (chromosomal) start coordinate of the features (exons,
genes or transcripts).

SeqendFilter Filter results based on the (chromosomal) end coordinates.

SymbolFilter Filter results based on the gene names. The database does not provide an explicit
symbol column, thus this filter uses the gene name instead (which in many cases corresponds
to the official gene name).

Value

Depending on the function called an instance of: EntrezidFilter, GeneidFilter, GenenameFilter,
GenebiotypeFilter, GRangesFilter, TxidFilter, TxbiotypeFilter, ExonidFilter, ExonrankFilter,
SeqnameFilter, SeqstrandFilter, SeqstartFilter, SeqendFilter, SymbolFilter

Author(s)

Johannes Rainer

See Also

EntrezidFilter, GeneidFilter, GenenameFilter, GenebiotypeFilter, GRangesFilter, TxidFilter,
TxbiotypeFilter, ExonidFilter, ExonrankFilter, SeqnameFilter, SeqstrandFilter, SeqstartFilter,
SeqendFilter, SymbolFilter

Examples

create a filter that could be used to retrieve all informations for
the respective gene.
Gif <- GeneidFilter("ENSG00000012817")
Gif
returns the where condition of the SQL querys
where(Gif)

create a filter for a chromosomal end position of a gene
Sef <- SeqendFilter(100000, condition="<", "gene")
Sef

To find genes within a certain chromosomal position filters should be
combined:
Ssf <- SeqstartFilter(10000, condition=">", "gene")
Snf <- SeqnameFilter("2")
combine the filters
Filter <- list(Ssf, Sef, Snf)

Filter

generate the where SQL call for these filters:
where(Filter)

Create a GRangesFilter
GRangesFilter(GRanges("X", IRanges(123, 5454)))

Create a GRangesFilter with multiple ranges
grf <- GRangesFilter(GRanges(c("X", "Y"),

34 seqlevelsStyle

IRanges(start=c(123, 900),
end=c(5454, 910))))

Evaluate the 'where' SQL condition that would be applied.
where(grf)
Change the "condition" of the filter and evaluate the
'where' condition again.
condition(grf) <- "overlapping"
where(grf)

seqlevelsStyle Support for other than Ensembl seqlevel style

Description

The methods and functions on this help page allow to integrate EnsDb objects and the annotations
they provide with other Bioconductor annotation packages that base on chromosome names (se-
qlevels) that are different from those defined by Ensembl.

Usage

S4 method for signature 'EnsDb'
seqlevelsStyle(x)

S4 replacement method for signature 'EnsDb'
seqlevelsStyle(x) <- value

S4 method for signature 'EnsDb'
supportedSeqlevelsStyles(x)

Arguments

(In alphabetic order)

For seqlevelsStyle<-: a character string specifying the seqlevels style that
should be set. Use the supportedSeqlevelsStyle to list all available and sup-
ported seqlevel styles.

valuex An EnsDb instance.

Value

For seqlevelsStyle: see method description above.

For supportedSeqlevelsStyles: see method description above.

Methods and Functions

seqlevelsStyle Get the style of the seqlevels in which results returned from the EnsDb object are
encoded. By default, and internally, seqnames as provided by Ensembl are used.
The method returns a character string specifying the currently used seqlevelstyle.

seqlevelsStyle 35

seqlevelsStyle<- Change the style of the seqlevels in which results returned from the EnsDb object
are encoded. Changing the seqlevels helps integrating annotations from EnsDb objects e.g.
with annotations from packages that base on UCSC annotations.

supportedSeqlevelsStyles Lists all seqlevel styles for which mappings between seqlevel styles are
available in the GenomeInfoDb package.
The method returns a character vector with supported seqlevel styles for the organism of the
EnsDb object.

Note

The mapping between different seqname styles is performed based on data provided by the GenomeInfoDb
package. Note that in most instances no mapping is provided for seqnames other than for primary
chromosomes. By default functions from the ensembldb package return the original seqname is
in such cases. This behaviour can be changed with the ensembldb.seqnameNotFound global op-
tion. For the special keyword "ORIGINAL" (the default), the original seqnames are returned, for
"MISSING" an error is thrown if a seqname can not be mapped. In all other cases, the value of the op-
tion is returned as seqname if no mapping is available (e.g. setting options(ensembldb.seqnameNotFound=NA)
returns an NA if the seqname is not mappable).

Author(s)

Johannes Rainer

See Also

EnsDb transcripts

Examples

library(EnsDb.Hsapiens.v75)
edb <- EnsDb.Hsapiens.v75

Get the internal, default seqlevel style.
seqlevelsStyle(edb)

Get the seqlevels from the database.
seqlevels(edb)

Get all supported mappings for the organism of the EnsDb.
supportedSeqlevelsStyles(edb)

Change the seqlevels to UCSC style.
seqlevelsStyle(edb) <- "UCSC"
seqlevels(edb)

Change the option ensembldb.seqnameNotFound to return NA in case
the seqname can not be mapped form Ensembl to UCSC.
options(ensembldb.seqnameNotFound=NA)

seqlevels(edb)

Restoring the original setting.
options(ensembldb.seqnameNotFound="ORIGINAL")

36 useMySQL,EnsDb-method

Integrate Ensembl based annotations with a BSgenome package that is based on
UCSC style seqnames.
library(BSgenome.Hsapiens.UCSC.hg19)
bsg <- BSgenome.Hsapiens.UCSC.hg19

Get the genome version
unique(genome(bsg))
unique(genome(edb))
Although differently named, both represent genome build GRCh37.

Extract the full transcript sequences of all lincRNAs encoded on chromsome Y.
yTxSeqs <- extractTranscriptSeqs(bsg, exonsBy(edb, "tx",

filter=list(SeqnameFilter("chrY"),
GenebiotypeFilter("lincRNA"))))

yTxSeqs

useMySQL,EnsDb-method Use a MySQL backend

Description

Change the SQL backend from SQLite to MySQL. When first called on an EnsDb object, the function
tries to create and save all of the data into a MySQL database. All subsequent calls will connect to
the already existing MySQL database.

Usage

S4 method for signature 'EnsDb'
useMySQL(x, host = "localhost", port = 3306, user, pass)

Arguments

x The EnsDb object.

host Character vector specifying the host on which the MySQL server runs.

port The port on which the MySQL server can be accessed.

user The user name for the MySQL server.

pass The password for the MySQL server.

Details

This functionality requires that the RMySQL package is installed and that the user has (write) access
to a running MySQL server. If the corresponding database does already exist users without write
access can use this functionality.

Value

A EnsDb object providing access to the data stored in the MySQL backend.

useMySQL,EnsDb-method 37

Note

At present the function does not evaluate whether the versions between the SQLite and MySQL
database differ.

Author(s)

Johannes Rainer

Examples

Load the EnsDb database (SQLite backend).
library(EnsDb.Hsapiens.v75)
edb <- EnsDb.Hsapiens.v75
Now change the backend to MySQL; my_user and my_pass should
be the user name and password to access the MySQL server.
Not run:
edb_mysql <- useMySQL(edb, host = "localhost", user = my_user, pass = my_pass)

End(Not run)

Index

∗Topic classes
EnsDb-class, 3
exonsBy, 7
GeneidFilter-class, 14
getGeneRegionTrackForGviz, 18
getGenomeFaFile, 20
lengthOf, 21
select, 28
seqlevelsStyle, 34

∗Topic data
makeEnsembldbPackage, 24
runEnsDbApp, 27
SeqendFilter, 31

∗Topic shiny
runEnsDbApp, 27

BasicFilter, 4, 6, 9, 12, 16, 19–21, 29, 30
BasicFilter-class (GeneidFilter-class),

14
buildQuery (EnsDb-class), 3
buildQuery,EnsDb-method (EnsDb-class), 3

cdsBy, 15
cdsBy (exonsBy), 7
cdsBy,EnsDb-method (exonsBy), 7
column (GeneidFilter-class), 14
column,EntrezidFilter,EnsDb,character-method

(GeneidFilter-class), 14
column,EntrezidFilter,EnsDb,missing-method

(GeneidFilter-class), 14
column,EntrezidFilter,missing,missing-method

(GeneidFilter-class), 14
column,ExonidFilter,EnsDb,character-method

(GeneidFilter-class), 14
column,ExonidFilter,EnsDb,missing-method

(GeneidFilter-class), 14
column,ExonidFilter,missing,missing-method

(GeneidFilter-class), 14
column,ExonrankFilter,EnsDb,character-method

(GeneidFilter-class), 14
column,ExonrankFilter,EnsDb,missing-method

(GeneidFilter-class), 14
column,ExonrankFilter,missing,missing-method

(GeneidFilter-class), 14

column,GenebiotypeFilter,EnsDb,character-method
(GeneidFilter-class), 14

column,GenebiotypeFilter,EnsDb,missing-method
(GeneidFilter-class), 14

column,GenebiotypeFilter,missing,missing-method
(GeneidFilter-class), 14

column,GeneidFilter,EnsDb,character-method
(GeneidFilter-class), 14

column,GeneidFilter,EnsDb,missing-method
(GeneidFilter-class), 14

column,GeneidFilter,missing,missing-method
(GeneidFilter-class), 14

column,GenenameFilter,EnsDb,character-method
(GeneidFilter-class), 14

column,GenenameFilter,EnsDb,missing-method
(GeneidFilter-class), 14

column,GenenameFilter,missing,missing-method
(GeneidFilter-class), 14

column,GRangesFilter,EnsDb,character-method
(GeneidFilter-class), 14

column,GRangesFilter,EnsDb,missing-method
(GeneidFilter-class), 14

column,GRangesFilter,missing,missing-method
(GeneidFilter-class), 14

column,OnlyCodingTx,EnsDb,character-method
(GeneidFilter-class), 14

column,OnlyCodingTx,EnsDb,missing-method
(GeneidFilter-class), 14

column,SeqendFilter,EnsDb,character-method
(GeneidFilter-class), 14

column,SeqendFilter,EnsDb,missing-method
(GeneidFilter-class), 14

column,SeqendFilter,missing,missing-method
(GeneidFilter-class), 14

column,SeqnameFilter,EnsDb,character-method
(GeneidFilter-class), 14

column,SeqnameFilter,EnsDb,missing-method
(GeneidFilter-class), 14

column,SeqnameFilter,missing,missing-method
(GeneidFilter-class), 14

column,SeqstartFilter,EnsDb,character-method
(GeneidFilter-class), 14

column,SeqstartFilter,EnsDb,missing-method

38

INDEX 39

(GeneidFilter-class), 14
column,SeqstartFilter,missing,missing-method

(GeneidFilter-class), 14
column,SeqstrandFilter,EnsDb,character-method

(GeneidFilter-class), 14
column,SeqstrandFilter,EnsDb,missing-method

(GeneidFilter-class), 14
column,SeqstrandFilter,missing,missing-method

(GeneidFilter-class), 14
column,SymbolFilter,EnsDb,character-method

(GeneidFilter-class), 14
column,SymbolFilter,EnsDb,missing-method

(GeneidFilter-class), 14
column,SymbolFilter,missing,missing-method

(GeneidFilter-class), 14
column,TxbiotypeFilter,EnsDb,character-method

(GeneidFilter-class), 14
column,TxbiotypeFilter,EnsDb,missing-method

(GeneidFilter-class), 14
column,TxbiotypeFilter,missing,missing-method

(GeneidFilter-class), 14
column,TxidFilter,EnsDb,character-method

(GeneidFilter-class), 14
column,TxidFilter,EnsDb,missing-method

(GeneidFilter-class), 14
column,TxidFilter,missing,missing-method

(GeneidFilter-class), 14
columns,EnsDb-method (select), 28
condition (GeneidFilter-class), 14
condition,BasicFilter-method

(GeneidFilter-class), 14
condition,GRangesFilter-method

(GeneidFilter-class), 14
condition<- (GeneidFilter-class), 14
condition<-,BasicFilter-method

(GeneidFilter-class), 14
condition<-,GRangesFilter-method

(GeneidFilter-class), 14

dbconn (EnsDb-class), 3
dbconn,EnsDb-method (EnsDb-class), 3
disjointExons, 9, 11
disjointExons,EnsDb-method (exonsBy), 7

end,GRangesFilter-method
(GeneidFilter-class), 14

EnsDb, 2, 2, 5, 6, 26, 28, 35, 36
EnsDb-class, 3
ensDbFromAH (makeEnsembldbPackage), 24
ensDbFromGff (makeEnsembldbPackage), 24
ensDbFromGRanges

(makeEnsembldbPackage), 24
ensDbFromGtf (makeEnsembldbPackage), 24

ensemblVersion (EnsDb-class), 3
ensemblVersion,EnsDb-method

(EnsDb-class), 3
EntrezidFilter, 15, 33
EntrezidFilter (SeqendFilter), 31
EntrezidFilter-class

(GeneidFilter-class), 14
ExonidFilter, 15, 33
ExonidFilter (SeqendFilter), 31
ExonidFilter-class

(GeneidFilter-class), 14
ExonrankFilter, 15, 33
ExonrankFilter (SeqendFilter), 31
ExonrankFilter-class

(GeneidFilter-class), 14
exons, 15, 17
exons (exonsBy), 7
exons,EnsDb-method (exonsBy), 7
exonsBy, 6, 7, 15, 20, 22
exonsBy,EnsDb-method (exonsBy), 7
exonsByOverlaps, 9, 11
exonsByOverlaps,EnsDb-method (exonsBy),

7

fetchTablesFromEnsembl
(makeEnsembldbPackage), 24

fiveUTRsByTranscript,EnsDb-method
(exonsBy), 7

GenebiotypeFilter, 15, 33
GenebiotypeFilter (SeqendFilter), 31
GenebiotypeFilter-class

(GeneidFilter-class), 14
GeneidFilter, 15, 33
GeneidFilter (SeqendFilter), 31
GeneidFilter-class, 14
GenenameFilter, 15, 33
GenenameFilter (SeqendFilter), 31
GenenameFilter-class

(GeneidFilter-class), 14
genes, 6, 15, 17, 26, 28, 29
genes (exonsBy), 7
genes,EnsDb-method (exonsBy), 7
getGeneRegionTrackForGviz, 18
getGeneRegionTrackForGviz,EnsDb-method

(getGeneRegionTrackForGviz), 18
getGenomeFaFile, 20
getGenomeFaFile,EnsDb-method

(getGenomeFaFile), 20
GRangesFilter, 11, 15, 32, 33
GRangesFilter (SeqendFilter), 31
GRangesFilter-class

(GeneidFilter-class), 14

40 INDEX

keys,EnsDb-method (select), 28
keytypes,EnsDb-method (select), 28

lengthOf, 12, 21
lengthOf,EnsDb-method (lengthOf), 21
lengthOf,GRangesList-method (lengthOf),

21
listColumns, 9, 12, 29, 30
listColumns (EnsDb-class), 3
listColumns,EnsDb-method (EnsDb-class),

3
listEnsDbs, 23
listGenebiotypes, 15, 17, 32
listGenebiotypes (EnsDb-class), 3
listGenebiotypes,EnsDb-method

(EnsDb-class), 3
listTables, 9
listTables (EnsDb-class), 3
listTables,EnsDb-method (EnsDb-class), 3
listTxbiotypes, 15, 17, 32
listTxbiotypes (EnsDb-class), 3
listTxbiotypes,EnsDb-method

(EnsDb-class), 3

makeEnsembldbPackage, 3, 5–7, 12, 24
makeEnsemblSQLiteFromTables, 5, 6
makeEnsemblSQLiteFromTables

(makeEnsembldbPackage), 24
mapIds, 29
mapIds,EnsDb-method (select), 28
metadata (EnsDb-class), 3
metadata,EnsDb-method (EnsDb-class), 3

organism (EnsDb-class), 3
organism,EnsDb-method (EnsDb-class), 3

print,BasicFilter-method
(GeneidFilter-class), 14

promoters (exonsBy), 7
promoters,EnsDb-method (exonsBy), 7

returnFilterColumns (EnsDb-class), 3
returnFilterColumns,EnsDb-method

(EnsDb-class), 3
returnFilterColumns<- (EnsDb-class), 3
returnFilterColumns<-,EnsDb-method

(EnsDb-class), 3
runApp, 28
runEnsDbApp, 27

select, 28
select,EnsDb-method (select), 28
SeqendFilter, 15, 31, 33

SeqendFilter-class
(GeneidFilter-class), 14

seqinfo (EnsDb-class), 3
seqinfo,EnsDb-method (EnsDb-class), 3
seqlevels (EnsDb-class), 3
seqlevels,EnsDb-method (EnsDb-class), 3
seqlevels,GRangesFilter-method

(GeneidFilter-class), 14
seqlevelsStyle, 15, 34
seqlevelsStyle,EnsDb-method

(seqlevelsStyle), 34
seqlevelsStyle<- (seqlevelsStyle), 34
seqlevelsStyle<-,EnsDb-method

(seqlevelsStyle), 34
SeqnameFilter, 15, 33
SeqnameFilter (SeqendFilter), 31
SeqnameFilter-class

(GeneidFilter-class), 14
seqnames,GRangesFilter-method

(GeneidFilter-class), 14
SeqstartFilter, 15, 33
SeqstartFilter (SeqendFilter), 31
SeqstartFilter-class

(GeneidFilter-class), 14
SeqstrandFilter, 15, 33
SeqstrandFilter (SeqendFilter), 31
SeqstrandFilter-class

(GeneidFilter-class), 14
show (EnsDb-class), 3
show,BasicFilter-method

(GeneidFilter-class), 14
show,EnsDb-method (EnsDb-class), 3
show,GRangesFilter-method

(GeneidFilter-class), 14
start,GRangesFilter-method

(GeneidFilter-class), 14
strand,GRangesFilter-method

(GeneidFilter-class), 14
supportedSeqlevelsStyles

(seqlevelsStyle), 34
supportedSeqlevelsStyles,EnsDb-method

(seqlevelsStyle), 34
SymbolFilter, 15, 33
SymbolFilter (SeqendFilter), 31
SymbolFilter-class

(GeneidFilter-class), 14

threeUTRsByTranscript,EnsDb-method
(exonsBy), 7

toSAF (exonsBy), 7
toSAF,GRangesList-method (exonsBy), 7
transcriptLengths, 22
transcripts, 6, 15, 17, 19, 20, 22, 29, 30, 35

INDEX 41

transcripts (exonsBy), 7
transcripts,EnsDb-method (exonsBy), 7
transcriptsBy, 8, 15
transcriptsBy (exonsBy), 7
transcriptsBy,EnsDb-method (exonsBy), 7
transcriptsByOverlaps, 11
transcriptsByOverlaps,EnsDb-method

(exonsBy), 7
TxbiotypeFilter, 15, 33
TxbiotypeFilter (SeqendFilter), 31
TxbiotypeFilter-class

(GeneidFilter-class), 14
TxidFilter, 15, 33
TxidFilter (SeqendFilter), 31
TxidFilter-class (GeneidFilter-class),

14

updateEnsDb (EnsDb-class), 3
updateEnsDb,EnsDb-method (EnsDb-class),

3
useMySQL, 2, 23
useMySQL (useMySQL,EnsDb-method), 36
useMySQL,EnsDb-method, 36

value (GeneidFilter-class), 14
value,BasicFilter,EnsDb-method

(GeneidFilter-class), 14
value,BasicFilter,missing-method

(GeneidFilter-class), 14
value,GRangesFilter,EnsDb-method

(GeneidFilter-class), 14
value,GRangesFilter,missing-method

(GeneidFilter-class), 14
value,SeqnameFilter,EnsDb-method

(GeneidFilter-class), 14
value<- (GeneidFilter-class), 14
value<-,BasicFilter-method

(GeneidFilter-class), 14
value<-,ExonrankFilter-method

(GeneidFilter-class), 14

where (GeneidFilter-class), 14
where,BasicFilter,EnsDb,character-method

(GeneidFilter-class), 14
where,BasicFilter,EnsDb,missing-method

(GeneidFilter-class), 14
where,BasicFilter,missing,missing-method

(GeneidFilter-class), 14
where,EntrezidFilter,EnsDb,character-method

(GeneidFilter-class), 14
where,EntrezidFilter,EnsDb,missing-method

(GeneidFilter-class), 14

where,EntrezidFilter,missing,missing-method
(GeneidFilter-class), 14

where,ExonidFilter,EnsDb,character-method
(GeneidFilter-class), 14

where,ExonidFilter,EnsDb,missing-method
(GeneidFilter-class), 14

where,ExonidFilter,missing,missing-method
(GeneidFilter-class), 14

where,ExonrankFilter,EnsDb,character-method
(GeneidFilter-class), 14

where,ExonrankFilter,EnsDb,missing-method
(GeneidFilter-class), 14

where,ExonrankFilter,missing,missing-method
(GeneidFilter-class), 14

where,GenebiotypeFilter,EnsDb,character-method
(GeneidFilter-class), 14

where,GenebiotypeFilter,EnsDb,missing-method
(GeneidFilter-class), 14

where,GenebiotypeFilter,missing,missing-method
(GeneidFilter-class), 14

where,GeneidFilter,EnsDb,character-method
(GeneidFilter-class), 14

where,GeneidFilter,EnsDb,missing-method
(GeneidFilter-class), 14

where,GeneidFilter,missing,missing-method
(GeneidFilter-class), 14

where,GenenameFilter,EnsDb,character-method
(GeneidFilter-class), 14

where,GenenameFilter,EnsDb,missing-method
(GeneidFilter-class), 14

where,GenenameFilter,missing,missing-method
(GeneidFilter-class), 14

where,GRangesFilter,EnsDb,character-method
(GeneidFilter-class), 14

where,GRangesFilter,EnsDb,missing-method
(GeneidFilter-class), 14

where,GRangesFilter,missing,missing-method
(GeneidFilter-class), 14

where,list,EnsDb,character-method
(GeneidFilter-class), 14

where,list,EnsDb,missing-method
(GeneidFilter-class), 14

where,list,missing,missing-method
(GeneidFilter-class), 14

where,OnlyCodingTx,EnsDb,character-method
(GeneidFilter-class), 14

where,OnlyCodingTx,EnsDb,missing-method
(GeneidFilter-class), 14

where,SeqendFilter,EnsDb,character-method
(GeneidFilter-class), 14

where,SeqendFilter,EnsDb,missing-method
(GeneidFilter-class), 14

42 INDEX

where,SeqendFilter,missing,missing-method
(GeneidFilter-class), 14

where,SeqnameFilter,EnsDb,character-method
(GeneidFilter-class), 14

where,SeqnameFilter,EnsDb,missing-method
(GeneidFilter-class), 14

where,SeqnameFilter,missing,missing-method
(GeneidFilter-class), 14

where,SeqstartFilter,EnsDb,character-method
(GeneidFilter-class), 14

where,SeqstartFilter,EnsDb,missing-method
(GeneidFilter-class), 14

where,SeqstartFilter,missing,missing-method
(GeneidFilter-class), 14

where,SeqstrandFilter,EnsDb,character-method
(GeneidFilter-class), 14

where,SeqstrandFilter,EnsDb,missing-method
(GeneidFilter-class), 14

where,SeqstrandFilter,missing,missing-method
(GeneidFilter-class), 14

where,SymbolFilter,EnsDb,character-method
(GeneidFilter-class), 14

where,SymbolFilter,EnsDb,missing-method
(GeneidFilter-class), 14

where,SymbolFilter,missing,missing-method
(GeneidFilter-class), 14

where,TxbiotypeFilter,EnsDb,character-method
(GeneidFilter-class), 14

where,TxbiotypeFilter,EnsDb,missing-method
(GeneidFilter-class), 14

where,TxbiotypeFilter,missing,missing-method
(GeneidFilter-class), 14

where,TxidFilter,EnsDb,character-method
(GeneidFilter-class), 14

where,TxidFilter,EnsDb,missing-method
(GeneidFilter-class), 14

where,TxidFilter,missing,missing-method
(GeneidFilter-class), 14

	EnsDb
	EnsDb-class
	exonsBy
	GeneidFilter-class
	getGeneRegionTrackForGviz
	getGenomeFaFile
	lengthOf
	listEnsDbs
	makeEnsembldbPackage
	runEnsDbApp
	select
	SeqendFilter
	seqlevelsStyle
	useMySQL,EnsDb-method
	Index

