Package 'cellity' April 14, 2017 | April 14, 2017 | |--| | Type Package | | Title Quality Control for Single-Cell RNA-seq Data | | Version 1.2.0 | | Date 2016-02-22 | | Author Tomislav Illicic, Davis McCarthy | | Maintainer Tomislay Ilicic <ti243@cam.ac.uk></ti243@cam.ac.uk> | | Description A support vector machine approach to identifying and filtering low quality cells from single-cell RNA-seq datasets. | | License GPL (>= 2) | | Depends R (>= 3.3) | | Imports AnnotationDbi, e1071, ggplot2, graphics, grDevices, grid, mvoutlier, org.Hs.eg.db, org.Mm.eg.db, robustbase, stats, topGO, utils | | Suggests BiocStyle, caret, knitr, testthat, rmarkdown | | VignetteBuilder knitr | | LazyData true | | biocViews RNASeq, QualityControl, Preprocessing, Normalization,
Visualization, DimensionReduction, Transcriptomics,
GeneExpression, Sequencing, Software, SupportVectorMachine | | RoxygenNote 5.0.1 | | NeedsCompilation no | | R topics documented: | | cellity-package | | assess_cell_quality_PCA | | assess_cell_quality_SVM | | extract_features | | extra_mouse_genes | | feature_generation | | feature_info | | mES1_features | | mES1_labels | | multiplot | **15** | normalise_by_factor | | | |
 | | | | | |
 | | | | | | | 8 | |-----------------------|--|--|--|------|--|--|--|--|--|------|--|--|--|--|--|--|----| | param_mES_all | | | |
 | | | | | |
 | | | | | | | 9 | | param_mES_common | | | |
 | | | | | | | | | | | | | 9 | | plot_pca | | | |
 | | | | | | | | | | | | | 10 | | sample_counts | | | |
 | | | | | | | | | | | | | 11 | | sample_stats | | | |
 | | | | | | | | | | | | | 11 | | simple_cap | | | |
 | | | | | | | | | | | | | 12 | | sum_prop | | | |
 | | | | | |
 | | | | | | | 12 | | training_mES_features | | | |
 | | | | | |
 | | | | | | | 13 | | training_mES_labels | | | |
 | | | | | | | | | | | | | 13 | | uni.plot | | | |
 | | | | | | | | | | | | | 14 | cellity-package Quality Control for Single-Cell RNA-seq Data ### **Description** Index **cellity** provides a support vector machine and PCA approaches to identifying and filtering low quality cells from single-cell RNA-seq datasets. ``` assess_cell_quality_PCA ``` ASSESS CELL QUALITY USING PCA AND OUTLIER DETECTION ### Description ASSESS CELL QUALITY USING PCA AND OUTLIER DETECTION ### Usage ``` assess_cell_quality_PCA(features, file = "") ``` ### Arguments features Input dataset containing features (cell x features) file Output_file where plot is saved ### **Details** This function applies PCA on features and uses outlier detection to determine which cells are low and which are high quality #### Value Returns a dataframe indicating which cell is low or high quality (0 or 1 respectively) ### Examples ``` data(training_mES_features) training_mES_features_all <- training_mES_features[[1]] training_quality_PCA_allF <- assess_cell_quality_PCA(training_mES_features_all)</pre> ``` ``` assess_cell_quality_SVM ``` Assess quality of a cell - SVM version ### Description Assess quality of a cell - SVM version ### Usage ``` assess_cell_quality_SVM(training_set_features, training_set_labels, ensemble_param, test_set_features) ``` ### **Arguments** ``` training_set_features A training set containing features (cells x features) for prediction training_set_labels Annotation of each individual cell if high or low quality (1 or 0 respectively) ensemble_param Dataframe of parameters for SVM test_set_features Dataset to predict containing features (cells x features) ``` #### **Details** This function takes a training set + annotation to predict a test set. It requires that hyper-parameters have been optimised. ### Value Returns a dataframe indicating which cell is low or high quality (0 or 1 respectively) data.frame with decision on quality of cells ### **Examples** ``` data(param_mES_all) data(training_mES_features) data(training_mES_labels) data(mES1_features) data(mES1_labels) mES1_features_all <- mES1_features[[1]] training_mES_features_all <- training_mES_features[[1]] mES1_quality_SVM <- assess_cell_quality_SVM(training_mES_features_all, training_mES_labels[,2], param_mES_all, mES1_features_all)</pre> ``` extract_features | | _ | | |---------|----------|--| | extract | features | | Extracts biological and technical features for given dataset ### Description Extracts biological and technical features for given dataset ### Usage ``` extract_features(counts_nm, read_metrics, prefix = "", output_dir = "", common_features = NULL, GO_terms = NULL, extra_genes = NULL, organism = "mouse") ``` ### Arguments | counts_nm | Gene expression counts dataframe (genes x cells). Either normalised by library size or TPM values | |----------------|---| | read_metrics | Dataframe with mapping statistics produced by python pipeline | | prefix | Prefix of outputfiles | | output_dir | Output directory of files | | common_feature | S | | | Subset of features that are applicable within one species, but across cell types | | GO_terms | DataFrame with gene ontology term IDs, that will be used in feature extraction | | extra_genes | Additional genes used for feature extraction | | organism | The target organism to generate the features for | ### **Details** This function takes a combination of gene counts and mapping statistics to extract biological and technical features, which than can be used for quality data analysis ### Value a list with two elements, one providing all features, and one providing common features. ### **Examples** ``` data(sample_counts) data(sample_stats) sample_counts_nm <- normalise_by_factor(sample_counts, colSums(sample_counts)) sample_features <- extract_features(sample_counts_nm, sample_stats)</pre> ``` extra_human_genes 5 extra_human_genes Additional human genes that are used in feature extraction ### **Description** This list contains human genes that are used for feature extraction of biological features ### Usage ``` extra_human_genes ``` #### **Format** a list containing vectors of genes. Name indicates which GO category. #### Value NULL, but makes available a list with metadata #### Author(s) Tomislav Ilicic & Davis McCarthy, 2015-03-05 #### **Source** Wellcome Trust Sanger Institute extra_mouse_genes Additional mouse genes that are used in feature extraction ### **Description** This list contains mouse genes that are used for feature extraction of biological features ### Usage ``` extra_mouse_genes ``` #### **Format** a list containing vectors of genes. Name indicates which GO category. ### Value NULL, but makes available a list with metadata ### Author(s) Tomislav Ilicic & Davis McCarthy, 2015-03-05 ### Source Wellcome Trust Sanger Institute 6 feature_info | feature_generation | Helper Function to create all feature | |--------------------|---------------------------------------| | reature_generation | neiper runction to create all jean | ### Description Helper Function to create all features ### Usage feature_generation(counts_nm, read_metrics, GO_terms, extra_genes, organism) ### Arguments | counts_nm | Gene expression counts dataframe (genes x cells). Either normalised by library size or TPM values | |--------------|---| | read_metrics | Dataframe with mapping statistics produced by python pipeline | | GO_terms | DataFrame with gene ontology term IDs, that will be used in feature extraction | | extra_genes | Additional genes used for feature extraction | | organism | The target organism to generate the features for | ### Value Returns the entire set of features in a data.frame | feature_info | Information which genes and GO categories should be included as features. Also defines which features are cell-type independent (common features) | |--------------|---| | | | ### Description This list contains metadata information that is used to extract features from in the function extract_features ### Usage feature_info ### **Format** a list with 2 elements (GO_terms,common_features). ### Value NULL, but makes available a list with metadata ### Author(s) Tomislav Ilicic & Davis McCarthy, 2015-03-05 mES1_features 7 #### **Source** Wellcome Trust Sanger Institute mES1_features Real test dataset containing all and common features from the paper (mES1) ### **Description** This list contains 2 dataframes where each contains features per cell (cell X features) that can be used for classification. ### Usage mES1_features ### **Format** a list with 2 elements (all_features, common_features). #### Value NULL, but makes available a list with 2 dataframes ### Author(s) Tomislav Ilicic & Davis McCarthy, 2015-03-05 #### **Source** Wellcome Trust Sanger Institute mES1_labels Real test dataset containing annotation of cells ### **Description** This data frame has 2 columns: First showing cell names, the second indicating if cell is of low (0) or high (1) quality ### Usage mES1_labels #### **Format** a dataframe with 2 columns (cell_names, label). ### Value NULL, but makes available a dataframe with cell annotations 8 normalise_by_factor #### Author(s) Tomislav Ilicic & Davis McCarthy, 2015-03-05 #### **Source** Wellcome Trust Sanger Institute multiplot Internal multiplot function to combine plots onto a grid ### **Description** Internal multiplot function to combine plots onto a grid ### Usage ``` multiplot(..., plotlist = NULL, file, cols = 6, layout = NULL) ``` ### **Arguments** individual plots to combine into a single plotplotlista vector with names of plots to use in the plot file string giving filename to which pdf of plots is to be saved cols integer giving number of columns for the plot layout matrix defining the layout for the plots ### Value a plot object normalise_by_factor Internal function to normalize by library size ### **Description** Internal function to normalize by library size ### Usage ``` normalise_by_factor(counts, norm_factor) ``` ### Arguments counts matrix of counts norm_factor vector of normalisation factors #### Value a matrix with normalized gene counts param_mES_all 9 ### **Examples** ``` data(sample_counts) data(sample_stats) sample_counts_nm <- normalise_by_factor(sample_counts, colSums(sample_counts))</pre> ``` param_mES_all Parameters used for SVM classification ### **Description** This data frame has 3 columns: gamma, cost, class.weights and is optimised for all features and our training data ### Usage ``` param_mES_all ``` ### **Format** a dataframe with 3 columns (gamma, cost, class.weights). #### Value NULL, but makes available a dataframe with parameters #### Author(s) Tomislav Ilicic & Davis McCarthy, 2015-03-05 #### **Source** Wellcome Trust Sanger Institute param_mES_common Parameters used for SVM classification ### **Description** This data frame has 3 columns: gamma, cost, class.weights and is optimised for common features and our training data ### Usage ``` param_mES_common ``` ### **Format** a dataframe with 3 columns (gamma, cost, class.weights). 10 plot_pca #### Value NULL, but makes available a dataframe with parameters ### Author(s) Tomislav Ilicic & Davis McCarthy, 2015-03-05 ### **Source** Wellcome Trust Sanger Institute | plot_pca | Plots PCA of all features. Colors high and low quality cells based on | |----------|---| | | outlier detection. | ### Description Plots PCA of all features. Colors high and low quality cells based on outlier detection. ### Usage ``` plot_pca(features, annot, pca, col, output_file) ``` ### Arguments features Input dataset containing features (cell x features) annot Matrix annotation of each cell pca PCA of features col color code indicating what color high and what low quality cells output_file where plot is stored ### **Details** This function plots PCA of all features + most informative features #### Value Plots of PCA sample_counts 11 sample_counts Sample gene expression data containing 40 cells ### **Description** This data frame contains genes (rows) and cells (columns) showing raw read counts ### Usage sample_counts #### **Format** a dataframe with genes x cells #### Value NULL, but makes available a dataframe with raw read counts #### Author(s) Tomislav Ilicic & Davis McCarthy, 2015-03-05 #### **Source** Wellcome Trust Sanger Institute sample_stats Sample read statistics data containing 40 cells ### Description This data frame contains read metrics (columns) and cells (rows) ### Usage sample_stats #### **Format** a dataframe with cells x metrics ### Value NULL, but makes available a dataframe with read statistics ### Author(s) Tomislav Ilicic & Davis McCarthy, 2015-03-05 ### Source Wellcome Trust Sanger Institute 12 sum_prop simple_cap Converts all first letters to capital letters ### Description Converts all first letters to capital letters ### Usage ``` simple_cap(x) ``` ### Arguments Х string ### Value a character vector in title case sum_prop Sums up normalised values of genes to groups. ### Description Supports TPM and proportion of mapped reads. ### Usage ``` sum_prop(counts, genes_interest) ``` ### **Arguments** ``` counts Normalised gene expression count matrix genes_interest dataframe of genes of interest to merge ``` ### Value ``` a vector of sums per group ``` training_mES_features ### **Description** This list contains 2 dataframes where each contains features per cell (cell X features) that can be used for classification. ### Usage $training_mES_features$ #### **Format** a list with 2 elements (all_features, common_features). #### Value NULL, but makes available a list with 2 dataframes #### Author(s) Tomislav Ilicic & Davis McCarthy, 2015-03-05 #### **Source** Wellcome Trust Sanger Institute ### **Description** This data frame has 2 columns: First showing cell names, the second indicating if cell is of low (0) or high (1) quality ### Usage training_mES_labels #### **Format** a dataframe with 2 columns (cell_names, label). ### Value NULL, but makes available a dataframe with cell annotations 14 uni.plot ### Author(s) Tomislav Ilicic & Davis McCarthy, 2015-03-05 #### **Source** Wellcome Trust Sanger Institute | uni.plot | Internal function to detect outliers from the mvoultier pacakge Modi- | |----------|---| | | fied slightly so that plots are not printed | ### Description Internal function to detect outliers from the mvoultier pacakge Modified slightly so that plots are not printed ### Usage ``` uni.plot(x, symb = FALSE, quan = 1/2, alpha = 0.025) ``` ### Arguments x A matrix containing countssymbSymbols symb Symbol quan quan alpha alpha ### Value a list of outlier indicators ## **Index** ``` assess_cell_quality_PCA, 2 {\tt assess_cell_quality_SVM, 3} cellity-package, 2 extra_human_genes, 5 extra_mouse_genes, 5 extract_features, 4 feature_generation, 6 {\tt feature_info, 6} {\tt mES1_features, \ref{thm:prop} 7} mES1_labels, 7 multiplot, 8 {\tt normalise_by_factor}, 8 {\tt param_mES_all}, \textcolor{red}{9} {\tt param_mES_common}, 9 plot_pca, 10 sample_counts, 11 sample_stats, 11 simple_cap, 12 sum_prop, 12 training_mES_features, 13 training_mES_labels, 13 \verb"uni.plot", \frac{14}{} ```