Package 'cellity'

April 14, 2017

April 14, 2017
Type Package
Title Quality Control for Single-Cell RNA-seq Data
Version 1.2.0
Date 2016-02-22
Author Tomislav Illicic, Davis McCarthy
Maintainer Tomislay Ilicic <ti243@cam.ac.uk></ti243@cam.ac.uk>
Description A support vector machine approach to identifying and filtering low quality cells from single-cell RNA-seq datasets.
License GPL (>= 2)
Depends R (>= 3.3)
Imports AnnotationDbi, e1071, ggplot2, graphics, grDevices, grid, mvoutlier, org.Hs.eg.db, org.Mm.eg.db, robustbase, stats, topGO, utils
Suggests BiocStyle, caret, knitr, testthat, rmarkdown
VignetteBuilder knitr
LazyData true
biocViews RNASeq, QualityControl, Preprocessing, Normalization, Visualization, DimensionReduction, Transcriptomics, GeneExpression, Sequencing, Software, SupportVectorMachine
RoxygenNote 5.0.1
NeedsCompilation no
R topics documented:
cellity-package
assess_cell_quality_PCA
assess_cell_quality_SVM
extract_features
extra_mouse_genes
feature_generation
feature_info
mES1_features
mES1_labels
multiplot

15

normalise_by_factor				 						 							8
param_mES_all				 						 							9
param_mES_common				 													9
plot_pca				 													10
sample_counts				 													11
sample_stats				 													11
simple_cap				 													12
sum_prop				 						 							12
training_mES_features				 						 							13
training_mES_labels				 													13
uni.plot				 													14

cellity-package

Quality Control for Single-Cell RNA-seq Data

Description

Index

cellity provides a support vector machine and PCA approaches to identifying and filtering low quality cells from single-cell RNA-seq datasets.

```
assess_cell_quality_PCA
```

ASSESS CELL QUALITY USING PCA AND OUTLIER DETECTION

Description

ASSESS CELL QUALITY USING PCA AND OUTLIER DETECTION

Usage

```
assess_cell_quality_PCA(features, file = "")
```

Arguments

features Input dataset containing features (cell x features)

file Output_file where plot is saved

Details

This function applies PCA on features and uses outlier detection to determine which cells are low and which are high quality

Value

Returns a dataframe indicating which cell is low or high quality (0 or 1 respectively)

Examples

```
data(training_mES_features)
training_mES_features_all <- training_mES_features[[1]]
training_quality_PCA_allF <- assess_cell_quality_PCA(training_mES_features_all)</pre>
```

```
assess_cell_quality_SVM
```

Assess quality of a cell - SVM version

Description

Assess quality of a cell - SVM version

Usage

```
assess_cell_quality_SVM(training_set_features, training_set_labels,
  ensemble_param, test_set_features)
```

Arguments

```
training_set_features
A training set containing features (cells x features) for prediction

training_set_labels
Annotation of each individual cell if high or low quality (1 or 0 respectively)

ensemble_param Dataframe of parameters for SVM

test_set_features
Dataset to predict containing features (cells x features)
```

Details

This function takes a training set + annotation to predict a test set. It requires that hyper-parameters have been optimised.

Value

Returns a dataframe indicating which cell is low or high quality (0 or 1 respectively) data.frame with decision on quality of cells

Examples

```
data(param_mES_all)
data(training_mES_features)
data(training_mES_labels)
data(mES1_features)
data(mES1_labels)
mES1_features_all <- mES1_features[[1]]
training_mES_features_all <- training_mES_features[[1]]
mES1_quality_SVM <- assess_cell_quality_SVM( training_mES_features_all, training_mES_labels[,2], param_mES_all, mES1_features_all)</pre>
```

extract_features

	_	
extract	features	

Extracts biological and technical features for given dataset

Description

Extracts biological and technical features for given dataset

Usage

```
extract_features(counts_nm, read_metrics, prefix = "", output_dir = "",
  common_features = NULL, GO_terms = NULL, extra_genes = NULL,
  organism = "mouse")
```

Arguments

counts_nm	Gene expression counts dataframe (genes x cells). Either normalised by library size or TPM values
read_metrics	Dataframe with mapping statistics produced by python pipeline
prefix	Prefix of outputfiles
output_dir	Output directory of files
common_feature	S
	Subset of features that are applicable within one species, but across cell types
GO_terms	DataFrame with gene ontology term IDs, that will be used in feature extraction
extra_genes	Additional genes used for feature extraction
organism	The target organism to generate the features for

Details

This function takes a combination of gene counts and mapping statistics to extract biological and technical features, which than can be used for quality data analysis

Value

a list with two elements, one providing all features, and one providing common features.

Examples

```
data(sample_counts)
data(sample_stats)
sample_counts_nm <- normalise_by_factor(sample_counts, colSums(sample_counts))
sample_features <- extract_features(sample_counts_nm, sample_stats)</pre>
```

extra_human_genes 5

extra_human_genes

Additional human genes that are used in feature extraction

Description

This list contains human genes that are used for feature extraction of biological features

Usage

```
extra_human_genes
```

Format

a list containing vectors of genes. Name indicates which GO category.

Value

NULL, but makes available a list with metadata

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

extra_mouse_genes

Additional mouse genes that are used in feature extraction

Description

This list contains mouse genes that are used for feature extraction of biological features

Usage

```
extra_mouse_genes
```

Format

a list containing vectors of genes. Name indicates which GO category.

Value

NULL, but makes available a list with metadata

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

6 feature_info

feature_generation	Helper Function to create all feature
reature_generation	neiper runction to create all jean

Description

Helper Function to create all features

Usage

feature_generation(counts_nm, read_metrics, GO_terms, extra_genes, organism)

Arguments

counts_nm	Gene expression counts dataframe (genes x cells). Either normalised by library size or TPM values
read_metrics	Dataframe with mapping statistics produced by python pipeline
GO_terms	DataFrame with gene ontology term IDs, that will be used in feature extraction
extra_genes	Additional genes used for feature extraction
organism	The target organism to generate the features for

Value

Returns the entire set of features in a data.frame

feature_info	Information which genes and GO categories should be included as features. Also defines which features are cell-type independent (common features)

Description

This list contains metadata information that is used to extract features from in the function extract_features

Usage

feature_info

Format

a list with 2 elements (GO_terms,common_features).

Value

NULL, but makes available a list with metadata

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

mES1_features 7

Source

Wellcome Trust Sanger Institute

mES1_features Real test dataset containing all and common features from the paper (mES1)

Description

This list contains 2 dataframes where each contains features per cell (cell X features) that can be used for classification.

Usage

mES1_features

Format

a list with 2 elements (all_features, common_features).

Value

NULL, but makes available a list with 2 dataframes

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

mES1_labels Real test dataset containing annotation of cells

Description

This data frame has 2 columns: First showing cell names, the second indicating if cell is of low (0) or high (1) quality

Usage

mES1_labels

Format

a dataframe with 2 columns (cell_names, label).

Value

NULL, but makes available a dataframe with cell annotations

8 normalise_by_factor

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

multiplot

Internal multiplot function to combine plots onto a grid

Description

Internal multiplot function to combine plots onto a grid

Usage

```
multiplot(..., plotlist = NULL, file, cols = 6, layout = NULL)
```

Arguments

individual plots to combine into a single plotplotlista vector with names of plots to use in the plot

file string giving filename to which pdf of plots is to be saved

cols integer giving number of columns for the plot

layout matrix defining the layout for the plots

Value

a plot object

normalise_by_factor

Internal function to normalize by library size

Description

Internal function to normalize by library size

Usage

```
normalise_by_factor(counts, norm_factor)
```

Arguments

counts matrix of counts

norm_factor vector of normalisation factors

Value

a matrix with normalized gene counts

param_mES_all 9

Examples

```
data(sample_counts)
data(sample_stats)
sample_counts_nm <- normalise_by_factor(sample_counts, colSums(sample_counts))</pre>
```

param_mES_all

Parameters used for SVM classification

Description

This data frame has 3 columns: gamma, cost, class.weights and is optimised for all features and our training data

Usage

```
param_mES_all
```

Format

a dataframe with 3 columns (gamma, cost, class.weights).

Value

NULL, but makes available a dataframe with parameters

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

param_mES_common

Parameters used for SVM classification

Description

This data frame has 3 columns: gamma, cost, class.weights and is optimised for common features and our training data

Usage

```
param_mES_common
```

Format

a dataframe with 3 columns (gamma, cost, class.weights).

10 plot_pca

Value

NULL, but makes available a dataframe with parameters

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

plot_pca	Plots PCA of all features. Colors high and low quality cells based on
	outlier detection.

Description

Plots PCA of all features. Colors high and low quality cells based on outlier detection.

Usage

```
plot_pca(features, annot, pca, col, output_file)
```

Arguments

features Input dataset containing features (cell x features)

annot Matrix annotation of each cell

pca PCA of features

col color code indicating what color high and what low quality cells

output_file where plot is stored

Details

This function plots PCA of all features + most informative features

Value

Plots of PCA

sample_counts 11

sample_counts

Sample gene expression data containing 40 cells

Description

This data frame contains genes (rows) and cells (columns) showing raw read counts

Usage

sample_counts

Format

a dataframe with genes x cells

Value

NULL, but makes available a dataframe with raw read counts

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

sample_stats

Sample read statistics data containing 40 cells

Description

This data frame contains read metrics (columns) and cells (rows)

Usage

sample_stats

Format

a dataframe with cells x metrics

Value

NULL, but makes available a dataframe with read statistics

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

12 sum_prop

simple_cap

Converts all first letters to capital letters

Description

Converts all first letters to capital letters

Usage

```
simple_cap(x)
```

Arguments

Х

string

Value

a character vector in title case

sum_prop

Sums up normalised values of genes to groups.

Description

Supports TPM and proportion of mapped reads.

Usage

```
sum_prop(counts, genes_interest)
```

Arguments

```
counts Normalised gene expression count matrix genes_interest dataframe of genes of interest to merge
```

Value

```
a vector of sums per group
```

training_mES_features

Description

This list contains 2 dataframes where each contains features per cell (cell X features) that can be used for classification.

Usage

 $training_mES_features$

Format

a list with 2 elements (all_features, common_features).

Value

NULL, but makes available a list with 2 dataframes

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

Description

This data frame has 2 columns: First showing cell names, the second indicating if cell is of low (0) or high (1) quality

Usage

training_mES_labels

Format

a dataframe with 2 columns (cell_names, label).

Value

NULL, but makes available a dataframe with cell annotations

14 uni.plot

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

uni.plot	Internal function to detect outliers from the mvoultier pacakge Modi-
	fied slightly so that plots are not printed

Description

Internal function to detect outliers from the mvoultier pacakge Modified slightly so that plots are not printed

Usage

```
uni.plot(x, symb = FALSE, quan = 1/2, alpha = 0.025)
```

Arguments

x A matrix containing countssymbSymbols

symb Symbol quan quan alpha alpha

Value

a list of outlier indicators

Index

```
assess_cell_quality_PCA, 2
{\tt assess\_cell\_quality\_SVM, 3}
cellity-package, 2
extra_human_genes, 5
extra_mouse_genes, 5
extract_features, 4
feature\_generation, 6
{\tt feature\_info, 6}
{\tt mES1\_features, \ref{thm:prop} 7}
mES1\_labels, 7
multiplot, 8
{\tt normalise\_by\_factor}, 8
{\tt param\_mES\_all}, \textcolor{red}{9}
{\tt param\_mES\_common}, 9
plot_pca, 10
sample\_counts, 11
sample_stats, 11
simple_cap, 12
sum_prop, 12
training_mES_features, 13
training_mES_labels, 13
\verb"uni.plot", \frac{14}{}
```