Package ‘cellTree’

April 14, 2017

Title Inference and visualisation of Single-Cell RNA-seq data as a
hierarchical tree structure

Version 1.4.0

Authors David duVerle [aut, cre], Koji Tsuda [aut]

Encoding UTF-8

Description This packages computes a Latent Dirichlet Allocation (LDA) model of single-cell
RNA-seq data and builds a compact tree modelling the relationship between
individual cells over time or space.

Depends R (>=3.3), topGO

License Artistic-2.0
LazyData true
RoxygenNote 5.0.1
VignetteBuilder knitr

URL http://tsudalab.org
Imports topicmodels, slam, maptpx, igraph, xtable, gplots
Suggests BiocStyle, knitr, HSMMSingleCell, biomaRt, org.Hs.eg.db,

Biobase, tools

biocViews Sequencing, RNASeq, Clustering, GraphAndNetwork,
Visualization, GeneExpression, GeneSetEnrichment,
Biomedicallnformatics, CellBiology, FunctionalGenomics,
SystemsBiology, GO, TimeCourse, Microarray

NeedsCompilation no

Author David duVerle [aut, cre], Koji Tsuda [aut]

Maintainer David duVerle <dave@cb.k.u-tokyo.ac. jp>

R topics documented:

cellTree-package

cell.ordering.table e
compute.backbone.tree L. L L e
compute.go.enrichment e e

compute.lda . .
ct.plot.go.dag .
ct.plot.grouping

http://tsudalab.org

2 cell.ordering.table

ctplotheatmap e 10

CLPIOL.tOPICS .« . . v v v o e e e e 11

getecell.dists 12

goresults.todatex L 13

HSMM Ida_model e 14

Index 15
cellTree-package Inference and visualisation of Single-Cell RNA-seq Data data as a

hierarchical tree structure

Description

This packages computes a Latent Dirichlet Allocation (LDA) model of single-cell RNA-seq data
and build a compact tree modelling the relationship between individual cells over time or space.

Details

A typical use-case will require you to run compute.lda on your expression data, to fit an LDA model,
followed by compute.backbone.tree to generate a tree structure from the LDA model.

Plotting functions ct.plot.grouping and ct.plot.topics will then help you plot the tree structure with
the desired annotations, while function cell.ordering.table will output an ordered table of cells,
ranked by their position in the tree.

To get further information on each topic, you can run Gene Ontology enrichment tests, using com-
pute.go.enrichment, plot the result tables as a graph using ct.plot.go.dag or render it with LaTeX,
using go.results.to.latex.

cell.ordering. table Ranking of cells according to backbone tree structure

Description

Produces a table of input cells ranked by their position in the backbone tree.

Usage

cell.ordering.table(b.tree, write.to.tex.file = NULL)

Arguments

b.tree An igraph backbone tree, as returned by compute.backbone. tree.

write.to.tex.file
Boolean (optional). If not NULL, outputs LaTeX version of table to filewrite.to. tex.file.

Value

List of all cells, ranked by position in backbone tree, along with topic information.

compute.backbone.tree 3

Examples

Load pre-computed LDA model for skeletal myoblast RNA-Seq data from HSMMSingleCell package:
data(HSMM_lda_model)

Recover sampling time (in days) for each cell:
library(HSMMSingleCell)

data(HSMM_sample_sheet)

days.factor = HSMM_sample_sheet$Hours

days = as.numeric(levels(days.factor))[days.factor]

Compute near-optimal backbone tree:

b.tree = compute.backbone.tree(HSMM_lda_model, days)

Load pre-computed LDA model for skeletal myoblast RNA-Seq data from HSMMSingleCell package:
temp.output = tempfile()

cell.ordering.table(b.tree, write.to.tex.file = temp.output)

compute.backbone.tree Backbone Tree construction

Description

Builds a ‘backbone tree’ from a fitted LDA model.

Usage

compute.backbone. tree(lda.results, grouping = NULL,
start.group.label = NULL, absolute.width = @, width.scale.factor = 1.2,
outlier.tolerance.factor = 0.1, rooting.method = NULL, only.mst = FALSE,
grouping.colors = NULL, merge.sequential.backbone = FALSE)

Arguments

lda.results A fitted LDA model, as returned by compute.lda

grouping An (optional) vector of labels for each cell in the 1da.results object. E.g. a
sampling times (numeric) or tissue categories.

start.group.label
If a grouping parameter is provided, you can optionally specify the starting
group. If no start.group.label is specified and the grouping vector is nu-
meric, the lowest value will automatically be selected. Otherwise, the group
with lowest mean-squared-distance between cells is selected.

absolute.width Numeric (optional). Distance threshold below which a cell vertex is considered
to be attached to a backbone vertex (see paper for more details). By default, this
threshold is computed dynamically, based on the distance distribution for each
branch.

width.scale.factor
Numeric (optional). A scaling factor for the dynamically-computed distance
threshold (ignored if absolute.width is provided). Higher values will result
in less branches in the backbone tree, while lower values might lead to a large
number of backbone branches.

4 compute.backbone.tree

outlier.tolerance.factor
Numeric (optional). Proportion of vertices, out of the total number of vertices
divided by the total number of branches, that can be left at the end of the back-
bone tree-building algorithm.

rooting.method String (optional). Method used to root the backbone tree. Must be either NULL
or one of: ‘longest.path’, ‘center.start.group’ or ‘average.start.group’. ‘longest.path’
picks one end of the longest shortest-path between two vertices. ‘center.start.group’
picks the vertex in the starting group with lowest mean-square-distance to the
others. ‘average.start.group’ creates a new artificial vertex, as the average of all
cells in the starting group. If no value is provided, the best method is picked
based on the type of grouping and start group information available.

only.mst If TRUE, returns a simple rooted minimum-spanning tree, instead of a backbone
tree.
grouping.colors
(Optional) vector of RGB colors to be used for each grouping.
merge.sequential.backbone
(Optional) whether to merge sequential backbone vertices that are close enough.
This will produce a more compact backbone tree, but at the cost of extra com-
puting time.

Details

In order to easily visualise the structural and temporal relationship between cells, we introduced a
special type of tree structure dubbed ‘backbone tree’, defined as such:

Considering a set of vertices V' and a distance function over all pairs of vertices: d : V x V — R™T,
we call backbone tree a graph, T' with backbone B, such that:

» T is a tree with set of vertices V' and edges E.
* Bis a tree with set of vertices Vg C V and edges Fp C E.

* All ‘vertebrae’ vertices of T: v € V' \ V are connected by a single edge to the closest vertex
in the set of backbone vertices vj; € V. Le: v = argmin,ev,d(vp,v).

* For all vertices in V' \ Vp are less than distance § to a vertex in the backbone tree B: Vv €
V' \ Vg, Jvp € Vg such that d(v, vp) < 4.

In this instance, we relax the last condition to cover only ‘most’ non-backbone vertices, allowing
for a variable proportion of outliers at distance > ¢ from any vertices in V.

We can then define the ‘optimal’ backbone tree to be a backbone tree such that the sum of weighted
edges in the backbone subtree Fp is minimal. Finding such a tree can be easily shown to be NP-
Complete (by reduction to the Vertex Cover problem), but we developed a fast heuristic relying on
Minimum Spanning Tree to produce a reasonable approximation.

The resulting quasi-optimal backbone tree (simply referred to as ‘the’ backbone tree thereafter)
gives a clear hierarchical representation of the cell relationship: the objective function puts pressure
on finding a (small) group of prominent cells (the backbone) that are good representatives of major
steps in the cell evolution (in time or space), while remaining cells are similar enough to their closest
representative for their difference to be ignored. Such a tree provides a very clear visualisation of
overall cell differentiation paths (including potential differentiation into sub-types).

Value

A igraph object with either a minimum rooted spanning-tree (if only.mst is TRUE) or a quasi-
optimal backbone tree connecting all input cells. Cell topic distribution, distances and branch order
are added as vertex/edge/graph attributes.

compute.go.enrichment 5

Examples

Load pre-computed LDA model for skeletal myoblast RNA-Seq data from HSMMSingleCell package:
data(HSMM_lda_model)

Recover sampling time (in days) for each cell:
library(HSMMSingleCell)

data(HSMM_sample_sheet)

days.factor = HSMM_sample_sheet$Hours

days = as.numeric(levels(days.factor))[days.factor]

Compute near-optimal backbone tree:

b.tree = compute.backbone.tree(HSMM_lda_model, days)

Plot resulting tree with sampling time as a vertex group colour:
ct.plot.grouping(b.tree)

compute.go.enrichment Gene Ontology enrichment analysis

Description

Computes enrichment scores for Gene Ontology terms associated with genes in each topic.

Usage

compute.go.enrichment(lda.results, go.db, ontology.type = "BP",
reformat.gene.names = FALSE, bonferroni.correct = TRUE,
p.val.threshold = if (bonferroni.correct) .05 else 0.01,
go.score.class = "weight@1Score”, dag.file.prefix = FALSE)

Arguments

lda.results A fitted LDA model, as returned by compute. lda

go.db String. Genome-wide annotation with GO mapping for the appropriate organism
(e.g. org.Mm.eg.db or org.Hs.eg.db).

ontology.type (optional). “BP” for Biological Process, “MF” for Molecular Function, and
“CC” for Cellular Component.
reformat.gene.names
Boolean. If set to TRUE, converts all gene names to capitalised lowercase.
bonferroni.correct
Boolean. Unless set to FALSE, adjust statistical testing p-value threshold for
multiple testing.
p.val.threshold
Numeric (optional). P-value significance threshold.

go.score.class String (optional). Name of the scoring method to use for the Kolmogorov-
Smirnov test (e.g. “weigthO1Score” or “elimScore”). See topGO documen-
tation for a complete list of scoring methods.

dag.file.prefix
String or FALSE. If not set to FALSE, plots individual subgraphs of significant
terms for each topic using the string as filename prefix.

6 compute.lda

Value

Returns a named list object with ranked tables of significantly enriched GO terms for each topic
(‘all’), terms that only appear in each topic (‘unique’) and terms that appear in less than half of
the other topics (‘rare’). In addition the list object contains an igraph object with the full GO
DAG, annotated with each term’s p-value and the significance threshold adjusted for multiple testing
(Bonferroni method).

Examples

Load pre-computed LDA model for skeletal myoblast RNA-Seq data from HSMMSingleCell package:
data(HSMM_lda_model)

Load GO mapping database for 'homo sapiens':

library(org.Hs.eg.db)

Compute Cellular Component GO enrichment sets for each topic:

go.results = compute.go.enrichment(HSMM_lda_model, org.Hs.eg.db, ontology.type="CC", bonferroni.correct=TRUI

Print table of terms that are only significantly enriched in each topic:
print(go.results$unique)

compute.lda LDA model inference

Description

This function fits a Latent Dirichlet Allocation (LDA) to single-cell RNA-seq data.

Usage
compute.lda(data, method = "maptpx"”, k.topics = if (method == "maptpx") 2:15
else 4, log.scale = TRUE, sd.filter = 0.5, tot.iter = if (method ==
"Gibbs") 200 else 1e+06, tol = if (method == "maptpx") 0.05 else 107-5)
Arguments
data A matrix of (non-negative) RNA-seq expression levels where each row is a gene
and each column is the cell sequenced.
method LDA inference method to use. Can be any unique prefix of ‘maptpx’, ‘Gibbs’
or ‘VEM’ (defaults to ‘maptpx’)
k.topics Integer (optional). Number of topics to fit in the model. If method is ‘maptpx’,
k.topics can be a vector of possible topic numbers and the the best model
(evaluated on Bayes factor vs a null single topic model) will be returned.
log.scale Boolean (optional). Whether the data should be log-scaled.
sd.filter Numeric or FALSE (optional). Standard-deviation threshold below which genes

should be removed from the data (no filtering if set to FALSE).

tot.iter, tol Numeric parameters (optional) forwarded to the chosen LDA inference method’s
contol class.

compute.lda 7

Details

Latent Dirichlet allocation (LDA) is a generative model that allows sets of observations to be ex-
plained by unobserved groups (topics) that explain why some parts of the data are similar [Blei,
2003]. Each topic is modelled as a (Dirichlet) distribution over observations and each set of ob-
servations is also modelled as a (Dirichlet) distribution over topics. In lieu of the traditional NLP
context of word occurence counts in documents, our model uses RNA-seq observation counts in
single cells. Three separate LDA inference methods can be used at the moment:

* Gibbs uses Collapsed Gibbs Sampling method (implemented by Xuan-Hieu Phan and co-
authors in the topicmodels package [Phan, 2008]) to infer the parameters of the Dirichlet
distributions for a given number of topics. It gives high accuracy but is very time-consuming
to run on large number of cells and genes.

* VEM uses Variational Expectation-Maximisation (as described in [Hoffman, 2010]). This
method tends to converge faster than Gibbs collapsed sampling, albeit with lower accuracy.

* maptpx uses the method described in [Taddy, 2011] and implemented in package maptpx to
estimate the parameters of the topic model for increasing number of topics (using previous
estimates as a starting point for larger topic numbers). The best model (/number of topics) is
selected based on Bayes factor over the Null model. Although potentially less accurate, this
method provides the fastest way to train and select from a large number of models, when the
number of topics is not well known.

When in doubt, the function can be ran with its default parameter values and should produce a usable
LDA model in reasonable time (using the ‘maptpx’ inference method). The model can be further
refined for a specific number of topics with slower methods. While larger models (using large
number of topics) might fit the data well, there is a high risk of overfitting and it is recommended
to use the smallest possible number of topics that still explains the observations well. Anecdotally,
a typical number of topics for cell differentiation data (from pluripotent to fully specialised) would
seem to be around 4 or 5.

Value

A LDA model fitted for data, of class LDA-class (for methods *Gibbs’ or "VEM’) or topics (for
’maptpx’)

References
* Blei, Ng, and Jordan. “Latent dirichlet allocation.” the Journal of machine Learning research
3(2003): 993-1022.

* Hoffman, Blei and Bach (2010). “Online Learning for Latent Dirichlet Allocation.” In J
Lafferty, CKI Williams, J Shawe-Taylor, R Zemel, A Culotta (eds.), Advances in Neural In-
formation Processing Systems 23, pp. 856-864. MIT Press, Cambridge, MA.

* Hornik and Griin. “topicmodels: An R package for fitting topic models.” Journal of Statistical
Software 40.13 (2011): 1-30.

* Phan, Nguyen and Horiguchi. “Learning to classify short and sparse text & web with hidden
topics from large-scale data collections.” Proceedings of the 17th international conference on
World Wide Web. ACM, 2008.

* Taddy. “On estimation and selection for topic models.” arXiv preprint arXiv:1109.4518
(2011).

See Also
LDA, topics, LDA_Gibbscontrol-class, CTM_VEMcontrol-class

8 ct.plot.go.dag

Examples

Load skeletal myoblast RNA-Seq data from HSMMSingleCell package:
library(HSMMSingleCell)
data(HSMM_expr_matrix)

Run LDA inference using 'maptpx' method for k = 4:
lda.results = compute.lda(HSMM_expr_matrix, k.topics=4, method="maptpx")
Run LDA inference using 'maptpx' method for number of topics k = 3 to 6:

lda.results = compute.lda(HSMM_expr_matrix, k.topics=3:6, method="maptpx")

Run LDA inference using 'Gibbs' [collapsed sampling] method for number of k = 4 topics:
lda.results = compute.lda(HSMM_expr_matrix, k.topics=4, method="Gibbs")

ct.plot.go.dag Gene Ontology enrichment sets plotting

Description

Plots DAG of significantly enriched terms for all topics, along with ancestor nodes.

Usage

ct.plot.go.dag(go.results, up.generations = 2, only.topics = NULL,
file.output = NULL, p.val.threshold = go.results$adjusted.p.threshold,
only.unique = FALSE, topic.colors = rainbow(length(go.results$results)))

Arguments

go.results GO Enrichment result list object, such as returned by compute.go.enrichment.

up.generations Integer (optional). Number of generations above significant nodes to include in
the subgraph.

only.topics Integer vector (optional). If not NULL, vector of topics that should be included in
the plot (otherwise all topic enrichment sets are used).

file.output String (optional). If not NULL, pathname of file to write the plot to.

p.val.threshold
Numeric (optional). P-value treshold to use to select which terms should be
plotted.

only.unique Only display terms that are only significant for one of the topics.

topic.colors RGB colour vector (optional). Colors to use for each topic.

Value

An igraph object with the annotated GO DAG.

ct.plot.grouping 9

Examples

Load pre-computed LDA model for skeletal myoblast RNA-Seq data from HSMMSingleCell package:
data(HSMM_lda_model)

Load GO mapping database for 'homo sapiens':
library(org.Hs.eg.db)
Compute GO enrichment sets for each topic:

go.results = compute.go.enrichment (HSMM_lda_model, org.Hs.eg.db, bonferroni.correct=TRUE)

go.dag.subtree = ct.plot.go.dag(go.results, up.generations = 2)

ct.plot.grouping Plot cell tree with grouping information

Description

Plots a backbone tree (or MST) that was computed with compute.backbone. tree, displaying each
cell’s grouping.

Usage

ct.plot.grouping(tree, file.output = NULL, show.labels = FALSE,
force.recompute.layout = FALSE, height = 20, width = 10,
vertebrae.distance = 0@, backbone.vertex.size = @, vert.vertex.size = 0)

Arguments

tree An igraph tree, as returned by compute.backbone. tree

file.output String (optional). Path of a file where the plot should be saved in PDF format
(rendered to screen if omitted).

show.labels Boolean (optional). Whether to write each cell’s row number next to its vertex.

force.recompute.layout
Boolean (optional). If set to TRUE, recomputes the graph’s layout coordinates
even when present.

height Numeric (optional). Height and width (in inches) of the plot.

width Numeric (optional). Height and width (in inches) of the plot.
vertebrae.distance
Numeric (optional). If non-zero: forces a specific plotting distance (in pixels)
between backbone cells and related peripheral cells (‘vertebrae’).
backbone.vertex.size
Numeric (optional). Diameter (in pixels) of backbone and vertebrae cell ver-
tices.
vert.vertex.size
Numeric (optional). Diameter (in pixels) of backbone and vertebrae cell ver-
tices.

10 ct.plot.heatmap

Value

An updated igraph object with x and y vertex coordinate attributes.

Examples

Load pre-computed LDA model for skeletal myoblast RNA-Seq data from HSMMSingleCell package:
data(HSMM_lda_model)

Recover sampling time (in days) for each cell:
library(HSMMSingleCell)

data(HSMM_sample_sheet)

days.factor = HSMM_sample_sheet$Hours

days = as.numeric(levels(days.factor))[days.factor]

Compute near-optimal backbone tree:

b.tree = compute.backbone.tree(HSMM_lda_model, days)

Plot resulting tree with sampling time as a vertex group colour:
ct.plot.grouping(b.tree)

ct.plot.heatmap Gene Expression Heatmap

Description

Plots a heatmap of gene expression, with cells ordered according to the structure computed by
compute.backbone. tree.

Usage

ct.plot.heatmap(data, b.tree, log.scale = TRUE, sd.filter = 0.7,
reorder.genes = TRUE)

Arguments
data A matrix of (non-negative) RNA-seq expression levels where each row is a gene
and each column is the cell sequenced.
b.tree igraph object returned by compute.backbone. tree.
log.scale Boolean (optional). Whether the data should be log-scaled.
sd.filter Numeric or FALSE (optional). Standard-deviation threshold below which genes

should be removed from the data (no filtering if set to FALSE).

reorder.genes Boolean (optional). Whether the gene rows should be reordered using a dendro-
gram of their mean value.

Value

data object reordered according to the backbone tree, such as used to plot the heatmap.

ct.plot.topics 11

Examples

Load pre-computed LDA model for skeletal myoblast RNA-Seq data from HSMMSingleCell package:
data(HSMM_lda_model)

Recover sampling time (in days) for each cell:
library(HSMMSingleCell)

data(HSMM_sample_sheet)

days.factor = HSMM_sample_sheet$Hours

days = as.numeric(levels(days.factor))[days.factor]

Compute near-optimal backbone tree:

b.tree = compute.backbone.tree(HSMM_lda_model, days)

Plot heatmap:

data(HSMM_expr_matrix)

ct.plot.heatmap(HSMM_expr_matrix[1:2000,], b.tree, reorder.genes=FALSE)

ct.plot.topics Plot cell tree with topic distributions

Description

Plots a backbone tree (or MST) that was computed with compute.backbone. tree, displaying each
cell’s topic distribution as a pie chart.

Usage

ct.plot.topics(tree, file.output = NULL, show.labels = FALSE,
force.recompute.layout = FALSE, height = 20, width = 10,
vertebrae.distance = 0, backbone.vertex.size = @, vert.vertex.size = 0)

Arguments

tree An igraph tree, as returned by compute.backbone. tree

file.output String (optional). Path of a file where the plot should be saved in PDF format
(rendered to screen if omitted).
show. labels Boolean (optional). Whether to write each cell’s row number next to its vertex.
force.recompute.layout
Boolean (optional). If set to TRUE, recomputes the graph’s layout coordinates
even when present.
height, width Numeric (optional). Height and width (in inches) of the plot.
vertebrae.distance

Numeric (optional). If non-zero: forces a specific plotting distance (in pixels)
between backbone cells and related peripheral cells (‘vertebrae’).

backbone.vertex.size, vert.vertex.size

Numeric (optional). Diameter (in pixels) of backbone and vertebrae cell ver-
tices.

Value

An updated igraph object with x and y vertex coordinate attributes.

12 get.cell.dists

Examples

Load pre-computed LDA model for skeletal myoblast RNA-Seq data from HSMMSingleCell package:
data(HSMM_lda_model)

Recover sampling time (in days) for each cell:
library(HSMMSingleCell)

data(HSMM_sample_sheet)

days.factor = HSMM_sample_sheet$Hours

days = as.numeric(levels(days.factor))[days.factor]

Compute near-optimal backbone tree:

b.tree = compute.backbone.tree(HSMM_lda_model, days)

Plot resulting tree with sampling time as a vertex group colour:
ct.plot.grouping(b.tree)

get.cell.dists Cell Pairwise-Distance Matrix

Description
Computes the pairwise distance between cells, based on the topic histograms form a fitted LDA
model.

Usage

get.cell.dists(lda.results)

Arguments

lda.results A fitted LDA model, as returned by compute.lda

Details

Distances between histograms are computed using the Chi-square distance

Value

A square matrix of pairwise distance between cells in the input model.

Examples

Load pre-computed LDA model for skeletal myoblast RNA-Seq data from HSMMSingleCell package:
data(HSMM_lda_model)

Compute cell pairwise distances:
b.tree = get.cell.dists(HSMM_lda_model)

go.results.to.latex 13

go.results.to.latex LaTeX output for Gene Ontology Enrichment results

Description

Outputs or writes result tables of Gene Ontology enrichment testing in LaTeX format.

Usage

go.results.to.latex(go.results, tex.file.name = "go_terms.tex",
topic.colors = rainbow(length(go.results$all)))

Arguments

go.results GO Enrichment result list object, such as returned by compute.go.enrichment.
tex.file.name String (optional). If not NULL: name of the file to save to.

topic.colors RGB colour vector (optional). Colors to use for each topic.

Value

GO enrichment results in LaTeX format

Examples

Load pre-computed LDA model for skeletal myoblast RNA-Seq data from HSMMSingleCell package:
data(HSMM_lda_model)

Load GO mapping database for 'homo sapiens':

library(org.Hs.eg.db)

Compute GO enrichment sets for each topic:

go.results = compute.go.enrichment(HSMM_lda_model, org.Hs.eg.db, bonferroni.correct=TRUE)

Output LaTeX tables for GO results
latex.table = go.results.to.latex(go.results, tex.file.name='go_results.tex"')

[Optional] compile LaTeX to PDF (need to have LaTeX binaries installed):
library('tools")

texi2pdf ('go_results.tex')

library('Biobase')

openPDF ('go_results.pdf')

14 HSMM_Ida_model

HSMM_lda_model Pre-computed LDA model for HSMMSingleCell data

Description

Pre-computed LDA model for HSMMSingleCell data

Usage
HSMM_lda_model

Format

An object of class 1ist of length 3.

Value

LDA model obtained by running compute.lda on the HSMMSingleCell package’s data. This
demo model can be used with all functions in this package that require a fitted LDA model, such as
compute.backbone. tree.

See examples for compute. lda for more details.

See Also

compute.lda

Index

*Topic data
HSMM_lda_model, 14

cell.ordering.table, 2,2
cellTree (cellTree-package), 2
cellTree-package, 2
compute.backbone. tree, 2, 3, 9-11, 14
compute.go.enrichment, 2,5, 8, 13
compute.lda, 2, 3, 5,6, 12, 14
ct.plot.go.dag, 2, 8
ct.plot.grouping, 2,9
ct.plot.heatmap, 10
ct.plot.topics, 2, 11
CTM_VEMcontrol-class, 7

get.cell.dists, 12
go.results.to.latex, 2, 13

HSMM_lda_model, 14
igraph, 2,4, 6, 8-11

LDA, 7
LDA-class, 7
LDA_Gibbscontrol-class, 7

topics, 7

15

	cellTree-package
	cell.ordering.table
	compute.backbone.tree
	compute.go.enrichment
	compute.lda
	ct.plot.go.dag
	ct.plot.grouping
	ct.plot.heatmap
	ct.plot.topics
	get.cell.dists
	go.results.to.latex
	HSMM_lda_model
	Index

