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aggregate-methods Compute summary statistics of subsets of vector-like objects

Description

The S4Vectors package defines aggregate methods for Vector, Rle, and List objects.

Usage

## S4 method for signature 'Vector'
aggregate(x, by, FUN, start=NULL, end=NULL, width=NULL,

frequency=NULL, delta=NULL, ..., simplify=TRUE)

## S4 method for signature 'Rle'
aggregate(x, by, FUN, start=NULL, end=NULL, width=NULL,

frequency=NULL, delta=NULL, ..., simplify=TRUE)

## S4 method for signature 'List'
aggregate(x, by, FUN, start=NULL, end=NULL, width=NULL,

frequency=NULL, delta=NULL, ..., simplify=TRUE)
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Arguments

x A Vector, Rle, or List object.

by An object with start, end, and width methods.
If x is a List object, the by parameter can be a RangesList object to aggregate
within the list elements rather than across them. When by is a RangesList ob-
ject, the output is either a SimpleAtomicList object, if possible, or a SimpleList
object, if not.

FUN The function, found via match.fun, to be applied to each subset of x.
start, end, width

The start, end, and width of the subsets. If by is missing, then two of the three
must be supplied and have the same length.

frequency, delta

Optional arguments that specify the sampling frequency and increment within
the subsets (in the same fashion as window from the stats package does).

... Optional arguments to FUN.

simplify A logical value specifying whether the result should be simplified to a vector or
matrix if possible.

Details

Subsets of x can be specified either via the by argument or via the start, end, width, frequency,
and delta arguments.

For example, if start and end are specified, then:

aggregate(x, FUN=FUN, start=start, end=end, ..., simplify=simplify)

is equivalent to:

sapply(seq_along(start),
function(i) FUN(x[start[i]:end[i]], ...), simplify=simplify)

(replace x[start[i]:end[i]] with 2D-style subsetting x[start[i]:end[i], ] if x is a DataFrame
object).

See Also

• The aggregate function in the stats package.

• Vector, Rle, List, and DataFrame objects.

• The start, end, and width generic functions defined in the BiocGenerics package.

Examples

x <- Rle(10:2, 1:9)
aggregate(x, x > 4, mean)
aggregate(x, FUN=mean, start=1:26, width=20)

## Note that aggregate() works on a DataFrame object the same way it
## works on an ordinary data frame:
aggregate(DataFrame(state.x77), list(Region=state.region), mean)
aggregate(weight ~ feed, data=DataFrame(chickwts), mean)
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library(IRanges)
by <- IRanges(start=1:26, width=20, names=LETTERS)
aggregate(x, by, is.unsorted)

Annotated-class Annotated class

Description

The virtual class Annotated is used to standardize the storage of metadata with a subclass.

Details

The Annotated class supports the storage of global metadata in a subclass. This is done through
the metadata slot that stores a list object.

Accessors

In the following code snippets, x is an Annotated object.

metadata(x), metadata(x) <- value: Get or set the list holding arbitrary R objects as annota-
tions. May be, and often is, empty.

Author(s)

P. Aboyoun

See Also

The Vector class, which extends Annotated directly.

Examples

showClass("Annotated") # shows (some of) the known subclasses

## If the IRanges package was not already loaded, this will show
## more subclasses:
library(IRanges)
showClass("Annotated")
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DataFrame-class DataFrame objects

Description

The DataFrame class extends the DataTable virtual class and supports the storage of any type of
object (with length and [ methods) as columns.

Details

On the whole, the DataFrame behaves very similarly to data.frame, in terms of construction,
subsetting, splitting, combining, etc. The most notable exception is that the row names are optional.
This means calling rownames(x) will return NULL if there are no row names. Of course, it could
return seq_len(nrow(x)), but returning NULL informs, for example, combination functions that no
row names are desired (they are often a luxury when dealing with large data).

As DataFrame derives from Vector, it is possible to set an annotation string. Also, another
DataFrame can hold metadata on the columns.

For a class to be supported as a column, it must have length and [ methods, where [ sup-
ports subsetting only by i and respects drop=FALSE. Optionally, a method may be defined for
the showAsCell generic, which should return a vector of the same length as the subset of the col-
umn passed to it. This vector is then placed into a data.frame and converted to text with format.
Thus, each element of the vector should be some simple, usually character, representation of the
corresponding element in the column.

Constructor

DataFrame(..., row.names = NULL, check.names = TRUE): Constructs a DataFrame
in similar fashion to data.frame. Each argument in ... is coerced to a DataFrame and
combined column-wise. No special effort is expended to automatically determine the row
names from the arguments. The row names should be given in row.names; otherwise, there
are no row names. This is by design, as row names are normally undesirable when data is
large. If check.names is TRUE, the column names will be checked for syntactic validity and
made unique, if necessary.
To store an object of a class that does not support coercion to DataFrame, wrap it in I(). The
class must still have methods for length and [.

Accessors

In the following code snippets, x is a DataFrame.

dim(x): Get the length two integer vector indicating in the first and second element the number of
rows and columns, respectively.

dimnames(x), dimnames(x) <- value: Get and set the two element list containing the row
names (character vector of length nrow(x) or NULL) and the column names (character vector
of length ncol(x)).

Coercion

as(from, "DataFrame"): By default, constructs a new DataFrame with from as its only column.
If from is a matrix or data.frame, all of its columns become columns in the new DataFrame.
If from is a list, each element becomes a column, recycling as necessary. Note that for the
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DataFrame to behave correctly, each column object must support element-wise subsetting via
the [ method and return the number of elements with length. It is recommended to use the
DataFrame constructor, rather than this interface.

as.list(x): Coerces x, a DataFrame, to a list.

as.data.frame(x, row.names=NULL, optional=FALSE): Coerces x, a DataFrame, to a data.frame.
Each column is coerced to a data.frame and then column bound together. If row.names is
NULL, they are retrieved from x, if it has any. Otherwise, they are inferred by the data.frame
constructor.
NOTE: conversion of x to a data.frame is not supported if x contains any list, SimpleList,
or CompressedList columns.

as(from, "data.frame"): Coerces a DataFrame to a data.frame by calling as.data.frame(from).

as.matrix(x): Coerces the DataFrame to a matrix, if possible.

Subsetting

In the following code snippets, x is a DataFrame.

x[i,j,drop]: Behaves very similarly to the [.data.frame method, except i can be a logical Rle
object and subsetting by matrix indices is not supported. Indices containing NA’s are also not
supported.

x[i,j] <- value: Behaves very similarly to the [<-.data.frame method.

x[[i]]: Behaves very similarly to the [[.data.frame method, except arguments j and exact
are not supported. Column name matching is always exact. Subsetting by matrices is not
supported.

x[[i]] <- value: Behaves very similarly to the [[<-.data.frame method, except argument j
is not supported.

Combining

In the following code snippets, x is a DataFrame.

rbind(...): Creates a new DataFrame by combining the rows of the DataFrame objects in ....
Very similar to rbind.data.frame, except in the handling of row names. If all elements have
row names, they are concatenated and made unique. Otherwise, the result does not have row
names. Currently, factors are not handled well (their levels are dropped). This is not a high
priority until there is an XFactor class.

cbind(...): Creates a new DataFrame by combining the columns of the DataFrame objects in
.... Very similar to cbind.data.frame, except row names, if any, are dropped. Consider the
DataFrame as an alternative that allows one to specify row names.

Author(s)

Michael Lawrence

See Also

• DataTable and SimpleList which DataFrame extends directly.
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Examples

score <- c(1L, 3L, NA)
counts <- c(10L, 2L, NA)
row.names <- c("one", "two", "three")

df <- DataFrame(score) # single column
df[["score"]]
df <- DataFrame(score, row.names = row.names) #with row names
rownames(df)

df <- DataFrame(vals = score) # explicit naming
df[["vals"]]

# arrays
ary <- array(1:4, c(2,1,2))
sw <- DataFrame(I(ary))

# a data.frame
sw <- DataFrame(swiss)
as.data.frame(sw) # swiss, without row names
# now with row names
sw <- DataFrame(swiss, row.names = rownames(swiss))
as.data.frame(sw) # swiss

# subsetting

sw[] # identity subset
sw[,] # same

sw[NULL] # no columns
sw[,NULL] # no columns
sw[NULL,] # no rows

## select columns
sw[1:3]
sw[,1:3] # same as above
sw[,"Fertility"]
sw[,c(TRUE, FALSE, FALSE, FALSE, FALSE, FALSE)]

## select rows and columns
sw[4:5, 1:3]

sw[1] # one-column DataFrame
## the same
sw[, 1, drop = FALSE]
sw[, 1] # a (unnamed) vector
sw[[1]] # the same
sw[["Fertility"]]

sw[["Fert"]] # should return 'NULL'

sw[1,] # a one-row DataFrame
sw[1,, drop=TRUE] # a list

## duplicate row, unique row names are created
sw[c(1, 1:2),]
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## indexing by row names
sw["Courtelary",]
subsw <- sw[1:5,1:4]
subsw["C",] # partially matches

## row and column names
cn <- paste("X", seq_len(ncol(swiss)), sep = ".")
colnames(sw) <- cn
colnames(sw)
rn <- seq(nrow(sw))
rownames(sw) <- rn
rownames(sw)

## column replacement

df[["counts"]] <- counts
df[["counts"]]
df[[3]] <- score
df[["X"]]
df[[3]] <- NULL # deletion

DataTable-class DataTable objects

Description

DataTable is an API only (i.e. virtual class with no slots) for accessing objects with a rectangular
shape like DataFrame or RangedData objects. It mimics the API for standard data.frame objects.

Accessors

In the following code snippets, x is a DataTable.

nrow(x), ncol(x): Get the number of rows and columns, respectively.

NROW(x), NCOL(x): Same as nrow(x) and ncol(x), respectively.

dim(x): Length two integer vector defined as c(nrow(x), ncol(x)).

rownames(x), colnames(x): Get the names of the rows and columns, respectively.

dimnames(x): Length two list of character vectors defined as list(rownames(x), colnames(x)).

Subsetting

In the code snippets below, x is a DataTable object.

x[i, j, drop=TRUE]: Return a new DataTable object made of the selected rows and columns.
For single column selection, the drop argument specifies whether or not to coerce the returned
sequence to a standard vector.

head(x, n=6L): If n is non-negative, returns the first n rows of the DataTable object. If n is
negative, returns all but the last abs(n) rows of the DataTable object.

tail(x, n=6L): If n is non-negative, returns the last n rows of the DataTable object. If n is
negative, returns all but the first abs(n) rows of the DataTable object.
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subset(x, subset, select, drop=FALSE): Return a new DataTable object using:
subset logical expression indicating rows to keep, where missing values are taken as FALSE.
select expression indicating columns to keep.
drop passed on to [ indexing operator.

na.omit(object): Returns a subset with incomplete cases removed.
na.exclude(object): Returns a subset with incomplete cases removed (but to be included with

NAs in statistical results).
is.na(x): Returns a logical matrix indicating which cells are missing.
complete.cases(x): Returns a logical vector identifying which cases have no missing values.

Combining

In the code snippets below, x is a DataTable object.

cbind(...): Creates a new DataTable by combining the columns of the DataTable objects in
....

rbind(...): Creates a new DataTable by combining the rows of the DataTable objects in ....
merge(x, y, ...): Merges two DataTable objects x and y, with arguments in ... being the

same as those allowed by the base merge. It is allowed for either x or y to be a data.frame.

Looping

In the code snippets below, x is a DataTable object.

by(data, INDICES, FUN, ..., simplify = TRUE): Apply FUN to each group of data, a
DataTable, formed by the factor (or list of factors) INDICES. Exactly the same contract as
as.data.frame.

Utilities

duplicated(x): Returns a logical vector indicating the rows that are identical to a previous row.
unique(x): Returns a new DataTable after removing the duplicated rows from x.
show(x): By default the show method displays 5 head and 5 tail lines. The number of lines can be

altered by setting the global options showHeadLines and showTailLines. If the object length
is less than the sum of the options, the full object is displayed. These options affect GRanges,
GAlignments, Ranges, DataTable and XString objects.

Coercion

as.env(x, enclos = parent.frame()): Creates an environment from x with a symbol for
each colnames(x). The values are not actually copied into the environment. Rather, they
are dynamically bound using makeActiveBinding. This prevents unnecessary copying of the
data from the external vectors into R vectors. The values are cached, so that the data is not
copied every time the symbol is accessed.

Statistical modeling with DataTable

A number of wrappers are implemented for performing statistical procedures, such as model fitting,
with DataTable objects.

Tabulation:
xtabs(formula = ~., data, subset, na.action, exclude = c(NA, NaN), drop.unused.levels = FALSE):

Like the original xtabs, except data is a DataTable.
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See Also

• DataFrame for an implementation that mimics data.frame.

• data.frame

Examples

showClass("DataTable") # shows (some of) the known subclasses

library(IRanges)
df <- DataFrame(as.data.frame(UCBAdmissions))
xtabs(Freq ~ Gender + Admit, df)

expand Unlist the list-like columns of a DataFrame object

Description

expand transforms a DataFrame object into a new DataFrame object where the columns specified
by the user are unlisted. The transformed DataFrame object has the same colnames as the original
but typically more rows.

Usage

## S4 method for signature 'DataFrame'
expand(x, colnames, keepEmptyRows = FALSE)

Arguments

x A DataFrame object with list-like columns or a Vector object with list-like meta-
data columns (i.e. with list-like columns in mcols(x)).

colnames A character or numeric vector containing the names or indices of the list-like
columns to unlist. The order in which columns are unlisted is controlled by
the column order in this vector. This defaults to all of the recursive (list-like)
columns in x.

keepEmptyRows A logical indicating if rows containing empty list elements in the specified
colnames should be retained or dropped. When TRUE, list elements are replaced
with NA and all rows are kept. When FALSE, rows with empty list elements in
the colnames columns are dropped.

Value

A DataFrame object that has been expanded row-wise to match the length of the unlisted columns.

See Also

• DataFrame objects.
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Examples

library(IRanges)
aa <- CharacterList("a", paste0("d", 1:2), paste0("b", 1:3), c(), "c")
bb <- CharacterList(paste0("sna", 1:2),"foo", paste0("bar",1:3),c(),"hica")
df <- DataFrame(aa=aa, bb=bb, cc=11:15)

## Expand by all list-like columns (aa, bb), dropping rows with empty
## list elements:
expand(df)

## Expand the aa column only:
expand(df, colnames="aa", keepEmptyRows=TRUE)
expand(df, colnames="aa", keepEmptyRows=FALSE)

## Expand the aa and then the bb column:
expand(df, colnames=c("aa","bb"), keepEmptyRows=TRUE)
expand(df, colnames=c("aa","bb"), keepEmptyRows=FALSE)

FilterMatrix-class Matrix for Filter Results

Description

A FilterMatrix object is a matrix meant for storing the logical output of a set of FilterRules,
where each rule corresponds to a column. The FilterRules are stored within the FilterMatrix
object, for the sake of provenance. In general, a FilterMatrix behaves like an ordinary matrix.

Accessor methods

In the code snippets below, x is a FilterMatrix object.

filterRules(x): Get the FilterRules corresponding to the columns of the matrix.

Constructor

FilterMatrix(matrix, filterRules): Constructs a FilterMatrix, from a given matrix and
filterRules. Not usually called by the user, see evalSeparately.

Utilities

summary(object, discarded = FALSE, percent = FALSE): Returns a numeric vector con-
taining the total number of records (nrow), the number passed by each filter, and the number
of records that passed every filter. If discarded is TRUE, then the numbers are inverted (i.e.,
the values are subtracted from the number of rows). If percent is TRUE, then the numbers are
percent of total.

Author(s)

Michael Lawrence

See Also

• evalSeparately is the typical way to generate this object.
• FilterRules objects.
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FilterRules-class Collection of Filter Rules

Description

A FilterRules object is a collection of filter rules, which can be either expression or function
objects. Rules can be disabled/enabled individually, facilitating experimenting with different com-
binations of filters.

Details

It is common to split a dataset into subsets during data analysis. When data is large, however,
representing subsets (e.g. by logical vectors) and storing them as copies might become too costly
in terms of space. The FilterRules class represents subsets as lightweight expression and/or
function objects. Subsets can then be calculated when needed (on the fly). This avoids copying
and storing a large number of subsets. Although it might take longer to frequently recalculate a
subset, it often is a relatively fast operation and the space savings tend to be more than worth it
when data is large.

Rules may be either expressions or functions. Evaluating an expression or invoking a function
should result in a logical vector. Expressions are often more convenient, but functions (i.e. closures)
are generally safer and more powerful, because the user can specify the enclosing environment. If
a rule is an expression, it is evaluated inside the envir argument to the eval method (see below).
If a function, it is invoked with envir as its only argument. See examples.

Accessor methods

In the code snippets below, x is a FilterRules object.

active(x): Get the logical vector of length length(x), where TRUE for an element indicates that
the corresponding rule in x is active (and inactive otherwise). Note that names(active(x))
is equal to names(x).

active(x) <- value: Replace the active state of the filter rules. If value is a logical vector, it
should be of length length(x) and indicate which rules are active. Otherwise, it can be either
numeric or character vector, in which case it sets the indicated rules (after dropping NA’s) to
active and all others to inactive. See examples.

Constructor

FilterRules(exprs = list(), ..., active = TRUE): Constructs a FilterRules with the
rules given in the list exprs or in .... The initial active state of the rules is given by active,
which is recycled as necessary. Elements in exprs may be either character (parsed into an
expression), a language object (coerced to an expression), an expression, or a function that
takes at least one argument. IMPORTANTLY, all arguments in ... are quote()’d and
then coerced to an expression. So, for example, character data is only parsed if it is a literal.
The names of the filters are taken from the names of exprs and ..., if given. Otherwise,
the character vectors take themselves as their name and the others are deparsed (before any
coercion). Thus, it is recommended to always specify meaningful names. In any case, the
names are made valid and unique.
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Subsetting and Replacement

In the code snippets below, x is a FilterRules object.

x[i]: Subsets the filter rules using the same interface as for Vector.

x[[i]]: Extracts an expression or function via the same interface as for List.

x[[i]] <- value: The same interface as for List. The default active state for new rules is TRUE.

Combining

In the code snippets below, x is a FilterRules object.

append(x, values, after = length(x)): Appends the values FilterRules instance onto x
at the index given by after.

c(x, ..., recursive = FALSE): Concatenates the FilterRule instances in ... onto the end
of x.

Evaluating

eval(expr, envir = parent.frame(), enclos = if (is.list(envir) || is.pairlist(envir))
parent.frame() else baseenv()): Evaluates a FilterRules instance (passed as the expr
argument). Expression rules are evaluated in envir, while function rules are invoked with
envir as their only argument. The evaluation of a rule should yield a logical vector. The
results from the rule evaluations are combined via the AND operation (i.e. &) so that a single
logical vector is returned from eval.

evalSeparately(expr, envir = parent.frame(), enclos = if (is.list(envir) || is.pairlist(envir)) parent.frame() else
baseenv()): Evaluates separately each rule in a FilterRules instance (passed as the expr
argument). Expression rules are evaluated in envir, while function rules are invoked with
envir as their only argument. The evaluation of a rule should yield a logical vector. The
results from the rule evaluations are combined into a logical matrix, with a column for each
rule. This is essentially the parallel evaluator, while eval is the serial evaluator.

subsetByFilter(x, filter): Evaluates filter on x and uses the result to subset x. The result
contains only the elements in x for which filter evaluates to TRUE.

summary(object, subject): Returns an integer vector with the number of elements in subject
that pass each rule in object, along with a count of the elements that pass all filters.

Filter Closures

When a closure (function) is included as a filter in a FilterRules object, it is converted to a
FilterClosure, which is currently nothing more than a marker class that extends function. When
a FilterClosure filter is extracted, there are some accessors and utilities for manipulating it:

params: Gets a named list of the objects that are present in the enclosing environment (without
inheritance). This assumes that a filter is constructed via a constructor function, and the objects
in the frame of the constructor (typically, the formal arguments) are the parameters of the filter.

Author(s)

Michael Lawrence

See Also

FilterMatrix objects for storing the logical output of a set of FilterRules objects.
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Examples

## constructing a FilterRules instance

## an empty set of filters
filters <- FilterRules()

## as a simple character vector
filts <- c("peaks", "promoters")
filters <- FilterRules(filts)
active(filters) # all TRUE

## with functions and expressions
filts <- list(peaks = expression(peaks), promoters = expression(promoters),

find_eboxes = function(rd) rep(FALSE, nrow(rd)))
filters <- FilterRules(filts, active = FALSE)
active(filters) # all FALSE

## direct, quoted args (character literal parsed)
filters <- FilterRules(under_peaks = peaks, in_promoters = "promoters")
filts <- list(under_peaks = expression(peaks),

in_promoters = expression(promoters))

## specify both exprs and additional args
filters <- FilterRules(filts, diffexp = de)

filts <- c("promoters", "peaks", "introns")
filters <- FilterRules(filts)

## evaluation
df <- DataFrame(peaks = c(TRUE, TRUE, FALSE, FALSE),

promoters = c(TRUE, FALSE, FALSE, TRUE),
introns = c(TRUE, FALSE, FALSE, FALSE))

eval(filters, df)
fm <- evalSeparately(filters, df)
identical(filterRules(fm), filters)
summary(fm)
summary(fm, percent = TRUE)
fm <- evalSeparately(filters, df, serial = TRUE)

## set the active state directly

active(filters) <- FALSE # all FALSE
active(filters) <- TRUE # all TRUE
active(filters) <- c(FALSE, FALSE, TRUE)
active(filters)["promoters"] <- TRUE # use a filter name

## toggle the active state by name or index

active(filters) <- c(NA, 2) # NA's are dropped
active(filters) <- c("peaks", NA)

Hits-class Hits objects
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Description

The Hits class is a container for representing a set of hits between a set of left nodes and a set of
right nodes. Note that only the hits are stored in the object. No information about the left or right
nodes is stored, except their number.

For example, the findOverlaps function, defined and documented in the IRanges package, returns
the hits between the query and subject arguments in a Hits object.

Usage

## Constructor functions

Hits(from=integer(0), to=integer(0), nLnode=0L, nRnode=0L, ...,
sort.by.query=FALSE)

SelfHits(from=integer(0), to=integer(0), nnode=0L, ...,
sort.by.query=FALSE)

Arguments

from, to 2 integer vectors of the same length. The values in from must be >= 1 and <=
nLnode. The values in to must be >= 1 and <= nRnode.

nLnode, nRnode Number of left and right nodes.

... Metadata columns to set on the Hits object. All the metadata columns must be
vector-like objects of the same length as from and to.

sort.by.query Should the hits in the returned object be sorted by query? If yes, then a Sorted-
ByQueryHits object is returned (SortedByQueryHits is a subclass of Hits).

nnode Number of nodes.

Accessors

In the code snippets below, x is a Hits object.

length(x): get the number of hits

from(x): Equivalent to as.data.frame(x)[[1]].

to(x): Equivalent to as.data.frame(x)[[2]].

nLnode(x), nrow(x): get the number of left nodes

nRnode(x), ncol(x): get the number of right nodes

countLnodeHits(x): Counts the number of hits for each left node, returning an integer vector.

countRnodeHits(x): Counts the number of hits for each right node, returning an integer vector.

The following accessors are just aliases for the above accessors:

queryHits(x): alias for from(x).

subjectHits(x): alias for to(x).

queryLength(x): alias for nLnode(x).

subjectLength(x): alias for nRnode(x).

countQueryHits(x): alias for countLnodeHits(x).

countSubjectHits(x): alias for countRnodeHits(x).
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Coercion

In the code snippets below, x is a Hits object.

as.matrix(x): Coerces x to a two column integer matrix, with each row representing a hit be-
tween a left node (first column) and a right node (second column).

as.table(x): Counts the number of hits for each left node in x and outputs the counts as a table.

Subsetting

In the code snippets below, x is a Hits object.

x[i]: Subset the Hits object.

Other transformations

In the code snippets below, x is a Hits object.

t(x): Transpose x by interchanging the left and right nodes. This allows, for example, counting
the number of hits for each right node using as.table.

remapHits(x, Lnodes.remapping=NULL, new.nLnode=NA, Rnodes.remapping=NULL, new.nRnode=NA):
Only supports SortedByQueryHits objects at the moment.
Remaps the left and/or right nodes in x. The left nodes are remapped thru the map specified
via the Lnodes.remapping and new.nLnode arguments. The right nodes are remapped thru
the map specified via the Rnodes.remapping and new.nRnode arguments.
Lnodes.remapping must represent a function defined on the 1..M interval that takes values
in the 1..N interval, where N is nLnode(x) and M is the value specified by the user via the
new.nLnode argument. Note that this mapping function doesn’t need to be injective or sur-
jective. Also it is not represented by an R function but by an integer vector of length M
with no NAs. More precisely Lnodes.remapping can be NULL (identity map), or a vec-
tor of nLnode(x) non-NA integers that are >= 1 and <= new.nLnode, or a factor of length
nLnode(x) with no NAs (a factor is treated as an integer vector, and, if missing, new.nLnode
is taken to be its number of levels). Note that a factor will typically be used to represent a
mapping function that is not injective.
The same applies to the Rnodes.remapping.
remapHits returns a Hits object where from(x) and to(x) have been remapped thru the 2
specified maps. This remapping is actually only the 1st step of the transformation, and is
followed by 2 additional steps: (2) the removal of duplicated hits, and (3) the reordering of
the hits (first by query hits, then by subject hits). Note that if the 2 maps are injective then
the remapping won’t introduce duplicated hits, so, in that case, step (2) is a no-op (but is still
performed). Also if the "query map" is strictly ascending and the "subject map" ascending
then the remapping will preserve the order of the hits, so, in that case, step (3) is also a no-op
(but is still performed).

breakTies(x, method=c("first", "last")): Restrict the hits so that every left node maps to
at most one right node. If method is “first”, for each left node, select the edge with the first
(lowest rank) right node, if any. If method is “last”, select the edge with the last (highest rank)
right node.

SelfHits

A SelfHits object is a Hits object where the left and right nodes are identical. For a SelfHits object
x, nLnode(x) is equal to nRnode(x). The object can be seen as an oriented graph where nLnode
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is the nb of nodes and the hits are the (oriented) edges. SelfHits objects support the same set of
accessors as Hits objects plus the nnode() accessor that is equivalent to nLnode() and nRnode().

We also provide two little utilities to operate on a SelfHits object x:

isSelfHit(x): A self hit is an edge from a node to itself. isSelfHit(x) returns a logical vector
parallel to x indicating which elements in x are self hits.

isRedundantHit(x): When there is more than 1 edge between 2 given nodes (regardless of ori-
entation), the extra edges are considered to be redundant hits. isRedundantHit(x) returns a
logical vector parallel to x indicating which elements in x are redundant hits.

Author(s)

Michael Lawrence and Hervé Pagès

See Also

• Hits-comparison for comparing and ordering hits.

• The findOverlaps function in the IRanges package which returns SortedByQueryHits ob-
ject.

• Hits-examples in the IRanges package, for some examples of Hits object basic manipulation.

• setops-methods in the IRanges package, for set operations on Hits objects.

Examples

from <- c(5, 2, 3, 3, 3, 2)
to <- c(11, 15, 5, 4, 5, 11)
id <- letters[1:6]

Hits(from, to, 7, 15, id)
Hits(from, to, 7, 15, id, sort.by.query=TRUE)

## ---------------------------------------------------------------------
## selectHits()
## ---------------------------------------------------------------------

x <- c("a", "b", "a", "c", "d")
table <- c("a", "e", "d", "a", "a", "d")
hits <- findMatches(x, table) # sorts the hits by query
hits

selectHits(hits, select="all") # no-op
selectHits(hits, select="first")
selectHits(hits, select="last")
selectHits(hits, select="arbitrary")
selectHits(hits, select="count")

## ---------------------------------------------------------------------
## remapHits()
## ---------------------------------------------------------------------

Lnodes.remapping <- factor(c(a="A", b="B", c="C", d="D")[x],
levels=LETTERS[1:4])

remapHits(hits, Lnodes.remapping=Lnodes.remapping)

## See ?`Hits-examples` in the IRanges package for more examples of basic
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## manipulation of Hits objects.

## ---------------------------------------------------------------------
## SelfHits objects
## ---------------------------------------------------------------------

hits2 <- SelfHits(c(2, 3, 3, 3, 3, 3, 4, 4, 4), c(4, 3, 2:4, 2, 2:3, 2), 4)
## Hits 2 and 4 are self hits (from 3rd node to itself):
which(isSelfHit(hits2))
## Hits 4, 6, 7, 8, and 9, are redundant hits:
which(isRedundantHit(hits2))

hits3 <- findMatches(x)
hits3[!isSelfHit(hits3)]
hits3[!(isSelfHit(hits3) | isRedundantHit(hits3))]

Hits-comparison Comparing and ordering hits

Description

==, !=, <=, >=, <, >, match(), %in%, order(), sort(), and rank() can be used on Hits objects to
compare and order hits.

Note that only the "pcompare", "match", and "order" methods are actually defined for Hits ob-
jects. This is all what is needed to make all the other comparing and ordering operations (i.e. ==,
!=, <=, >=, <, >, %in%, sort(), and rank()) work on these objects (see ?`Vector-comparison`
for more information about this).

Usage

## S4 method for signature 'Hits,Hits'
pcompare(x, y)

## S4 method for signature 'Hits,Hits'
match(x, table, nomatch=NA_integer_, incomparables=NULL,

method=c("auto", "quick", "hash"))

## S4 method for signature 'Hits'
order(..., na.last=TRUE, decreasing=FALSE, method=c("shell", "radix"))

Arguments

x, y, table Compatible Hits objects, that is, Hits objects with the same subject and query
lengths.

nomatch The value to be returned in the case when no match is found. It is coerced to an
integer.

incomparables Not supported.

method For match: Use a Quicksort-based (method="quick") or a hash-based (method="hash")
algorithm. The latter tends to give better performance, except maybe for some
pathological input that we’ve not encountered so far. When method="auto"
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is specified, the most efficient algorithm will be used, that is, the hash-based
algorithm if length(x) <= 2^29, otherwise the Quicksort-based algorithm.
For order: The method argument is ignored.

... One or more Hits objects. The additional Hits objects are used to break ties.

na.last Ignored.

decreasing TRUE or FALSE.

Details

Only hits that belong to Hits objects with same subject and query lengths can be compared.

Hits are ordered by query hit first, and then by subject hit. On a Hits object, order, sort, and rank
are consistent with this order.

pcompare(x, y): Performs element-wise (aka "parallel") comparison of 2 Hits objects x and y,
that is, returns an integer vector where the i-th element is less than, equal to, or greater than
zero if x[i] is considered to be respectively less than, equal to, or greater than y[i]. See
?`Vector-comparison` for how x or y is recycled when the 2 objects don’t have the same
length.

match(x, table, nomatch=NA_integer_, method=c("auto", "quick", "hash")): Returns
an integer vector of the length of x, containing the index of the first matching hit in table (or
nomatch if there is no matching hit) for each hit in x.

order(...): Returns a permutation which rearranges its first argument (a Hits object) into as-
cending order, breaking ties by further arguments (also Hits objects).

Author(s)

Hervé Pagès

See Also

• Hits objects.

• Vector-comparison for general information about comparing, ordering, and tabulating vector-
like objects.

Examples

## ---------------------------------------------------------------------
## A. ELEMENT-WISE (AKA "PARALLEL") COMPARISON OF 2 Hits OBJECTS
## ---------------------------------------------------------------------
hits <- Hits(c(2, 4, 4, 4, 5, 5), c(3, 1, 3, 2, 3, 2), 6, 3)
hits

pcompare(hits, hits[3])
pcompare(hits[3], hits)

hits == hits[3]
hits != hits[3]
hits >= hits[3]
hits < hits[3]

## ---------------------------------------------------------------------
## B. match(), %in%
## ---------------------------------------------------------------------
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table <- hits[-c(1, 3)]
match(hits, table)

hits %in% table

## ---------------------------------------------------------------------
## C. order(), sort(), rank()
## ---------------------------------------------------------------------
order(hits)
sort(hits)
rank(hits)

Hits-setops Set operations on Hits objects

Description

Perform set operations on Hits objects.

Details

union(x, y), intersect(x, y), setdiff(x, y), and setequal(x, y) work on Hits objects x
and y only if the objects are compatible Hits objects, that is, if they have the same subject and query
lengths. These operations return respectively the union, intersection, (asymmetric!) difference, and
equality of the sets of hits in x and y.

Value

union returns a Hits object obtained by appending to x the hits in y that are not already in x.

intersect returns a Hits object obtained by keeping only the hits in x that are also in y.

setdiff returns a Hits object obtained by dropping from x the hits that are in y.

setequal returns TRUE if x and y contain the same sets of hits and FALSE otherwise.

union, intersect, and setdiff propagate the names and metadata columns of their first argument
(x).

Author(s)

Hervé Pagès and Michael Lawrence

See Also

• Hits objects.

• Hits-comparison for comparing and ordering hits.

• BiocGenerics::union, BiocGenerics::intersect, and BiocGenerics::setdiff in the
BiocGenerics package for general information about these generic functions.
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Examples

x <- Hits(c(2, 4, 4, 4, 5, 5), c(3, 1, 3, 2, 3, 2), 6, 3,
score=11:16)

x

y <- Hits(c(1, 3, 4, 4, 5, 5, 5), c(3, 3, 2, 1, 2, 1, 3), 6, 3,
score=21:27)

y

union(x, y)
union(y, x) # same hits as in union(x, y), but in different order

intersect(x, y)
intersect(y, x) # same hits as in intersect(x, y), but in

# different order

setdiff(x, y)
setdiff(y, x)

setequal(x, y)

HitsList-class List of Hits objects

Description

The HitsList class stores a set of Hits objects. It’s typically used to represent the result of findOverlaps
on two RangesList objects.

Details

Roughly the same set of utilities are provided for HitsList as for Hits:

The as.matrix method coerces a HitsList object in a similar way to Hits, except a column is
prepended that indicates which space (or element in the query RangesList) to which the row corre-
sponds.

The as.table method flattens or unlists the list, counts the number of hits for each query range and
outputs the counts as a table, which has the same shape as from a single Hits object.

To transpose a HitsList object x, so that the subject and query in each space are interchanged,
call t(x). This allows, for example, counting the number of hits for each subject element using
as.table.

Accessors

queryHits(x): Equivalent to unname(as.matrix(x)[,1]).

subjectHits(x): Equivalent to unname(as.matrix(x)[,2]).

space(x): gets the character vector naming the space in the query RangesList for each hit, or
NULL if the query did not have any names.
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Coercion

In the code snippets below, x is a HitsList object.

as.matrix(x): calls as.matrix on each Hits, combines them row-wise and offsets the indices so
that they are aligned with the result of calling unlist on the query and subject.

as.table(x): counts the number of hits for each query element in x and outputs the counts as a
table, which is aligned with the result of calling unlist on the query.

t(x): Interchange the query and subject in each space of x, returns a transposed HitsList object.

Note

This class is highly experimental. It has not been well tested and may disappear at any time.

Author(s)

Michael Lawrence

See Also

• findOverlaps in the IRanges package, which returns a HitsList object when the query and
subject are RangesList objects.

isSorted Test if a vector-like object is sorted

Description

isSorted and isStrictlySorted test if a vector-like object is sorted or strictly sorted, respectively.

isConstant tests if a vector-like or array-like object is constant. Currently only isConstant meth-
ods for vectors or arrays of type integer or double are implemented.

Usage

isSorted(x)
isStrictlySorted(x)
isConstant(x)

Arguments

x A vector-like object. Can also be an array-like object for isConstant.

Details

Vector-like objects of length 0 or 1 are always considered to be sorted, strictly sorted, and constant.

Strictly sorted and constant objects are particular cases of sorted objects.

isStrictlySorted(x) is equivalent to isSorted(x) && !anyDuplicated(x)

Value

A single logical i.e. TRUE, FALSE or NA.
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Author(s)

Hervé Pagès

See Also

• is.unsorted.

• duplicated and unique.

• all.equal.

• NA and is.finite.

Examples

## ---------------------------------------------------------------------
## A. isSorted() and isStrictlySorted()
## ---------------------------------------------------------------------

x <- 1:10

isSorted(x) # TRUE
isSorted(-x) # FALSE
isSorted(rev(x)) # FALSE
isSorted(-rev(x)) # TRUE

isStrictlySorted(x) # TRUE

x2 <- rep(x, each=2)
isSorted(x2) # TRUE
isStrictlySorted(x2) # FALSE

## ---------------------------------------------------------------------
## B. "isConstant" METHOD FOR integer VECTORS
## ---------------------------------------------------------------------

## On a vector with no NAs:
stopifnot(isConstant(rep(-29L, 10000)))

## On a vector with NAs:
stopifnot(!isConstant(c(0L, NA, -29L)))
stopifnot(is.na(isConstant(c(-29L, -29L, NA))))

## On a vector of length <= 1:
stopifnot(isConstant(NA_integer_))

## ---------------------------------------------------------------------
## C. "isConstant" METHOD FOR numeric VECTORS
## ---------------------------------------------------------------------
## This method does its best to handle rounding errors and special
## values NA, NaN, Inf and -Inf in a way that "makes sense".
## Below we only illustrate handling of rounding errors.

## Here values in 'x' are "conceptually" the same:
x <- c(11/3,

2/3 + 4/3 + 5/3,
50 + 11/3 - 50,
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7.00001 - 1000003/300000)
## However, due to machine rounding errors, they are not *strictly*
## equal:
duplicated(x)
unique(x)
## only *nearly* equal:
all.equal(x, rep(11/3, 4)) # TRUE

## 'isConstant(x)' uses 'all.equal()' internally to decide whether
## the values in 'x' are all the same or not:
stopifnot(isConstant(x))

## This is not perfect though:
isConstant((x - 11/3) * 1e8) # FALSE on Intel Pentium paltforms

# (but this is highly machine dependent!)

List-class List objects

Description

List objects are Vector objects with a "[[", elementType and elementNROWS method. The List
class serves a similar role as list in base R.

It adds one slot, the elementType slot, to the two slots shared by all Vector objects.

The elementType slot is the preferred location for List subclasses to store the type of data repre-
sented in the sequence. It is designed to take a character of length 1 representing the class of the
sequence elements. While the List class performs no validity checking based on elementType, if
a subclass expects elements to be of a given type, that subclass is expected to perform the neces-
sary validity checking. For example, the subclass IntegerList (defined in the IRanges package) has
elementType = "integer" and its validity method checks if this condition is TRUE.

To be functional, a class that inherits from List must define at least a "[[" method (in addition to
the minimum set of Vector methods).

Construction

List objects are typically constructed using one of the 3 following methods:

• Use of a constructor function. Many constructor functions are provided for List objects e.g.
List, IntegerList, RleList, RangesList, GRangesList, etc... Which one to use depends
on the particular type of List object to construct. The name of a constructor function is al-
ways the name of a valid class. If it’s the name of a concrete class (e.g. the GRangesList
constructor defined in the GenomicRanges package), then the constructor function returns an
instance of that class. If it’s the name of a virtual class (e.g. the List constructor defined
in this package, or the IntegerList or RleList or RangesList constructors defined in the
IRanges package), then the returned object belongs to a concrete subclass of that virtual class.
Which subclass exactly depends on each constructor function (see man page of a particular
constructor function for the details).

• Coercion to List or to a List subclass. Many coercion methods are provided to turn any object
into a List object. One general and convenient way to convert any vector-like object into a List
is to call as(x, "List"). This will typically yield an object from a subclass of Compress-
edList.
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• Use of extractList. This function, defined in the IRanges package, extracts user-specified
groups of elements from a vector-like object and returns them in a List (or sometimes list)
object.

Accessors

In the following code snippets, x is a List object.

length(x): Get the number of list elements in x.

names(x), names(x) <- value: Get or set the names of the elements in the List.

mcols(x, use.names=FALSE), mcols(x) <- value: Get or set the metadata columns. See
Vector man page for more information.

elementType(x): Get the scalar string naming the class from which all elements must derive.

elementNROWS(x): Get the length (or nb of row for a matrix-like object) of each of the elements.
Equivalent to sapply(x, NROW).

isEmpty(x): Returns a logical indicating either if the sequence has no elements or if all its ele-
ments are empty.

Coercion

To List.

as(x, "List"): Converts a vector-like object into a List, usually a CompressedList derivative.
One notable exception is when x is an ordinary list, in which case as(x, "List") returns a
SimpleList derivative.

To explicitly request a SimpleList derivative, call as(x, "SimpleList").

See ?CompressedList (you might need to load the IRanges package first) and ?SimpleList
for more information about the CompressedList and SimpleList representations.

From List. In the code snippets below, x is a List object.

as.list(x, ...), as(from, "list"): Turns x into an ordinary list.

unlist(x, recursive=TRUE, use.names=TRUE): Concatenates the elements of x into a single
vector-like object (of class elementType(x)).

as.data.frame(x, row.names=NULL, optional=FALSE , value.name="value", use.outer.mcols=FALSE, group_name.as.factor=FALSE, ...):
Coerces a List to a data.frame. The result has the same length as unlisted x with two addi-
tional columns, group and group_name. group is an integer that indicates which list element
the record came from. group_name holds the list name associated with each record; value is
character by default and factor when group_name.as.factor is TRUE.

When use.outer.mcols is TRUE the metadata columns on the outer list elements of x are
replicated out and included in the data.frame. List objects that unlist to a single vector
(column) are given the column name ‘value‘ by default. A custom name can be provided in
value.name.

Splitting values in the resulting data.frame by the original groups in x should be done using
the group column as the f argument to splitAsList. To relist data, use x as the skeleton
argument to relist.
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Subsetting

In the code snippets below, x is a List object.

x[i]: Return a new List object made of the list elements selected by subscript i. Subscript i
can be of any type supported by subsetting of a Vector object (see Vector man page for the
details), plus the following types: IntegerList, LogicalList, CharacterList, integer-RleList,
logical-RleList, character-RleList, and RangesList. Those additional types perform subsetting
within the list elements rather than across them.

x[i] <- value: Replacement version of x[i].

x[[i]]: Return the selected list element i, where i is an numeric or character vector of length 1.

x[[i]] <- value: Replacement version of x[[i]].

x$name, x$name <- value: Similar to x[[name]] and x[[name]] <- value, but name is taken
literally as an element name.

relistToClass

relistToClass(x) is the opposite of elementType(y) in the sense that the former returns the class
of the result of relisting (or splitting) x while the latter returns the class of the result of unlisting (or
unsplitting) y. More formally, if x is an object that is relistable and y a list-like object:

relistToClass(x) is class(relist(x, some_skeleton))
elementType(y) is class(unlist(y))

As a consequence, for any object x for which relistToClass(x) is defined and returns a valid
class, elementType(new(relistToClass(x))) should return class(x).

Author(s)

P. Aboyoun and H. Pagès

See Also

• List-utils for common operations on List objects.

• Vector objects for the parent class.

• The SimpleList class for a direct extension of the List class.

• The CompressedList class defined in the IRanges package for another direct extension of the
List class.

• The IntegerList, RleList, and IRanges classes and constructors defined in the IRanges package
for more examples of concrete List subclasses.

• The extractList function defined in the IRanges package for grouping elements of a vector-like
object into a list-like object.

Examples

showClass("List") # shows (some of) the known subclasses
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List-utils Common operations on List objects

Description

Various functions and methods for looping on List objects, functional programming on List objects,
and evaluation of an expression in a List object.

Usage

## Looping on List objects:
## ------------------------

## S4 method for signature 'List'
lapply(X, FUN, ...)

## S4 method for signature 'List'
sapply(X, FUN, ..., simplify=TRUE, USE.NAMES=TRUE)

endoapply(X, FUN, ...)

revElements(x, i)

mendoapply(FUN, ..., MoreArgs=NULL)

pc(...)

## Functional programming methods for List objects:
## ------------------------------------------------

## S4 method for signature 'List'
Reduce(f, x, init, right=FALSE, accumulate=FALSE)
## S4 method for signature 'List'
Filter(f, x)
## S4 method for signature 'List'
Find(f, x, right=FALSE, nomatch=NULL)
## S4 method for signature 'List'
Map(f, ...)
## S4 method for signature 'List'
Position(f, x, right=FALSE, nomatch=NA_integer_)

## Evaluation of an expression in a List object:
## ---------------------------------------------

## S4 method for signature 'List'
within(data, expr, ...)

## Constructing list matrices:
## ---------------------------------------------

## S4 method for signature 'List'
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rbind(..., deparse.level=1L)
## S4 method for signature 'List'
cbind(..., deparse.level=1L)

Arguments

X, x A list, data.frame or List object.

FUN The function to be applied to each element of X (for endoapply) or for the
elements in ... (for mendoapply).

... For lapply, sapply, and endoapply, optional arguments to FUN.
For mendoapply, a set of list, data.frame or List objects to compute over.
For pc, one or more list-like objects.
For Map, one or more List objects. (FIXME: Mixing List objects with ordinary
lists doesn’t seem to work properly at the moment.)

simplify, USE.NAMES

See ?base::sapply for a description of these arguments.

MoreArgs A list of other arguments to FUN.

i Index specifying the elements to replace. Can be anything supported by `[<-`.
f, init, right, accumulate, nomatch

See ?base::Reduce for a description of these arguments.

data A List object.

expr Expression to evaluate.

Details

Looping on List objects: Like the standard lapply function defined in the base package, the
lapply method for List objects returns a list of the same length as X, with each element being the
result of applying FUN to the corresponding element of X.
Like the standard sapply function defined in the base package, the sapply method for List objects
is a user-friendly version of lapply by default returning a vector or matrix if appropriate.
endoapply and mendoapply perform the endomorphic equivalents of lapply and mapply by
returning objects of the same class as the inputs rather than a list.
revElements(x, i) reverses the list elements in x specified by i. It’s equivalent to, but faster
than, doing x[i] <- endoapply(x[i], rev).
pc(...) combines list-like objects in an element-wise fashion. It’s similar to, but faster than,
mapply(c, ..., SIMPLIFY=FALSE). With the following differences:

1. pc() ignores the supplied objects that are NULL.
2. pc() does not recycle its arguments. All the supplied objects must have the same length.
3. If one of the supplied objects is a List object, then pc() returns a List object.
4. pc() always returns a homogenous list or List object, that is, an object where all the list

elements have the same type.

Functional programming methods for List objects: The R base package defines some higher-
order functions that are commonly found in Functional Programming Languages. See ?base::Reduce
for the details, and, in particular, for a description of their arguments. The S4Vectors package pro-
vides methods for List objects, so, in addition to be an ordinary vector or list, the x argument can
also be a List object.
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Evaluation of an expression in a List object: within evaluates expr within as.env(data) via
eval(data). Similar to with, except assignments made during evaluation are taken as assign-
ments into data, i.e., new symbols have their value appended to data, and assigning new values
to existing symbols results in replacement.

Binding Lists into a matrix: There are methods for cbind and rbind that will bind multiple
lists together into a basic list matrix. The usual geometric constraints apply. In the future, this
might return a List (+ dimensions), but for now the return value is an ordinary list.

Value

endoapply returns an object of the same class as X, each element of which is the result of applying
FUN to the corresponding element of X.

mendoapply returns an object of the same class as the first object specified in ..., each element of
which is the result of applying FUN to the corresponding elements of ....

pc returns a list or List object of the same length as the input objects.

See ?base::Reduce for the value returned by the functional programming methods.

See ?base::within for the value returned by within.

cbind and rbind return a list matrix.

Author(s)

P. Aboyoun and H. Pagès

See Also

• The List class.

• base::lapply and base::mapply for the default lapply and mapply methods.

• base::Reduce for the default functional programming methods.

• base::within for the default within method.

• base::cbind and base::rbind for the default matrix binding methods.

Examples

a <- data.frame(x = 1:10, y = rnorm(10))
b <- data.frame(x = 1:10, y = rnorm(10))

endoapply(a, function(x) (x - mean(x))/sd(x))
mendoapply(function(e1, e2) (e1 - mean(e1)) * (e2 - mean(e2)), a, b)

x <- list(a=11:13, b=26:21, c=letters)
y <- list(-(5:1), c("foo", "bar"), 0.25)
pc(x, y)

library(IRanges)
x <- IntegerList(a=11:13, b=26:21, c=31:36, d=4:2)
y <- NumericList(-(5:1), 1:2, numeric(0), 0.25)
pc(x, y)

Reduce("+", x)

Filter(is.unsorted, x)
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pos1 <- Position(is.unsorted, x)
stopifnot(identical(Find(is.unsorted, x), x[[pos1]]))

pos2 <- Position(is.unsorted, x, right=TRUE)
stopifnot(identical(Find(is.unsorted, x, right=TRUE), x[[pos2]]))

y <- x * 1000L
Map("c", x, y)

rbind(x, y)
cbind(x, y)

Pairs-class Pairs objects

Description

Pairs is a Vector that stores two parallel vectors (any object that can be a column in a DataFrame).
It provides conveniences for performing binary operations on the vectors, as well as for converting
between an equivalent list representation. Virtually all of the typical R vector operations should
behave as expected.

A typical use case is representing the pairing from a findOverlaps call, for which findOverlapPairs
is a shortcut.

Constructor

Pairs(first, second, ..., names = NULL, hits = NULL): Constructs a Pairs object by
aligning the vectors first and second. The vectors must have the same length, unless hits is
specified. Arguments in ... are combined as columns in the mcols of the result. The names
argument specifies the names on the result. If hits is not NULL, it should be a Hits object that
collates the elements in first and second to produce the corresponding pairs.

Accessors

In the code snippets below, x is a Pairs object.

names(x), names(x) <- value: get or set the names

first(x), first(x) <- value: get or set the first member of each pair

second(x), second(x) <- value: get or set the second member of each pair

Coercion

zipup(x): Interleaves the Pairs object x into a list, where each element is composed of a pair.
The type of list depends on the type of the elements.

zipdown(x): The inverse of zipup(). Converts x, a list where every element is of length 2, to a
Pairs object, by assuming that each element of the list represents a pair.

Subsetting

In the code snippets below, x is a Pairs object.

x[i]: Subset the Pairs object.
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Author(s)

Michael Lawrence

See Also

• Hits-class, a typical way to define a pairing.

• findOverlapPairs in the IRanges package, which generates an instance of this class based
on overlaps.

• setops-methods in the IRanges package, for set operations on Pairs objects.

Examples

p <- Pairs(1:10, Rle(1L, 10), score=rnorm(10), names=letters[1:10])
identical(first(p), 1:10)
mcols(p)$score
p
as.data.frame(p)
z <- zipup(p)
first(p) <- Rle(1:10)
identical(zipdown(z), p)

Rle-class Rle objects

Description

The Rle class is a general container for storing an atomic vector that is stored in a run-length
encoding format. It is based on the rle function from the base package.

Constructor

Rle(values, lengths): This constructor creates an Rle instance out of an atomic vector or
factor object values and an integer or numeric vector lengths with all positive elements that
represent how many times each value is repeated. The length of these two vectors must be the
same. lengths can be missing in which case values is turned into an Rle.

Getters

In the code snippets below, x is an Rle object:

runLength(x): Returns the run lengths for x.

runValue(x): Returns the run values for x.

nrun(x): Returns the number of runs in x.

start(x): Returns the starts of the runs for x.

end(x): Returns the ends of the runs for x.

width(x): Same as runLength(x).
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Setters

In the code snippets below, x is an Rle object:

runLength(x) <- value: Replaces x with a new Rle object using run values runValue(x) and
run lengths value.

runValue(x) <- value: Replaces x with a new Rle object using run values value and run lengths
runLength(x).

Coercion

From atomic vector to Rle: In the code snippets below, from is an atomic vector:

as(from, "Rle"): This coercion creates an Rle instances out of an atomic vector from.

From Rle to other objects: In the code snippets below, x and from are Rle objects:

as.vector(x, mode="any"), as(from, "vector"): Creates an atomic vector based on the
values contained in x. The vector will be coerced to the requested mode, unless mode is
"any", in which case the most appropriate type is chosen.

as.vectorORfactor(x): Creates an atomic vector or factor, based on the type of values con-
tained in x. This is the most general way to decompress the Rle to a native R data structure.

as.factor(x), as(from, "factor"): Creates a factor object based on the values contained in
x.

as.data.frame(x), as(from, "data.frame"): Creates a data.frame with a single column
holding the result of as.vector(x).

decode(x): Converts an Rle to its native form, such as an atomic vector or factor. Calling
decode on a non-Rle will return x by default, so it is generally safe for ensuring that an
object is native.

General Methods

In the code snippets below, x is an Rle object:

x[i, drop=getOption("dropRle", default=FALSE)]: Subsets x by index i, where i can be
positive integers, negative integers, a logical vector of the same length as x, an Rle object
of the same length as x containing logical values, or an IRanges object. When drop=FALSE
returns an Rle object. When drop=TRUE, returns an atomic vector.

x[i] <- value: Replaces elements in x specified by i with corresponding elements in value.
Supports the same types for i as x[i].

x %in% table: Returns a logical Rle representing set membership in table.

append(x, values, after = length(x)): Insert one Rle into another Rle.

values the Rle to insert.
after the subscript in x after which the values are to be inserted.

c(x, ...): Combines a set of Rle objects.

findRun(x, vec): Returns an integer vector indicating the run indices in Rle vec that are refer-
enced by the indices in the integer vector x.

head(x, n = 6L): If n is non-negative, returns the first n elements of x. If n is negative, returns
all but the last abs(n) elements of x.

is.na(x): Returns a logical Rle indicating with values are NA.

is.unsorted(x, na.rm = FALSE, strictly = FALSE): Returns a logical value specifying if x
is unsorted.
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na.rm remove missing values from check.
strictly check for _strictly_ increasing values.

length(x): Returns the underlying vector length of x.

match(x, table, nomatch = NA_integer_, incomparables = NULL): Matches the values in
x to table:

table the values to be matched against.
nomatch the value to be returned in the case when no match is found.
incomparables a vector of values that cannot be matched. Any value in x matching a value

in this vector is assigned the nomatch value.

rep(x, times, length.out, each), rep.int(x, times): Repeats the values in x through one
of the following conventions:

times Vector giving the number of times to repeat each element if of length length(x), or
to repeat the whole vector if of length 1.

length.out Non-negative integer. The desired length of the output vector.
each Non-negative integer. Each element of x is repeated each times.

rev(x): Reverses the order of the values in x.

show(object): Prints out the Rle object in a user-friendly way.

order(..., na.last = TRUE, decreasing = FALSE, method = c("shell", "radix")):
Returns a permutation which rearranges its first argument into ascending or descending order,
breaking ties by further arguments. See order.

sort(x, decreasing = FALSE, na.last = NA): Sorts the values in x.

decreasing If TRUE, sort values in decreasing order. If FALSE, sort values in increasing order.
na.last If TRUE, missing values are placed last. If FALSE, they are placed first. If NA, they

are removed.

subset(x, subset): Returns a new Rle object made of the subset using logical vector subset.

table(...): Returns a table containing the counts of the unique values. Supported arguments
include useNA with values of ‘no’ and ‘ifany’. Multiple Rle’s must be combined with c()
before calling table.

tabulate(bin, nbins = max(bin, 1L, na.rm = TRUE)): Just like tabulate, except optimized
for Rle.

tail(x, n = 6L): If n is non-negative, returns the last n elements of x. If n is negative, returns
all but the first abs(n) elements of x.

unique(x, incomparables = FALSE, ...): Returns the unique run values. The incomparables
argument takes a vector of values that cannot be compared with FALSE being a special value
that means that all values can be compared.

Set Operations

In the code snippets below, x and y are Rle object or some other vector-like object:

setdiff(x, y): Returns the unique elements in x that are not in y.

union(x, y): Returns the unique elements in either x or y.

intersect(x, y): Returns the unique elements in both x and y.

Author(s)

P. Aboyoun
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See Also

Rle-utils, Rle-runstat, and aggregate for more operations on Rle objects.

rle

Vector-class

Examples

x <- Rle(10:1, 1:10)
x

runLength(x)
runValue(x)
nrun(x)

diff(x)
unique(x)
sort(x)
x[c(1,3,5,7,9)]
x > 4

x2 <- Rle(LETTERS[c(21:26, 25:26)], 8:1)
table(x2)

y <- Rle(c(TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE,TRUE))
y
as.vector(y)
rep(y, 10)
c(y, x > 5)

Rle-runstat Fixed-width running window summaries

Description

The runsum, runmean, runmed, runwtsum, runq functions calculate the sum, mean, median, weighted
sum, and order statistic for fixed width running windows.

Usage

runsum(x, k, endrule = c("drop", "constant"), ...)

runmean(x, k, endrule = c("drop", "constant"), ...)

## S4 method for signature 'Rle'
smoothEnds(y, k = 3)

## S4 method for signature 'Rle'
runmed(x, k, endrule = c("median", "keep", "drop", "constant"),

algorithm = NULL, print.level = 0)

runwtsum(x, k, wt, endrule = c("drop", "constant"), ...)

runq(x, k, i, endrule = c("drop", "constant"), ...)
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Arguments

x The data object.

k An integer indicating the fixed width of the running window. Must be odd when
endrule != "drop".

endrule A character string indicating how the values at the beginning and the end (of the
data) should be treated.

"median" see runmed;
"keep" see runmed;
"drop" do not extend the running statistics to be the same length as the under-

lying vectors;
"constant" copies running statistic to the first values and analogously for the

last ones making the smoothed ends constant.

wt A numeric vector of length k that provides the weights to use.

i An integer in [0, k] indicating which order statistic to calculate.

... Additional arguments passed to methods. Specifically, na.rm. When na.rm = TRUE,
the NA and NaN values are removed. When na.rm = FALSE, NA is returned if
either NA or NaN are in the specified window.

Details

The runsum, runmean, runmed, runwtsum, and runq functions provide efficient methods for calcu-
lating the specified numeric summary by performing the looping in compiled code.

Value

An object of the same class as x.

Author(s)

P. Aboyoun and V. Obenchain

See Also

runmed, Rle-class, RleList-class

Examples

x <- Rle(1:10, 1:10)
runsum(x, k = 3)
runsum(x, k = 3, endrule = "constant")
runmean(x, k = 3)
runwtsum(x, k = 3, wt = c(0.25, 0.5, 0.25))
runq(x, k = 5, i = 3, endrule = "constant")

## Missing and non-finite values
x <- Rle(c(1, 2, NA, 0, 3, Inf, 4, NaN))
runsum(x, k = 2)
runsum(x, k = 2, na.rm = TRUE)
runmean(x, k = 2, na.rm = TRUE)
runwtsum(x, k = 2, wt = c(0.25, 0.5), na.rm = TRUE)
runq(x, k = 2, i = 2, na.rm = TRUE) ## max value in window
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## The .naive_runsum() function demonstrates the semantics of
## runsum(). This test ensures the behavior is consistent with
## base::sum().

.naive_runsum <- function(x, k, na.rm=FALSE)
sapply(0:(length(x)-k),

function(offset) sum(x[1:k + offset], na.rm=na.rm))

x0 <- c(1, Inf, 3, 4, 5, NA)
x <- Rle(x0)
target1 <- .naive_runsum(x0, 3, na.rm = TRUE)
target2 <- .naive_runsum(x, 3, na.rm = TRUE)
stopifnot(target1 == target2)
current <- as.vector(runsum(x, 3, na.rm = TRUE))
stopifnot(target1 == current)

## runmean() and runwtsum() :
x <- Rle(c(2, 1, NA, 0, 1, -Inf))
runmean(x, k = 3)
runmean(x, k = 3, na.rm = TRUE)
runwtsum(x, k = 3, wt = c(0.25, 0.50, 0.25))
runwtsum(x, k = 3, wt = c(0.25, 0.50, 0.25), na.rm = TRUE)

## runq() :
runq(x, k = 3, i = 1, na.rm = TRUE) ## smallest value in window
runq(x, k = 3, i = 3, na.rm = TRUE) ## largest value in window

## When na.rm = TRUE, it is possible the number of non-NA
## values in the window will be less than the 'i' specified.
## Here we request the 4th smallest value in the window,
## which tranlates to the value at the 4/5 (0.8) percentile.
x <- Rle(c(1, 2, 3, 4, 5))
runq(x, k=length(x), i=4, na.rm=TRUE)

## The same request on a Rle with two missing values
## finds the value at the 0.8 percentile of the vector
## at the new length of 3 after the NA's have been removed.
## This translates to round((0.8) * 3).
x <- Rle(c(1, 2, 3, NA, NA))
runq(x, k=length(x), i=4, na.rm=TRUE)

Rle-utils Common operations on Rle objects

Description

Common operations on Rle objects.

Group Generics

Rle objects have support for S4 group generic functionality:

Arith "+", "-", "*", "^", "%%", "%/%", "/"

Compare "==", ">", "<", "!=", "<=", ">="
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Logic "&", "|"

Ops "Arith", "Compare", "Logic"

Math "abs", "sign", "sqrt", "ceiling", "floor", "trunc", "cummax", "cummin", "cumprod",
"cumsum", "log", "log10", "log2", "log1p", "acos", "acosh", "asin", "asinh", "atan",
"atanh", "exp", "expm1", "cos", "cosh", "sin", "sinh", "tan", "tanh", "gamma", "lgamma",
"digamma", "trigamma"

Math2 "round", "signif"

Summary "max", "min", "range", "prod", "sum", "any", "all"

Complex "Arg", "Conj", "Im", "Mod", "Re"

See S4groupGeneric for more details.

Summary

In the code snippets below, x is an Rle object:

summary(object, ..., digits = max(3, getOption("digits") - 3)): Summarizes the Rle
object using an atomic vector convention. The digits argument is used for number formatting
with signif().

Logical Data Methods

In the code snippets below, x is an Rle object:

!x: Returns logical negation (NOT) of x.

which(x): Returns an integer vector representing the TRUE indices of x.

Numerical Data Methods

In the code snippets below, x is an Rle object:

diff(x, lag = 1, differences = 1: Returns suitably lagged and iterated differences of x.

lag An integer indicating which lag to use.
differences An integer indicating the order of the difference.

pmax(..., na.rm = FALSE), pmax.int(..., na.rm = FALSE): Parallel maxima of the Rle
input values. Removes NAs when na.rm = TRUE.

pmin(..., na.rm = FALSE), pmin.int(..., na.rm = FALSE): Parallel minima of the Rle
input values. Removes NAs when na.rm = TRUE.

which.max(x): Returns the index of the first element matching the maximum value of x.

mean(x, na.rm = FALSE): Calculates the mean of x. Removes NAs when na.rm = TRUE.

var(x, y = NULL, na.rm = FALSE): Calculates the variance of x or covariance of x and y if
both are supplied. Removes NAs when na.rm = TRUE.

cov(x, y, use = "everything"), cor(x, y, use = "everything"): Calculates the covari-
ance and correlation respectively of Rle objects x and y. The use argument is an optional char-
acter string giving a method for computing covariances in the presence of missing values. This
must be (an abbreviation of) one of the strings "everything", "all.obs", "complete.obs",
"na.or.complete", or "pairwise.complete.obs".

sd(x, na.rm = FALSE): Calculates the standard deviation of x. Removes NAs when na.rm = TRUE.

median(x, na.rm = FALSE): Calculates the median of x. Removes NAs when na.rm = TRUE.
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quantile(x, probs = seq(0, 1, 0.25), na.rm = FALSE, names = TRUE, type = 7, ...):
Calculates the specified quantiles of x.

probs A numeric vector of probabilities with values in [0,1].
na.rm If TRUE, removes NAs from x before the quantiles are computed.
names If TRUE, the result has names describing the quantiles.
type An integer between 1 and 9 selecting one of the nine quantile algorithms detailed in

quantile.
. . . Further arguments passed to or from other methods.

mad(x, center = median(x), constant = 1.4826, na.rm = FALSE, low = FALSE, high = FALSE):
Calculates the median absolute deviation of x.

center The center to calculate the deviation from.
constant The scale factor.
na.rm If TRUE, removes NAs from x before the mad is computed.
low If TRUE, compute the ’lo-median’.
high If TRUE, compute the ’hi-median’.

IQR(x, na.rm = FALSE): Calculates the interquartile range of x.

na.rm If TRUE, removes NAs from x before the IQR is computed.

smoothEnds(y, k = 3): Smooth end points of an Rle y using subsequently smaller medians and
Tukey’s end point rule at the very end.

k An integer indicating the width of largest median window; must be odd.

Character Data Methods

In the code snippets below, x is an Rle object:

nchar(x, type = "chars", allowNA = FALSE): Returns an integer Rle representing the
number of characters in the corresponding values of x.

type One of c("bytes", "chars", "width").
allowNA Should NA be returned for invalid multibyte strings rather than throwing an error?

substr(x, start, stop), substring(text, first, last = 1000000L): Returns a charac-
ter or factor Rle containing the specified substrings beginning at start/first and ending at
stop/last.

chartr(old, new, x): Returns a character or factor Rle containing a translated version of x.

old A character string specifying the characters to be translated.
new A character string specifying the translations.

tolower(x): Returns a character or factor Rle containing a lower case version of x.

toupper(x): Returns a character or factor Rle containing an upper case version of x.

sub(pattern, replacement, x, ignore.case = FALSE, perl = FALSE, fixed = FALSE, useBytes = FALSE):
Returns a character or factor Rle containing replacements based on matches determined by
regular expression matching. See sub for a description of the arguments.

gsub(pattern, replacement, x, ignore.case = FALSE, perl = FALSE, fixed = FALSE, useBytes = FALSE):
Returns a character or factor Rle containing replacements based on matches determined by
regular expression matching. See gsub for a description of the arguments.

paste(..., sep = " ", collapse = NULL): Returns a character or factor Rle containing a
concatenation of the values in ....
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Factor Data Methods

In the code snippets below, x is an Rle object:

levels(x), levels(x) <- value: Gets and sets the factor levels, respectively.
nlevels(x): Returns the number of factor levels.

Author(s)

P. Aboyoun

See Also

Rle objects

S4groupGeneric

Examples

x <- Rle(10:1, 1:10)
x

sqrt(x)
x^2 + 2 * x + 1
range(x)
sum(x)
mean(x)

z <- c("the", "quick", "red", "fox", "jumps", "over", "the", "lazy", "brown", "dog")
z <- Rle(z, seq_len(length(z)))
chartr("a", "@", z)
toupper(z)

shiftApply-methods Apply a function over subsequences of 2 vector-like objects

Description

shiftApply loops and applies a function overs subsequences of vector-like objects X and Y.

Usage

shiftApply(SHIFT, X, Y, FUN, ..., OFFSET=0L, simplify=TRUE, verbose=FALSE)

Arguments

SHIFT A non-negative integer vector of shift values.
X, Y The vector-like objects to shift.
FUN The function, found via match.fun, to be applied to each set of shifted vectors.
... Further arguments for FUN.
OFFSET A non-negative integer offset to maintain throughout the shift operations.
simplify A logical value specifying whether or not the result should be simplified to a

vector or matrix if possible.
verbose A logical value specifying whether or not to print the i indices to track the

iterations.
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Details

Let i be the indices in SHIFT, X_i = window(X, 1 + OFFSET, length(X) - SHIFT[i]), and
Y_i = window(Y, 1 + SHIFT[i], length(Y) - OFFSET). shiftApply calculates the set of
FUN(X_i, Y_i, ...) values and returns the results in a convenient form.

See Also

• The window and aggregate methods for vector-like objects defined in the S4Vectors package.

• Vector and Rle objects.

Examples

set.seed(0)
lambda <- c(rep(0.001, 4500), seq(0.001, 10, length = 500),

seq(10, 0.001, length = 500))
xRle <- Rle(rpois(1e7, lambda))
yRle <- Rle(rpois(1e7, lambda[c(251:length(lambda), 1:250)]))

cor(xRle, yRle)
shifts <- seq(235, 265, by=3)
corrs <- shiftApply(shifts, yRle, xRle, FUN=cor)

cor(xRle, yRle)
shiftApply(249:251, yRle, xRle,

FUN=function(x, y) var(x, y) / (sd(x) * sd(y)))

SimpleList-class SimpleList objects

Description

The (non-virtual) SimpleList class extends the List virtual class.

Details

The SimpleList class is the simplest, most generic concrete implementation of the List abstraction.
It provides an implementation that subclasses can easily extend.

In a SimpleList object the list elements are stored internally in an ordinary list.

Constructor

See the List man page for a quick overview of how to construct List objects in general.

The following constructor is provided for SimpleList objects:

SimpleList(...): Takes possibly named objects as elements for the new SimpleList object.

Accessors

Same as for List objects. See the List man page for more information.

Coercion

All the coercions documented in the List man page apply to SimpleList objects.
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Subsetting

Same as for List objects. See the List man page for more information.

Looping and functional programming

Same as for List objects. See ?`List-utils` for more information.

Displaying

When a SimpleList object is displayed, the "Simple" prefix is removed from the real class name of
the object. See classNameForDisplay for more information about this.

See Also

• List objects for the parent class.

• The CompressedList class defined in the IRanges package for a more efficient alternative to
SimpleList.

• The SimpleIntegerList class defined in the IRanges package for a SimpleList subclass exam-
ple.

• The DataFrame class for another SimpleList subclass example.

Examples

## Displaying a SimpleList object:
x1 <- SimpleList(a=letters, i=Rle(22:20, 4:2))
class(x1)

## The "Simple" prefix is removed from the real class name of the
## object:
x1

library(IRanges)
x2 <- IntegerList(11:12, integer(0), 3:-2, compress=FALSE)
class(x2)

## The "Simple" prefix is removed from the real class name of the
## object:
x2

## This is controlled by internal helper classNameForDisplay():
classNameForDisplay(x2)

split-methods Divide a vector-like object into groups

Description

split divides the data in a vector-like object x into the groups defined by f.

NOTE: This man page is for the split methods defined in the S4Vectors package. See ?base::split
for the default method (defined in the base package).
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Usage

## S4 method for signature 'Vector,ANY'
split(x, f, drop=FALSE)

## S4 method for signature 'ANY,Vector'
split(x, f, drop=FALSE)

## S4 method for signature 'Vector,Vector'
split(x, f, drop=FALSE)

## S4 method for signature 'list,Vector'
split(x, f, drop=FALSE, ...)

Arguments

x, f 2 vector-like objects of the same length. f will typically be a factor, but not
necessarily.

drop Logical indicating if levels that do not occur should be dropped (if f is a factor).

... Arguments passed to base::split (see Details below).

Details

The first 3 methods just delegate to the IRanges::splitAsList function defined in the IRanges
package.

The method for list does:

split(x, as.vector(f), drop=drop, ...)

Value

All these methods behave like base::split except that the first 3 methods return a List object
instead of an ordinary list.

See Also

• The split function in the base package.

• The splitAsList function in the IRanges package.

• Vector and List objects.

• Rle and DataFrame objects.

Examples

## On an Rle object:
x <- Rle(101:105, 6:2)
split(x, c("B", "B", "A", "B", "A"))

## On a DataFrame object:
groups <- c("group1", "group2")
DF <- DataFrame(

a=letters[1:10],
i=101:110,
group=rep(factor(groups, levels=groups), c(3, 7))
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)
split(DF, DF$group)

str-utils Some utility functions to operate on strings

Description

Some low-level string utilities that operate on ordinary character vectors. For more advanced string
manipulations, see the Biostrings package.

Usage

unstrsplit(x, sep="") # 'sep' default is "" (empty string)

strsplitAsListOfIntegerVectors(x, sep=",") # 'sep' default is ","

Arguments

x For unstrsplit: A list-like object where each list element is a character vector,
or a character vector (identity).
For strsplitAsListOfIntegerVectors: A character vector where each ele-
ment is a string containing comma-separated decimal integer values.

sep A single string containing the separator character. For strsplitAsListOfIntegerVectors,
the separator must be a single-byte character.

Details

unstrsplit: unstrsplit(x, sep) is equivalent to (but much faster than) sapply(x, paste0, collapse=sep).
It’s performing the reverse transformation of strsplit( , fixed=TRUE), that is, if x is a charac-
ter vector with no NAs and sep a single string, then unstrsplit(strsplit(x, split=sep, fixed=TRUE), sep)
is identical to x. A notable exception to this though is when strsplit finds a match at the end of
a string, in which case the last element of the output (which should normally be an empty string)
is not returned (see ?strsplit for the details).

strsplitAsListOfIntegerVectors: strsplitAsListOfIntegerVectors is similar to the strsplitAsListOfIntegerVectors2
function shown in the Examples section below, except that the former generally raises an error
where the latter would have inserted an NA in the returned object. More precisely:

• The latter accepts NAs in the input, the former doesn’t (raises an error).
• The latter introduces NAs by coercion (with a warning), the former doesn’t (raises an error).
• The latter supports "inaccurate integer conversion in coercion" when the value to coerce is >

INT_MAX (then it’s coerced to INT_MAX), the former doesn’t (raises an error).
• The latter coerces non-integer values (e.g. 10.3) to an int by truncating them, the former

doesn’t (raises an error).
When it fails, strsplitAsListOfIntegerVectors will print an informative error message. Fi-
nally, strsplitAsListOfIntegerVectors is faster and uses much less memory than strsplitAsListOfIntegerVectors2.

Value

unstrsplit returns a character vector with one string per list element in x.

strsplitAsListOfIntegerVectors returns a list where each list element is an integer vector.
There is one list element per string in x.
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Author(s)

Hervé Pagès

See Also

• The strsplit function in the base package.

Examples

## ---------------------------------------------------------------------
## unstrsplit()
## ---------------------------------------------------------------------
x <- list(A=c("abc", "XY"), B=NULL, C=letters[1:4])
unstrsplit(x)
unstrsplit(x, sep=",")
unstrsplit(x, sep=" => ")

data(islands)
x <- names(islands)
y <- strsplit(x, split=" ", fixed=TRUE)
x2 <- unstrsplit(y, sep=" ")
stopifnot(identical(x, x2))

## But...
names(x) <- x
y <- strsplit(x, split="in", fixed=TRUE)
x2 <- unstrsplit(y, sep="in")
y[x != x2]
## In other words: strsplit() behavior sucks :-/

## ---------------------------------------------------------------------
## strsplitAsListOfIntegerVectors()
## ---------------------------------------------------------------------
x <- c("1116,0,-19",

" +55291 , 2476,",
"19184,4269,5659,6470,6721,7469,14601",
"7778889, 426900, -4833,5659,6470,6721,7096",
"19184 , -99999")

y <- strsplitAsListOfIntegerVectors(x)
y

## In normal situations (i.e. when the input is well-formed),
## strsplitAsListOfIntegerVectors() does actually the same as the
## function below but is more efficient (both in speed and memory
## footprint):
strsplitAsListOfIntegerVectors2 <- function(x, sep=",")
{

tmp <- strsplit(x, sep, fixed=TRUE)
lapply(tmp, as.integer)

}
y2 <- strsplitAsListOfIntegerVectors2(x)
stopifnot(identical(y, y2))
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subsetting-utils Subsetting utilities

Description

Low-level utility functions and classes defined in the S4Vectors package to support subsetting of
vector-like objects. They are not intended to be used directly.

Vector-class Vector objects

Description

The Vector virtual class serves as the heart of the S4Vectors package and has over 90 subclasses. It
serves a similar role as vector in base R.
The Vector class supports the storage of global and element-wise metadata:

1. The global metadata annotates the object as a whole: this metadata is accessed via the metadata
accessor and is represented as an ordinary list;

2. The element-wise metadata annotates individual elements of the object: this metadata is ac-
cessed via the mcols accessor (mcols stands for metadata columns) and is represented as a
DataTable object (i.e. as an instance of a concrete subclass of DataTable, e.g. a DataFrame
object), with a row for each element and a column for each metadata variable. Note that the
element-wise metadata can also be NULL.

To be functional, a class that inherits from Vector must define at least a length and a "[" method.

Accessors

In the following code snippets, x is a Vector object.

length(x): Get the number of elements in x.
lengths(x, use.names=TRUE): Get the length of each of the elements.

Note: The lengths method for Vector objects is currently defined as an alias for elementNROWS
(with addition of the use.names argument), so is equivalent to sapply(x, NROW), not to
sapply(x, length). See ?BiocGenerics::lengths in the BiocGenerics package for more
information about this.

NROW(x): Defined as length(x) for any Vector object that is not a DataTable object. If x is a
DataTable object, then it’s defined as nrow(x).

names(x), names(x) <- value: Get or set the names of the elements in the Vector.
rename(x, value, ...): Replace the names of x according to a mapping defined by a named

character vector, formed by concatenating value with any arguments in .... The names of
the character vector indicate the source names, and the corresponding values the destination
names. This also works on a plain old vector.

nlevels(x): Returns the number of factor levels.
mcols(x, use.names=FALSE), mcols(x) <- value: Get or set the metadata columns. If

use.names=TRUE and the metadata columns are not NULL, then the names of x are propa-
gated as the row names of the returned DataTable object. When setting the metadata columns,
the supplied value must be NULL or a DataTable object holding element-wise metadata.

elementMetadata(x, use.names=FALSE), elementMetadata(x) <- value, values(x, use.names=FALSE),
values(x) <- value: Alternatives to mcols functions. Their use is discouraged.



46 Vector-class

Coercion

as(from, "data.frame"), as.data.frame(from): Coerces from, a Vector, to a data.frame
by first coercing the Vector to a vector via as.vector. Note that many Vector derivatives
do not support as.vector, so this coercion is possible only for certain types.

as.env(x): Constructs an environment object containing the elements of mcols(x).

Subsetting

In the code snippets below, x is a Vector object or regular R vector object. The R vector object
methods for window are defined in this package and the remaining methods are defined in base R.

x[i, drop=TRUE]: If defined, returns a new Vector object made of selected elements i, which
can be missing; an NA-free logical, numeric, or character vector; or a logical Rle object. The
drop argument specifies whether or not to coerce the returned sequence to an ordinary vector.

x[i] <- value: Replacement version of x[i].

Combining

In the code snippets below, x is a Vector object.

c(x, ...): Combine x and the Vector objects in ... together. Any object in ... must belong to
the same class as x, or to one of its subclasses, or must be NULL. The result is an object of the
same class as x.

append(x, values, after = length(x)): Insert the Vector values onto x at the position
given by after. values must have an elementType that extends that of x.

Displaying

FOR ADVANCED USERS OR DEVELOPERS Displaying of a Vector object is controlled by 2 internal
helpers, classNameForDisplay and showAsCell.

For most objects classNameForDisplay(x) just returns class(x). However, for some objects it
can return the name of a parent class that is more suitable for display because it’s simpler and as
informative as the real class name. See SimpleList objects (defined in this package) and Compress-
edList objects (defined in the IRanges package) for examples of objects for which classNameForDisplay
returns the name of a parent class.

showAsCell(x) produces a character vector parallel to x (i.e. with one string per vector element in
x) that contains compact string representations of each elements in x.

Note that classNameForDisplay and showAsCell are generic functions so developers can imple-
ment methods to control how their own Vector extension gets displayed.

See Also

• Rle, Hits, IRanges and XRaw for example implementations.

• Vector-comparison for comparing, ordering, and tabulating vector-like objects.

• Vector-setops for set operations on vector-like objects.

• Vector-merge for merging vector-like objects.

• List for a direct Vector extension that serves a similar role as list in base R.

• extractList for grouping elements of a vector-like object into a list-like object.

• DataTable which is the type of objects returned by the mcols accessor.

• The Annotated class, which Vector extends.
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Examples

showClass("Vector") # shows (some of) the known subclasses

Vector-comparison Compare, order, tabulate vector-like objects

Description

Generic functions and methods for comparing, ordering, and tabulating vector-like objects.

Usage

## Element-wise (aka "parallel") comparison of 2 Vector objects
## ------------------------------------------------------------

pcompare(x, y)

## S4 method for signature 'Vector,Vector'
e1 == e2
## S4 method for signature 'Vector,ANY'
e1 == e2
## S4 method for signature 'ANY,Vector'
e1 == e2

## S4 method for signature 'Vector,Vector'
e1 <= e2
## S4 method for signature 'Vector,ANY'
e1 <= e2
## S4 method for signature 'ANY,Vector'
e1 <= e2

## S4 method for signature 'Vector,Vector'
e1 != e2
## S4 method for signature 'Vector,ANY'
e1 != e2
## S4 method for signature 'ANY,Vector'
e1 != e2

## S4 method for signature 'Vector,Vector'
e1 >= e2
## S4 method for signature 'Vector,ANY'
e1 >= e2
## S4 method for signature 'ANY,Vector'
e1 >= e2

## S4 method for signature 'Vector,Vector'
e1 < e2
## S4 method for signature 'Vector,ANY'
e1 < e2
## S4 method for signature 'ANY,Vector'
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e1 < e2

## S4 method for signature 'Vector,Vector'
e1 > e2
## S4 method for signature 'Vector,ANY'
e1 > e2
## S4 method for signature 'ANY,Vector'
e1 > e2

## selfmatch()
## -----------

selfmatch(x, ...)

## duplicated() & unique()
## -----------------------

## S4 method for signature 'Vector'
duplicated(x, incomparables=FALSE, ...)

## S4 method for signature 'Vector'
unique(x, incomparables=FALSE, ...)

## %in%
## ----

## S4 method for signature 'Vector,Vector'
x %in% table
## S4 method for signature 'Vector,ANY'
x %in% table
## S4 method for signature 'ANY,Vector'
x %in% table

## findMatches() & countMatches()
## ------------------------------

findMatches(x, table, select=c("all", "first", "last"), ...)
countMatches(x, table, ...)

## sort()
## ------

## S4 method for signature 'Vector'
sort(x, decreasing=FALSE, na.last = NA, by)

## table()
## -------

## S4 method for signature 'Vector'
table(...)
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Arguments

x, y, e1, e2, table

Vector-like objects.

incomparables The duplicated method for Vector objects does NOT support this argument.
The unique method for Vector objects, which is implemented on top of duplicated,
propagates this argument to its call to duplicated.
See ?base::duplicated and ?base::unique for more information about this
argument.

select Only select="all" is supported at the moment. Note that you can use match
if you want to do select="first". Otherwise you’re welcome to request this
on the Bioconductor mailing list.

decreasing, na.last

See ?base::sort.

by A formula referencing the metadata columns by which to sort, e.g., ~ x + y
sorts by column “x”, breaking ties with column “y”.

... A Vector object for table (the table method for Vector objects can only take
one input object).
Otherwise, extra arguments supported by specific methods. In particular:

• The default selfmatch method, which is implemented on top of match,
propagates the extra arguments to its call to match.

• The duplicated method for Vector objects, which is implemented on top
of selfmatch, accepts extra argument fromLast and propagates the other
extra arguments to its call to selfmatch. See ?base::duplicated for
more information about this argument.

• The unique method for Vector objects, which is implemented on top of
duplicated, propagates the extra arguments to its call to duplicated.

• The default findMatches and countMatches methods, which are imple-
mented on top of match and selfmatch, propagate the extra arguments to
their calls to match and selfmatch.

• The sort method for Vector objects, which is implemented on top of order,
only accepts extra argument na.last and propagates it to its call to order.

Details

Doing pcompare(x, y) on 2 vector-like objects x and y of length 1 must return an integer less
than, equal to, or greater than zero if the single element in x is considered to be respectively less
than, equal to, or greater than the single element in y. If x or y have a length != 1, then they are
typically expected to have the same length so pcompare(x, y) can operate element-wise, that is,
in that case it returns an integer vector of the same length as x and y where the i-th element is the
result of compairing x[i] and y[i]. If x and y don’t have the same length and are not zero-length
vectors, then the shortest is first recycled to the length of the longest. If one of them is a zero-length
vector then pcompare(x, y) returns a zero-length integer vector.

selfmatch(x, ...) is equivalent to match(x, x, ...). This is actually how the default method
is implemented. However note that selfmatch(x, ...) will typically be more efficient than
match(x, x, ...) on vector-like objects for which a specific selfmatch method is implemented.

findMatches is an enhanced version of match which, by default (i.e. if select="all"), returns all
the matches in a Hits object.

countMatches returns an integer vector of the length of x containing the number of matches in
table for each element in x.
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Value

For pcompare: see Details section above.

For selfmatch: an integer vector of the same length as x.

For duplicated, unique, and %in%: see ?BiocGenerics::duplicated, ?BiocGenerics::unique,
and ?`%in%`.

For findMatches: a Hits object by default (i.e. if select="all").

For countMatches: an integer vector of the length of x containing the number of matches in table
for each element in x.

For sort: see ?BiocGenerics::sort.

For table: a 1D array of integer values promoted to the "table" class. See ?BiocGeneric::table
for more information.

Note

The following notes are for developers who want to implement comparing, ordering, and tabulating
methods for their own Vector subclass:

1. The 6 traditional binary comparison operators are: ==, !=, <=, >=, <, and >. The S4Vectors
package provides the following methods for these operators:

setMethod("==", c("Vector", "Vector"),
function(e1, e2) { pcompare(e1, e2) == 0L }

)
setMethod("<=", c("Vector", "Vector"),

function(e1, e2) { pcompare(e1, e2) <= 0L }
)
setMethod("!=", c("Vector", "Vector"),

function(e1, e2) { !(e1 == e2) }
)
setMethod(">=", c("Vector", "Vector"),

function(e1, e2) { e2 <= e1 }
)
setMethod("<", c("Vector", "Vector"),

function(e1, e2) { !(e2 <= e1) }
)
setMethod(">", c("Vector", "Vector"),

function(e1, e2) { !(e1 <= e2) }
)

With these definitions, the 6 binary operators work out-of-the-box on Vector objects for which
pcompare works the expected way. If pcompare is not implemented, then it’s enough to
implement == and <= methods to have the 4 remaining operators (!=, >=, <, and >) work
out-of-the-box.

2. The S4Vectors package provides no pcompare method for Vector objects. Specific pcompare
methods need to be implemented for specific Vector subclasses (e.g. for Hits and Ranges
objects). These specific methods must obey the rules described in the Details section above.

3. The duplicated, unique, and %in% methods for Vector objects are implemented on top of
selfmatch, duplicated, and match, respectively, so they work out-of-the-box on Vector
objects for which selfmatch, duplicated, and match work the expected way.
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4. Also the default findMatches and countMatches methods are implemented on top of match
and selfmatch so they work out-of-the-box on Vector objects for which those things work
the expected way.

5. However, since selfmatch itself is also implemented on top of match, then having match
work the expected way is actually enough to get selfmatch, duplicated, unique, %in%,
findMatches, and countMatches work out-of-the-box on Vector objects.

6. The sort method for Vector objects is implemented on top of order, so it works out-of-the-
box on Vector objects for which order works the expected way.

7. The table method for Vector objects is implemented on top of selfmatch, order, and
as.character, so it works out-of-the-box on a Vector object for which those things work
the expected way.

8. The S4Vectors package provides no match or order methods for Vector objects. Specific
methods need to be implemented for specific Vector subclasses (e.g. for Hits and Ranges
objects).

Author(s)

Hervé Pagès

See Also

• The Vector class.

• Hits-comparison for comparing and ordering hits.

• Vector-setops for set operations on vector-like objects.

• Vector-merge for merging vector-like objects.

• Ranges-comparison in the IRanges package for comparing and ordering ranges.

• == and %in% in the base package, and BiocGenerics::match, BiocGenerics::duplicated,
BiocGenerics::unique, BiocGenerics::order, BiocGenerics::sort, BiocGenerics::rank
in the BiocGenerics package for general information about the comparison/ordering operators
and functions.

• The Hits class.

• BiocGeneric::table in the BiocGenerics package.

Examples

## ---------------------------------------------------------------------
## A. SIMPLE EXAMPLES
## ---------------------------------------------------------------------

y <- c(16L, -3L, -2L, 15L, 15L, 0L, 8L, 15L, -2L)
selfmatch(y)

x <- c(unique(y), 999L)
findMatches(x, y)
countMatches(x, y)

## See ?`Ranges-comparison` for more examples (on Ranges objects). You
## might need to load the IRanges package first.

## ---------------------------------------------------------------------
## B. FOR DEVELOPERS: HOW TO IMPLEMENT THE BINARY COMPARISON OPERATORS
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## FOR YOUR Vector SUBCLASS
## ---------------------------------------------------------------------

## The answer is: don't implement them. Just implement pcompare() and the
## binary comparison operators will work out-of-the-box. Here is an
## example:

## (1) Implement a simple Vector subclass.

setClass("Raw", contains="Vector", representation(data="raw"))

setMethod("length", "Raw", function(x) length(x@data))

setMethod("[", "Raw",
function(x, i, j, ..., drop) { x@data <- x@data[i]; x }

)

x <- new("Raw", data=charToRaw("AB.x0a-BAA+C"))
stopifnot(identical(length(x), 12L))
stopifnot(identical(x[7:3], new("Raw", data=charToRaw("-a0x."))))

## (2) Implement a "pcompare" method for Raw objects.

setMethod("pcompare", c("Raw", "Raw"),
function(x, y) {as.integer(x@data) - as.integer(y@data)}

)

stopifnot(identical(which(x == x[1]), c(1L, 9L, 10L)))
stopifnot(identical(x[x < x[5]], new("Raw", data=charToRaw(".-+"))))

Vector-merge Merge vector-like objects

Description

A merge method for vector-like objects.

Usage

## S4 method for signature 'Vector,Vector'
merge(x, y, ..., all=FALSE, all.x=NA, all.y=NA, sort=TRUE)

Arguments

x, y, ... Vector-like objects, typically all of the same class and typically not list-like ob-
jects (even though some list-like objects like Ranges and DNAStringSet are sup-
ported). Duplicated elements in each object are removed with a warning.

all TRUE or FALSE. Whether the vector elements in the result should be the union
(when all=TRUE) or intersection (when all=FALSE) of the vector elements in x,
y, ....

all.x, all.y To be used only when merging 2 objects (binary merge). Both all.x and all.y
must be single logicals. If any of them is NA, then it’s set to the value of all.
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Setting both of them to TRUE or both of them to FALSE is equivalent to setting
all to TRUE or to FALSE, respectively (see above).
If all.x is TRUE and all.y is FALSE then the vector elements in the result will
be the unique elements in x. If all.x is FALSE and all.y is TRUE then the vector
elements in the result will be the unique elements in y.

sort Whether to sort the merged result.

Details

This merge method acts much like merge.data.frame, except for 3 important differences:

1. The matching is based on the vector values, not arbitrary columns in a table.

2. Self merging is a no-op if sort=FALSE (or object already sorted) and if the object has no
duplicates.

3. This merge method accepts an arbitrary number of vector-like objects (n-ary merge).

If some of the objects to merge are list-like objects not supported by the method described here,
then the merging is simply done by calling base::merge() on the objects. This might succeed or
not...

Value

A vector-like object of the same class as the input objects (if they all have the same class) containing
the merged vector values and metadata columns.

See Also

• The Vector class.

• Vector-comparison for comparing and ordering vector-like objects.

• Vector-setops for set operations on vector-like objects.

Examples

library(GenomicRanges)
x <- GRanges(c("chr1:1-1000", "chr2:2000-3000"),

score=c(0.45, 0.1), a1=c(5L, 7L), a2=c(6, 8))
y <- GRanges(c("chr2:150-151", "chr1:1-10", "chr2:2000-3000"),

score=c(0.7, 0.82, 0.1), b1=c(0L, 5L, 1L), b2=c(1, -2, 1))
merge(x, y)
merge(x, y, all=TRUE)
merge(x, y, all.x=TRUE)
merge(x, y, all.y=TRUE)

## Shared metadata columns must agree:
mcols(x)$score[2] <- 0.11
#merge(x, y) # error!

## NAs agree with anything:
mcols(x)$score[2] <- NA
merge(x, y)
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Vector-setops Set operations on vector-like objects

Description

Perform set operations on Vector objects.

Usage

## S4 method for signature 'Vector,Vector'
union(x, y)

## S4 method for signature 'Vector,Vector'
intersect(x, y)

## S4 method for signature 'Vector,Vector'
setdiff(x, y)

## S4 method for signature 'Vector,Vector'
setequal(x, y)

Arguments

x, y Vector-like objects.

Details

The union, intersect, and setdiff methods for Vector objects return a Vector object containing
respectively the union, intersection, and (asymmetric!) difference of the 2 sets of vector elements
in x and y. The setequal method for Vector objects checks for set equality between x and y.

They’re defined as follow:

setMethod("union", c("Vector", "Vector"),
function(x, y) unique(c(x, y))

)
setMethod("intersect", c("Vector", "Vector"),

function(x, y) unique(x[x %in% y])
)
setMethod("setdiff", c("Vector", "Vector"),

function(x, y) unique(x[!(x %in% y)])
)
setMethod("setequal", c("Vector", "Vector"),

function(x, y) all(x %in% y) && all(y %in% x)
)

so they work out-of-the-box on Vector objects for which c, unique, and %in% are defined.
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Value

union returns a Vector object obtained by appending to x the elements in y that are not already in
x.

intersect returns a Vector object obtained by keeping only the elements in x that are also in y.

setdiff returns a Vector object obtained by dropping from x the elements that are in y.

setequal returns TRUE if x and y contain the same sets of vector elements and FALSE otherwise.

union, intersect, and setdiff propagate the names and metadata columns of their first argument
(x).

Author(s)

Hervé Pagès

See Also

• Vector-comparison for comparing and ordering vector-like objects.

• Vector-merge for merging vector-like objects.

• Vector objects.

• BiocGenerics::union, BiocGenerics::intersect, and BiocGenerics::setdiff in the
BiocGenerics package for general information about these generic functions.

Examples

## See ?`Hits-setops` for some examples.

zip-methods Convert between parallel vectors and lists

Description

The zipup and zipdown functions convert between two parallel vectors and a list of doublets (el-
ements of length 2). The metaphor, borrowed from Python’s zip, is that of a zipper. The zipup
function interleaves the elements of the parallel vectors into a list of doublets. The inverse operation
is zipdown, which returns a Pairs object.

Usage

zipup(x, y, ...)
zipdown(x, ...)

Arguments

x,y For zipup, any vector-like object. For zipdown, a doublet list.

... Arguments passed to methods.

Value

For zipup, a list-like object, where every element is of length 2. For zipdown, a Pairs object.
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See Also

• Pairs objects.

Examples

z <- zipup(1:10, Rle(1L, 10))
pairs <- zipdown(z)
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