
Package ‘Rsubread’
April 15, 2017

Version 1.24.2

Date 2017-03-17

Title Subread sequence alignment for R

Author Wei Shi and Yang Liao with contributions from Gordon Smyth,
Jenny Dai and Timothy Triche, Jr.

Maintainer Wei Shi <shi@wehi.edu.au>

Description Provides powerful and easy-to-use tools for
analyzing next-gen sequencing read data.
Includes quality assessment of sequence reads, read
alignment, read summarization, exon-exon junction detection,
fusion detection, detection of short and long indels, absolute
expression calling and SNP calling. Can be used with reads
generated from any of the major sequencing platforms including
Illumina GA/HiSeq/MiSeq, Roche GS-FLX, ABI SOLiD and
LifeTech Ion PGM/Proton sequencers.

URL http://bioconductor.org/packages/release/bioc/html/Rsubread.html

License GPL-3

biocViews Sequencing, Alignment, SequenceMatching, RNASeq, ChIPSeq,
GeneExpression, GeneRegulation, Genetics, SNP,
GeneticVariability, Preprocessing, QualityControl,
GenomeAnnotation, Software

NeedsCompilation yes

R topics documented:
align . 2
atgcContent . 8
buildindex . 9
createAnnotationFile . 10
detectionCall . 11
detectionCallAnnotation . 12
exactSNP . 12
featureCounts . 14
findCommonVariants . 21
getInBuiltAnnotation . 22
processExons . 23

1

http://bioconductor.org/packages/release/bioc/html/Rsubread.html

2 align

propmapped . 24
qualityScores . 25
removeDupReads . 26
repair . 27
RsubreadUsersGuide . 28
sam2bed . 28

Index 30

align Align sequence reads to a reference genome via seed-and-vote

Description

align function can align both DNA and RNA sequencing reads. Subjunc is an RNA-seq aligner
and it reports full alignment of each read (align reports partial alignment for exon spanning reads).

Usage

align(
index for reference sequences
index,

input reads and output
readfile1,
readfile2=NULL,
type="rna",
input_format="gzFASTQ",
output_format="BAM",
output_file=paste(as.character(readfile1),"subread",output_format,sep="."),

offset value added to Phred quality scores of read bases
phredOffset=33,

thresholds for mapping
nsubreads=10,
TH1=3,
TH2=1,
maxMismatches=3,

unique mapping and multi-mapping
unique=TRUE,
nBestLocations=1,

indel detection
indels=5,
complexIndels=FALSE,

read trimming
nTrim5=0,
nTrim3=0,

align 3

distance and orientation of paired end reads
minFragLength=50,
maxFragLength=600,
PE_orientation="fr",

number of CPU threads
nthreads=1,

read group
readGroupID=NULL,
readGroup=NULL,

color space reads
color2base=FALSE,

dynamic programming
DP_GapOpenPenalty=-1,
DP_GapExtPenalty=0,
DP_MismatchPenalty=0,
DP_MatchScore=2,

detect structural variants
detectSV=FALSE,

gene annotation
useAnnotation=FALSE,
annot.inbuilt="mm10",
annot.ext=NULL,
isGTF=FALSE,
GTF.featureType="exon",
GTF.attrType="gene_id",
chrAliases=NULL)

subjunc(
index for reference sequences
index,

input reads and output
readfile1,
readfile2=NULL,
input_format="gzFASTQ",
output_format="BAM",
output_file=paste(as.character(readfile1),"subjunc",output_format,sep="."),

offset value added to Phred quality scores of read bases
phredOffset=33,

thresholds for mapping
nsubreads=14,
TH1=1,
TH2=1,
maxMismatches=3,

4 align

unique mapping and multi-mapping
unique=TRUE,
nBestLocations=1,

indel detection
indels=5,
complexIndels=FALSE,

read trimming
nTrim5=0,
nTrim3=0,

distance and orientation of paired end reads
minFragLength=50,
maxFragLength=600,
PE_orientation="fr",

number of CPU threads
nthreads=1,

read group
readGroupID=NULL,
readGroup=NULL,

color space reads
color2base=FALSE,

dynamic programming
DP_GapOpenPenalty=-1,
DP_GapExtPenalty=0,
DP_MismatchPenalty=0,
DP_MatchScore=2,

detect all junctions including gene fusions
reportAllJunctions=FALSE,

gene annotation
useAnnotation=FALSE,
annot.inbuilt="mm10",
annot.ext=NULL,
isGTF=FALSE,
GTF.featureType="exon",
GTF.attrType="gene_id",
chrAliases=NULL)

Arguments

index character string giving the basename of index file. Index files should be located
in the current directory.

readfile1 a character vector including names of files that include sequence reads to be
aligned. For paired-end reads, this gives the list of files including first reads

align 5

in each library. File format is FASTQ/FASTA by default. See input_format
option for more supported formats.

readfile2 a character vector giving names of files that include second reads in paired-end
read data. Files included in readfile2 should be in the same order as their mate
files included in readfile1 .NULL by default.

type a character string or an integer giving the type of sequencing data. Possible
values include rna (or 0; RNA-seq data) and dna (or 1; genomic DNA-seq data
such as WGS, WES, ChIP-seq data etc.). Character strings are case insensitive.

input_format character string specifying format of read input files. gzFASTQ by default (this
also includes FASTQ, FASTA and gzipped FASTA formats). Other supported
formats include SAM and BAM. Character values are case insensitive.

output_format character string specifying format of output file. BAM by default. Acceptable
formats include SAM and BAM.

output_file a character vector specifying names of output files. By default, names of output
files are set as the file names provided in readfile1 added with an suffix string.

phredOffset numeric value added to base-calling Phred scores to make quality scores (rep-
resented as ASCII letters). Possible values include 33 and 64. By default, 33 is
used.

nsubreads numeric value giving the number of subreads extracted from each read.

TH1 numeric value giving the consensus threshold for reporting a hit. This is the
threshold for the first reads if paired-end read data are provided.

TH2 numeric value giving the consensus threhold for the second reads in paired-end
data.

maxMismatches numeric value giving the maximum number of mis-matched bases allowed in
the alignment. 3 by default. Mis-matches found in soft-clipped bases are not
counted.

unique logical indicating if uniquely mapped reads should be reported only. TRUE by
default. Uniquely mapped reads must have one (1) mapping location that has
less mis-matched bases than other candidate locations.

nBestLocations numeric value giving the maximal number of equally-best mapping locations
allowed to be reported for the read. 1 by default. The allowed value is between 1
to 16 (inclusive). ‘NH’ tag is used to indicate how many alignments are reported
for the read and ‘HI’ tag is used for numbering the alignments reported for the
same read, in the output. Note that the unique argument takes precedence over
nBestLocations argument.

indels numeric value giving the maximum number of insertions/deletions allowed dur-
ing the mapping. 5 by default.

complexIndels logical indicating if complex indels will be detected. If TRUE, the program will
try to detect multiple short indels that occurs concurrently in a small genomic
region (indels could be as close as 1bp apart).

nTrim5 numeric value giving the number of bases trimmed off from 5’ end of each read.
0 by default.

nTrim3 numeric value giving the number of bases trimmed off from 3’ end of each read.
0 by default.

minFragLength numeric value giving the minimum fragment length. 50 by default.

maxFragLength numeric value giving the maximum fragment length. 600 by default.

6 align

PE_orientation character string giving the orientation of the two reads from the same pair. It
has three possible values including fr, ff and rf. Letter f denotes the forward
strand and letter r the reverse strand. fr by default (ie. the first read in the pair
is on the forward strand and the second read on the reverse strand).

nthreads numeric value giving the number of threads used for mapping. 1 by default.

readGroupID a character string giving the read group ID. The specified string is added to the
read group header field and also be added to each read in the mapping output.
NULL by default.

readGroup a character string in the format of tag:value. This string will be added to the
read group (RG) header in the mapping output. NULL by default.

color2base logical. If TRUE, color-space read bases will be converted to base-space bases
in the mapping output. Note that the mapping itself will still be performed at
color-space. FALSE by default.

DP_GapOpenPenalty

a numeric value giving the penalty for opening a gap when using the Smith-
Waterman dynamic programming algorithm to detect insertions and deletions.
The Smith-Waterman algorithm is only applied for those reads which are found
to contain insertions or deletions. -1 by default.

DP_GapExtPenalty

a numeric value giving the penalty for extending the gap, used by the Smith-
Waterman algorithm. 0 by default.

DP_MismatchPenalty

a numeric value giving the penalty for mismatches, used by the Smith-Waterman
algorithm. 0 by default.

DP_MatchScore a numeric value giving the score for matches used by the Smith-Waterman algo-
rithm. 2 by default.

detectSV logical indicating if structural variants (SVs) will be detected during read map-
ping. See below for more details.

reportAllJunctions

logical indicating if all discovered junctions will be reported. This includes
exon-exon junctions and also gene fusions. Presence of donor/receptor sites is
not required when reportAllJunctions is TRUE. This option should only be
used for RNA-seq data.

useAnnotation logical indicating if gene annotation information will be used in the mapping.
FALSE by default.

annot.inbuilt a character string specifying an in-built annotation used for read summarization.
It has four possible values including "mm10", "mm9", "hg38" and "hg19", corre-
sponding to the NCBI RefSeq annotations for genomes ‘mm10’, ‘mm9’, ‘hg38’
and ‘hg19’, respectively. "mm10" by default. See featureCounts function for
more details on the in-built annotations.

annot.ext A character string giving name of a user-provided annotation file or a data frame
including user-provided annotation data. If the annotation is in GTF format, it
can only be provided as a file. If it is in SAF format, it can be provided as a file
or a data frame. If an annotation is provided via annot.ext, the annot.inbuilt
parameter will be ignored. See featureCounts function for more details about
this parameter.

isGTF logical indicating if the annotation provided via the annot.ext argument is in
GTF format or not. FALSE by default. This option is only applicable when
annot.ext is not NULL.

align 7

GTF.featureType

a character string denoting the type of features that will be extracted from a GTF
annotation. "exon" by default. This argument is only applicable when isGTF is
TRUE.

GTF.attrType a character string denoting the type of attributes in a GTF annotation that will be
used to group features. "gene_id" by default. The grouped features are called
meta-features. For instance, a feature can be an exon and several exons can
be grouped into a gene (meta-feature). This argument is only applicable when
isGTF is TRUE.

chrAliases a character string providing the name of a comma-delimited text file that in-
cludes aliases of chromosome names. This file should contain two columns.
First column contains names of chromosomes included in the SAF or GTF an-
notation and second column contains corresponding names of chromosomes in
the reference genome. No column headers should be provided. Also note that
chromosome names are case sensitive. This file can be used to match chromo-
some names between the annotation and the reference genome.

Details

The align function implements the Subread aligner (Liao et al., 2013) that uses a new mapping
paradigm called “seed-and-vote". Subread is general-purpose aligner that can be used to align both
genomic DNA-seq reads and RNA-seq reads.

Subjunc is designed for mapping RNA-seq reads. The major difference between Subjunc and
Subread is that Subjunc reports discovered exon-exon junctions and it also performs full align-
ments for every read including exon-spanning reads. Subread uses the largest mappable regions in
the reads to find their mapping locations. The seed-and-vote paradigm has been found to be not only
more accurate than the conventional seed-and-extend (adopted by most aligners) in read mapping,
but it is a lot more efficient (Liao et al., 2013).

Both Subread and Subjunc can be used to align reads generated from major sequencing platforms
including Illumina GA/HiSeq, ABI SOLiD, Roche 454 and Ion Torrent sequencers. Note that to
map color-space reads (e.g. SOLiD reads), a color-space index should be built for the reference
genome (see buildindex for details).

Subread and Subjunc have adjustable memory usage. See buildindex function for more details.

Mapping performance is largely determined by the number of subreads extracted from each read
nsubreads and the consensus threshold TH1 (also TH2 for paired-end read data). Default settings
are recommended for most of the read mapping tasks.

Subjunc requires donor/receptor sites to be present when detecting exon-exon junctions. It can
detect up to four junction locations in each exon-spanning read.

detectSV option should be used for SV detection in genomic DNA sequencing data. For RNA-seq
data, users may use subjunc with the reportAllJunctions option to detect SVs (and also junc-
tions). For each library, breakpoints detected from SV events will be saved to a file with suffix name
‘.breakpoints.txt’, which includes chromosomal coordinates of SV breakpoints and numbers of sup-
porting reads. The BAM/SAM output includes extra fields to describe the complete alignments of
breakpoint-containing reads. For a breakpoint-containing read, mapping of its major sequence seg-
ment is described in the main fields of BAM/SAM ouptut whereas mapping of its minor sequence
segment, which does not map along with the major segment due to the presence of a breakpoint, is
described in the extra fields including ‘CC’(Chr), ‘CP’(Position),‘CG’(CIGAR) and ‘CT’(strand).
Note that each breakpoint-containing read occupies only one row in BAM/SAM output.

8 atgcContent

Value

No value is produced but SAM or BAM format files are written to the current working directory.
For Subjunc, BED files including discovered exon-exon junctions are also written to the current
working directory.

Author(s)

Wei Shi and Yang Liao

References

Yang Liao, Gordon K Smyth and Wei Shi. The Subread aligner: fast, accurate and scalable read
mapping by seed-and-vote. Nucleic Acids Research, 41(10):e108, 2013.

Examples

Build an index for the artificial sequence included in file 'reference.fa'.
library(Rsubread)
ref <- system.file("extdata","reference.fa",package="Rsubread")
buildindex(basename="./reference_index",reference=ref)

align a sample read dataset ('reads.txt') to the sample reference
reads <- system.file("extdata","reads.txt.gz",package="Rsubread")
align(index="./reference_index",readfile1=reads,output_file="./Rsubread_alignment.BAM",phredOffset=64)

atgcContent Calculate percentages of nucletodies A, T, G and C in a sequencing
read datafile

Description

Calculate percentages of nucletodies A, T, G and C

Usage

atgcContent(filename, basewise=FALSE)

Arguments

filename character string giving the name of input FASTQ/FASTA file

basewise logical. If TRUE, nucleotide percentages will be calculated for each base position
in the read across all the reads. By default, percentages are calculated for the
entire dataset.

Details

Sequencing reads could contain letter "N" besides "A", "T", "G" and "C". Percentage of "N" in the
read dataset is calcuated as well.

The basewise calculation is useful for examining the GC bias towards the base position in the read.
By default, the percentages of nucleotides in the entire dataset will be reported.

buildindex 9

Value

A named vector containing percentages for each nucleotide type if basewise is FALSE. Otherwise,
a data matrix containing nucleotide percentages for each base position of the reads.

Author(s)

Zhiyin Dai and Wei Shi

buildindex Build index for a reference genome

Description

An index needs to be built before read mapping can be performed. This function creates a hash
table for the reference genome, which can then be used by Subread and Subjunc aligners for read
alignment.

Usage

buildindex(basename,reference,gappedIndex=TRUE,indexSplit=TRUE,memory=8000,
TH_subread=100,colorspace=FALSE)

Arguments

basename character string giving the basename of created index files.

reference charater string giving the name of a FASTA-format file that includes sequences
of all chromosomes and contigs.

gappedIndex logical. If FALSE, 16mers (subreads) will be extracted from every chromosomal
location of a reference genome and then they will be used to build a hash table
index. By default(TRUE), subreads are extracted in every three bases from the
genome.

indexSplit logical. If TRUE, the built index is allowed to be splitted into multiple segments.
The number of such segments is determined by memory value, genome size and
permitting of gaps between subreads(gappedIndex). If indexSplit is set to
FALSE, a single-segment index (no splitting) will be generated regardless of what
value is chosen for memory.

memory numeric value specifying the amount of memory to be requested in megabytes.
8000 MB by default.

TH_subread numeric value specifying the threshold for removing highly repetitive subreads
(16bp mers). 100 by default. Subreads will be excluded from the index if they
occur more than threshold number of times in the genome.

colorspace logical. If TRUE, a color space index will be built. Otherwise, a base space index
will be built.

10 createAnnotationFile

Details

This function generates a hash table (an index) for a reference genome, in which keys are subreads
(16mers) and values are their chromosomal locations in the reference genome. By default, sub-
reads will be extracted in every three bases from a reference genome. However, if gappedIndex
is set to FALSE, then subreads will be extracted from every chromosomal location of genome for
index building. The built index can then be used by Subread (align) and subjunc aligners to map
reads(Liao et al. 2013).

Highly repetitive subreads (or uninformative subreads) are excluded from the hash table so as to re-
duce mapping ambiguity. TH_subread specifies the maximal number of times a subread is allowed
to occur in the reference genome to be included in hash table.

The built index might be splitted into multiple segments if its size is greater than memory value. The
number of such segments is dependent on memory value, size of reference genome and whether gaps
are allowed between subreads extracted from genome. Only one segment is loaded into memory at
any time when read alignment is being carried out. The larger the memory value, the faster the read
mapping will be. If indexSplit is set to FALSE, the index will not be splitted and this will enable
maximum mapping speed to be achieved.

The index needs to be built only once and it can then be re-used in the subsequent alignments.

Value

No value is produced but index files are written to the current working directory.

Author(s)

Wei Shi and Yang Liao

References

Yang Liao, Gordon K Smyth and Wei Shi. The Subread aligner: fast, accurate and scalable read
mapping by seed-and-vote. Nucleic Acids Research, 41(10):e108, 2013.

Examples

Build an index for the artifical sequence included in file 'reference.fa'
library(Rsubread)
ref <- system.file("extdata","reference.fa",package="Rsubread")
buildindex(basename="./reference_index",reference=ref)

createAnnotationFile Create an annotation file from a GRanges object, suitable for feature-
Counts()

Description

Any of rtracklayer::import.bed(’samplesubjunc.bed’), unlist(spliceGraph(TxDb)), transcripts(TxDb),
exons(TxDb), or features(FDB) will produce a GRanges object containing usable features for read
counting.

This function converts a suitably streamlined GRanges object into annotations which can then be
used by featureCounts() to quickly count aligned reads.

The GRanges object must contain an elementMetadata column named ’id’.

detectionCall 11

Usage

createAnnotationFile(GR)
write.Rsubread(GR)

Arguments

GR The GRanges object to convert to an Rsubread annotation file

Value

A data frame with five columns named GeneID, Chr, Start, End and Strand.

Author(s)

Tim Triche, Jr. and Wei Shi

Examples

Not run:
library(TxDb.Hsapiens.UCSC.hg19.lincRNAsTranscripts)
hg19LincRNAs <- transcripts(TxDb.Hsapiens.UCSC.hg19.lincRNAsTranscripts)
names(values(hg19LincRNAs)) <- gsub('tx_id','id',names(values(hg19LincRNAs)))
annot_for_featureCounts <- createAnnotationFile(hg19LincRNAs)

End(Not run)

detectionCall Determine detection p values for each gene in an RNA-seq dataset

Description

Use GC content adjusted background read counts to determine the detection p values for each gene

Usage

detectionCall(dataset, species="hg", plot=FALSE)

Arguments

dataset a character string giving the filename of a SAM format file, which is the output
of read alignment.

species a character string specifing the species. Options are hg and mm.

plot logical, indicating whether a density plot of detection p values will be generated.

Value

A data frame which includes detection p values and annotation information for each genes.

Author(s)

Zhiyin Dai and Wei Shi

12 exactSNP

detectionCallAnnotation

Generate annotation data used for calculating detection p values

Description

This is for internal use only.

Usage

detectionCallAnnotation(species="hg", binsize=2000)

Arguments

species character string specifying the species to analyase

binsize binsize of integenic region

Details

This is an internal function and should not be called by users directly.

It takes as input the annotation files produced by processExons function, calculates GC percentages
for each exon of genes and also for intergenic regions and add GC info into the annotations. The
new annotation data are then saved to files which can be used by detectionCall function for
calling absolutely expressed genes.

Value

Two annotation files, which contain GC content for exons of genes and for intergenic regions re-
spectively, are written to the current working directory. This function returns a NULL object.

Author(s)

Zhiyin Dai and Wei Shi

exactSNP exactSNP - an accurate and efficient SNP caller

Description

Measure background noises and perform Fisher’s Exact tests to detect SNPs.

Usage

exactSNP(readFile,isBAM=FALSE,refGenomeFile,SNPAnnotationFile=NULL,
outputFile=paste(readFile,".exactSNP.VCF",sep=""),qvalueCutoff=12,minAllelicFraction=0,
minAllelicBases=1,minReads=1,maxReads=3000,minBaseQuality=13,nTrimmedBases=3,nthreads=1)

exactSNP 13

Arguments

readFile a character string giving the name of a file including read mapping results. This
function takes as input a SAM file by default. If a BAM file is provided, the
isBAM argument should be set to TRUE.

isBAM logical indicating if the file provided via readFile is a BAM file. FALSE by
default.

refGenomeFile a character string giving the name of a file that includes reference sequences
(FASTA format).

SNPAnnotationFile

a character string giving the name of a VCF-format file that includes annotated
SNPs. Such annotation files can be downloaded from public databases such
as the dbSNP database. Incorporating known SNPs into SNP calling has been
found to be helpful. However note that the annotated SNPs may or may not be
called for the sample being analyzed.

outputFile a character string giving the name of the output file to be generated by this
function. The output file includes all the reported SNPs (in VCF format). It
includes discovered indels as well.

qvalueCutoff a numeric value giving the q-value cutoff for SNP calling at sequencing depth
of 50X. 12 by default. The q-value is calcuated as -log10(p), where p is the
p-value yielded from the Fisher’s Exact test. Note that this function automati-
cally adjusts the q-value cutoff for each chromosomal location according to its
sequencing depth, based on this cutoff.

minAllelicFraction

a numeric value giving the minimum fraction of allelic bases out of all read
bases included at a chromosomal location required for SNP calling. Its value
must be within 0 and 1. 0 by default.

minAllelicBases

a numeric value giving the minimum number of allelic (mis-matched) bases a
SNP must have at a chromosomal location. 1 by default.

minReads a numeric value giving the minimum number of mapped reads a SNP-containing
location must have (ie. the minimum coverage). 1 by default.

maxReads Specify the maximum number of mapped reads a SNP-containing location can
have. 3000 by default. Any location having more than this threshold number of
reads will not be considered for SNP calling. This option is useful for removing
PCR artefacts.

minBaseQuality a numeric value giving the minimum base quality score (Phred score) read bases
should satisfy before being used for SNP calling. 13 by default(corresponding
to base calling p value of 0.05). Read bases with quality scores less than 13 will
be excluded from analysis.

nTrimmedBases a numeric value giving the number of bases trimmed off from each end of the
read. 3 by default.

nthreads a numeric value giving the number of threads/CPUs used. 1 by default.

Details

This function takes as input a SAM/BAM format file, measures local background noise for each
chromosomal location and then performs Fisher’s exact tests to find statistically significant SNPs .

This function implements a novel algorithm for discovering SNPs. This algorithm is comparable
with or better than existing SNP callers, but it is fast more efficient. It can be used to call SNPs for

14 featureCounts

individual samples (ie. no control samples are required). Detail of the algorithm is described in a
manuscript which is currently under preparation.

Value

No value is produced but but a VCF format file is written to the current working directory. This
file contains detailed information for discovered SNPs including chromosomal locations, reference
bases, alternative bases, read coverages, allele frequencies and p values.

Author(s)

Yang Liao and Wei Shi

featureCounts featureCounts: a general-purpose read summarization function

Description

This function assigns mapped sequencing reads to genomic features

Usage

featureCounts(files,

annotation
annot.inbuilt="mm10",
annot.ext=NULL,
isGTFAnnotationFile=FALSE,
GTF.featureType="exon",
GTF.attrType="gene_id",
chrAliases=NULL,

level of summarization
useMetaFeatures=TRUE,

overlap between reads and features
allowMultiOverlap=FALSE,
minOverlap=1,
fracOverlap=0,
largestOverlap=FALSE,
readExtension5=0,
readExtension3=0,
read2pos=NULL,

multi-mapping reads
countMultiMappingReads=FALSE,

fractional counting
fraction=FALSE,

read filtering

featureCounts 15

minMQS=0,
splitOnly=FALSE,
nonSplitOnly=FALSE,
primaryOnly=FALSE,
ignoreDup=FALSE,

strandness
strandSpecific=0,

exon-exon junctions
juncCounts=FALSE,
genome=NULL,

parameters specific to paired end reads
isPairedEnd=FALSE,
requireBothEndsMapped=FALSE,
checkFragLength=FALSE,
minFragLength=50,
maxFragLength=600,
countChimericFragments=TRUE,
autosort=TRUE,

number of CPU threads
nthreads=1,

miscellaneous
maxMOp=10,
reportReads=FALSE,
tmpDir=".")

Arguments

files a character vector giving names of input files containing read mapping results.
The files can be in either SAM format or BAM format. The file format is auto-
matically detected by the function.

annot.inbuilt a character string specifying an in-built annotation used for read summarization.
It has four possible values including "mm10", "mm9", "hg38" and "hg19", corre-
sponding to the NCBI RefSeq annotations for genomes ‘mm10’, ‘mm9’, ‘hg38’
and ‘hg19’, respectively. "mm10" by default. The in-built annotation has a SAF
format (see below).

annot.ext A character string giving name of a user-provided annotation file or a data frame
including user-provided annotation data. If the annotation is in GTF format, it
can only be provided as a file. If it is in SAF format, it can be provided as a
file or a data frame. See below for more details about SAF format annotation.
annot.ext will override annot.inbuilt if they are both provided.

isGTFAnnotationFile

logical indicating whether the annotation provided via the annot.ext argument
is in GTF format or not. FALSE by default. This option is only applicable when
annot.ext is not NULL.

GTF.featureType

a character string giving the feature type used to select rows in the GTF an-
notation which will be used for read summarization. "exon" by default. This

16 featureCounts

argument is only applicable when isGTFAnnotationFile is TRUE.

GTF.attrType a character string giving the attribute type in the GTF annotation which will be
used to group features (eg. exons) into meta-features (eg. genes). "gene_id" by
default. This argument is only applicable when isGTFAnnotationFile is TRUE.

chrAliases a character string giving the name of a chromosome name alias file. This should
be a two-column comma-delimited text file. Chromosome name aliases included
in this file are used to match chr names in annotation with those in the reads.
First column in the file should include chr names in the annotation and second
column should include chr names in the reads. Chr names are case sensitive. No
column header should be included in the file.

useMetaFeatures

logical indicating whether the read summarization should be performed at the
feature level (eg. exons) or meta-feature level (eg. genes). If TRUE, features in
the annotation (each row is a feature) will be grouped into meta-features, using
their values in the GeneID column in the SAF-format annotation file or using
the GTF.attrType attribute in the GTF-format annotation file, and then reads
will be assiged to the meta-features instead of the features. See below for more
details.

allowMultiOverlap

logical indicating if a read is allowed to be assigned to more than one feature
(or meta-feature) if it is found to overlap with more than one feature (or meta-
feature). FALSE by default.

minOverlap integer giving the minimum number of overlapped bases required for assigning
a read to a feature (or a meta-feature). For assignment of read pairs (fragments),
number of overlapping bases from each read in the same pair will be summed.
If a negative value is provided, then a gap of up to specified size will be allowed
between read and the feature that the read is assigned to. 1 by default.

fracOverlap numeric giving minimum fraction of overlapping bases in a read that is required
for read assignment. Value should be within range [0,1]. 0 by default. Number
of overlapping bases is counted from both reads if paired end. Both this option
and minOverlap option need to be satisfied before a read can be assigned.

largestOverlap If TRUE, a read (or read pair) will be assigned to the feature (or meta-feature) that
has the largest number of overlapping bases, if the read (or read pair) overlaps
with multiple features (or meta-features).

readExtension5 integer giving the number of bases extended upstream from 5’ end of each
read. 0 by default.

readExtension3 integer giving the number of bases extended downstream from 3’ end of each
read. 0 by default.

read2pos Specifying whether each read should be reduced to its 5’ most base or 3’ most
base. It has three possible values: NULL, 5 (denoting 5’ most base) and 3 (denot-
ing 3’ most base). The default value is NULL. With the default value, the whole
read is used for summarization. When read2pos is set to 5 (or 3), read summa-
rization will be performed based on the 5’ (or 3’) most base position. read2pos
can be used together with readExtension5 and readExtension3 parameters to
set any desired length for reads.

countMultiMappingReads

logical indicating if multi-mapping reads/fragments should be counted, FALSE
by default. If TRUE, a multi-mapping read will be counted up to N times if it has
N reported mapping locations. This function uses the ‘NH’ tag to find multi-
mapping reads.

featureCounts 17

fraction logical indicating if fractional counts are produced for multi-mapping reads
and/or multi-overlapping reads. FALSE by default. See below for more details.

minMQS integer giving the minimum mapping quality score a read must satisfy in order
to be counted. For paired-end reads, at least one end should satisfy this criteria.
0 by default.

splitOnly logical indicating whether only split alignments (their CIGAR strings contain
letter ’N’) should be included for summarization. FALSE by default. Example
split alignments are exon-spanning reads from RNA-seq data. useMetaFeatures
should be set to FALSE and allowMultiOverlap should be set to TRUE, if the
purpose of summarization is to assign exon-spanning reads to all their overlap-
ping exons.

nonSplitOnly logical indicating whether only non-split alignments (their CIGAR strings do
not contain letter ’N’) should be included for summarization. FALSE by default.

primaryOnly logical indicating if only primary alignments should be counted. Primary and
secondary alignments are identified using bit 0x100 in the Flag field of SAM/BAM
files. If TRUE, all primary alignments in a dataset will be counted no matter they
are from multi-mapping reads or not (ie. countMultiMappingReads is ignored).

ignoreDup logical indicating whether reads marked as duplicates should be ignored. FALSE
by default. Read duplicates are identified using bit Ox400 in the FLAG field in
SAM/BAM files. The whole fragment (read pair) will be ignored if paired end.

strandSpecific integer indicating if strand-specific read counting should be performed. It has
three possible values: 0 (unstranded), 1 (stranded) and 2 (reversely stranded). 0
by default.

juncCounts logical indicating if number of reads supporting each exon-exon junction will be
reported. Junctions are identified from those exon-spanning reads in input data.
FALSE by default.

genome a character string giving the name of a FASTA-format file that includes the ref-
erence sequences used in read mapping that produced the provided SAM/BAM
files. NULL by default. This argument should only be used when juncCounts is
TRUE. Note that providing reference sequences is optional when juncCounts is
set to TRUE.

isPairedEnd logical indicating if paired-end reads are used. If TRUE, fragments (templates or
read pairs) will be counted instead of individual reads. FALSE by default.

requireBothEndsMapped

logical indicating if both ends from the same fragment are required to be suc-
cessfully aligned before the fragment can be assigned to a feature or meta-
feature. This parameter is only appliable when isPairedEnd is TRUE.

checkFragLength

logical indicating if the two ends from the same fragment are required to satisify
the fragment length criteria before the fragment can be assigned to a feature or
meta-feature. This parameter is only appliable when isPairedEnd is TRUE. The
fragment length criteria are specified via minFragLength and maxFragLength.

minFragLength integer giving the minimum fragment length for paired-end reads. 50 by de-
fault.

maxFragLength integer giving the maximum fragment length for paired-end reads. 600 by de-
fault. minFragLength and maxFragLength are only applicable when isPairedEnd
is TRUE. Note that when a fragment spans two or more exons, the observed frag-
ment length might be much bigger than the nominal fragment length.

18 featureCounts

countChimericFragments

logical indicating whether a chimeric fragment, which has its two reads mapped
to different chromosomes, should be counted or not. TRUE by default.

autosort logical specifying if the automatic read sorting is enabled. This option is only
applicable for paired-end reads. If TRUE, reads will be automatically sorted by
their names if reads from the same pair are found not to be located next to each
other in the input. No read sorting will be performed if there are no such reads
found.

nthreads integer giving the number of threads used for running this function. 1 by
default.

maxMOp integer giving the maximum number of ‘M’ operations (matches or mis-matches)
allowed in a CIGAR string. 10 by default. Both ‘X’ and ‘=’ operations are
treated as ‘M’ and adjacent ‘M’ operations are merged in the CIGAR string.

reportReads logical indicating if read counting result for each read/fragment is saved to a
file. If TRUE, read counting results for reads/fragments will be saved to a tab-
delimited file that contains four columns including name of read/fragment, sta-
tus(assigned or the reason if not assigned), name of target feature/meta-feature
and number of hits if the read/fragment is counted multiple times. Name of the
file is the same as name of the input read file except a suffix ‘.featureCounts’ is
added. Multiple files will be generated if there is more than one input read file.

tmpDir a character string specifying the directory under which intermediate files are
saved (later removed). By default, current working directory is used.

Details

featureCounts is a general-purpose read summarization function, which assigns to the genomic
features (or meta-features) the mapped reads that were generated from genomic DNA and RNA
sequencing.

This function takes as input a set of files containing read mapping results output from a read aligner
(e.g. align or subjunc), and then assigns mapped reads to genomic features. Both SAM and BAM
format input files are accepted.

featureCounts accepts two annotation formats: SAF (Simplified Annotation Format) and GTF/GFF
formats. Specification of GTF/GFF format can be found at https://genome.ucsc.edu/FAQ/
FAQformat.html. SAF is a simplified annotation format and below shows an example of this
format:

GeneID Chr Start End Strand
497097 chr1 3204563 3207049 -
497097 chr1 3411783 3411982 -
497097 chr1 3660633 3661579 -
100503874 chr1 3637390 3640590 -
100503874 chr1 3648928 3648985 -
100038431 chr1 3670236 3671869 -
...

SAF annotation includes the following five required columns: GeneID, Chr, Start, End and Strand.
The GeneID column includes identifiers of features. These identifiers can be integer or character
string. The Chr column includes chromosome names of features and these names should match the
chromosome names includes in the provided SAM/BAM files. The Start and End columns include
start and end coordinates of features, respectively. Both start and end coordinates are inclusive. The
Strand column indicates the strand of features ("+" or "-"). Column names in a SAF annotation

https://genome.ucsc.edu/FAQ/FAQformat.html
https://genome.ucsc.edu/FAQ/FAQformat.html

featureCounts 19

should be the same as those shown in the above example (case insensitive). Columns can be in any
order. Extra columns are allowed to be added into the annotation.

In-built annotations, which were generated based on NCBI RefSeq gene annotations, are pro-
vided to faciliate convenient read summarization. We provide in-built annotations for the following
genomes: "hg38", "hg19", "mm10" and "mm9". The content of in-built annotations can be accessed
via the getInBuiltAnnotation function. These annotations have a SAF format.

The in-built annotations are a modified version of NCBI RefSeq gene annotations. We downloaded
the RefSeq gene annotations from NCBI ftp server (eg. RefSeq annotation for mm10 was down-
loaded from ftp://ftp.ncbi.nlm.nih.gov/genomes/M_musculus/ARCHIVE/BUILD.38.1/mapview/
seq_gene.md.gz). We then used these annotations to create our in-built annotations. For each gene,
we used its CDS (coding DNA sequence) and UTR (untranslated) regions provided in the original
annotation to construct a list of exons, by merging and concatenating all CDSs and UTRs belonging
to the same gene. Exons within each gene include all chromosomal bases included in the original
CDS and UTR regions, but they include each base only once (they might be included multiple times
in the original CDSs and UTRs). Also, exons within the same gene do not overlap with each other.

Users may provide an external annotation for read summarization via the annot.ext argument.
If the external annotation is in SAF format, it can be provdied as either a data.frame or a tab-
delimited text file with proper column names included. If it is in GTF/GFF format, it should be
provided as a file only (and isGTFAnnotationFile should be set to TRUE).

featureCounts function uses the GTF.attrType attribute in a GTF/GFF annotation to group fea-
tures to form meta-features when performing read summarization at meta-feature level.

The argument useMetaFeatures specifies whether read summarization should be performed at
feature level or at meta-feature level. A feature represents a continuous genomic region and a
meta-feature is a group of features. For instance, an exon is a feature and a gene comprising one
or more exons is a meta-feature. To assign reads to meta-features, featureCounts firstly groups
into meta-features the features that have the same gene identifiers. featureCounts looks for gene
identifiers in GeneID column of a SAF annotation or by using GTF.attrType attribute in a GTF/GFF
annotation. Then for each read featureCounts searches for meta-features that have at least one
feature that overlaps with the read. A read might be found to overlap with more than one feature
within the same meta-feature (eg. an exon-spanning read overlaps with more than one exon from
the same gene), however this read will still be counted only once for the meta-feature.

RNA-seq reads are often summarized to meta-features to produce read counts for genes. Further
downstream analysis can then be carried out to discover differentially expressed genes. Feature-
level summarization of RNA-seq data often yields exon-level read counts, which is useful for in-
vestigating alternative splicing of genes.

featureCounts provides multiple options to count multi-mapping reads (reads mapping to more
than one location in the reference genome). Users can choose to ignore such reads by setting
countMultiMappingReads to FALSE, or fully count every alignment reported for a multi-mapping
read by setting countMultiMappingReads to TRUE (each alignment carries 1 count), or count each
alignment fractionally by setting both countMultiMappingReads and fraction to TRUE (each
alignment carries 1/x count where x is the total number of alignments reported for the read).

featureCounts also provides multiple options to count multi-overlapping reads (reads overlap-
ping with more than one meta-feature when conducting meta-feature-level summarization or over-
lapping with more than one feature when conducting feature-level summarization). Users can
choose to ignore such reads by setting allowMultiOverlap to FALSE, or fully count them for each
overlapping meta-feature/feature by setting allowMultiOverlap to TRUE (each overlapping meta-
feature/feature receives a count of 1 from a read), or assign a fractional count to each overlapping
meta-feature/feature by setting both allowMultiOverlap and fraction to TRUE (each overlapping
meta-feature/feature receives a count of 1/y from a read where y is the total number of meta-
features/features overlapping with the read).

ftp://ftp.ncbi.nlm.nih.gov/genomes/M_musculus/ARCHIVE/BUILD.38.1/mapview/seq_gene.md.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/M_musculus/ARCHIVE/BUILD.38.1/mapview/seq_gene.md.gz

20 featureCounts

If a read is both multi-mapping and multi-overlapping, then each overlapping meta-feature/feature
will receive a fractional count of 1/(x*y) if countMultiMappingReads, allowMultiOverlap and
fraction are all set to TRUE.

When isPairedEnd is TRUE, fragments (pairs of reads) instead of reads will be counted. featureCounts
function checks if reads from the same pair are adjacent to each other (this could happen when reads
were for example sorted by their mapping locations), and it automatically reorders those reads that
belong to the same pair but are not adjacent to each other in the input read file.

Value

A list with the following components:

counts a data matrix containing read counts for each feature or meta-feature for each
library.

counts_junction (optional)

a data frame including primary and secondary genes overlapping an exon junc-
tion, position information for the left splice site (‘Site1’) and the right splice site
(‘Site2’) of a junction (including chromosome name, coordinate and strand) and
number of supporting reads for each junction in each library. Both primary and
secondary genes overlap at least one of the two splice sites of a junction. Sec-
ondary genes do not overlap more splice sites than the primary gene. When the
primary and secondary genes overlap same number of splice sites, the gene with
the smallest leftmost base position is selected as the primary gene. For each
junction, no more than one primary gene is reported but there might be more
than one secondary genes reported. If a junction does not overlap any genes, it
has a missing value in the fields of primary gene and secondary gene. Note that
this data frame is only generated when juncCounts is TRUE.

annotation a data frame with six columns including GeneID, Chr, Start, End and Length.
When read summarization was performed at feature level, each row in the data
frame is a feature and columns in the data frame give the annotation information
for the features. When read summarization was performed at meta-feature level,
each row in the data frame is a meta-feature and columns in the data frame give
the annotation information for the features included in each meta feature except
the Length column. For each meta-feature, the Length column gives the total
length of genomic regions covered by features included in that meta-feature.
Note that this length will be less than the sum of lengths of features included in
the meta-feature when there are features overlapping with each other. Also note
the GeneID column gives Entrez gene identifiers when the in-built annotations
are used.

targets a character vector giving sample information.
stat a data frame giving numbers of unassigned reads and the reasons why they are

not assigned (eg. ambiguity, multi-mapping, secondary alignment, mapping
quality, fragment length, chimera, read duplicate, non-junction and so on), in
addition to the number of successfully assigned reads for each library.

Author(s)

Wei Shi and Yang Liao

References

Yang Liao, Gordon K Smyth and Wei Shi. featureCounts: an efficient general-purpose program for
assigning sequence reads to genomic features. Bioinformatics, 30(7):923-30, 2014.

findCommonVariants 21

See Also

getInBuiltAnnotation

Examples

Not run:
library(Rsubread)

Summarize SAM format single-end reads using built-in RefSeq annotation for mouse genome mm9:
featureCounts(files="mapping_results_SE.sam",annot.inbuilt="mm9")

Summarize single-end reads using a user-provided GTF annotation file:
featureCounts(files="mapping_results_SE.sam",annot.ext="annotation.gtf",
isGTFAnnotationFile=TRUE,GTF.featureType="exon",GTF.attrType="gene_id")

Summarize single-end reads using 5 threads:
featureCounts(files="mapping_results_SE.sam",nthreads=5)

Summarize BAM format single-end read data:
featureCounts(files="mapping_results_SE.bam")

Perform strand-specific read counting (strandSpecific=2 if reversely stranded):
featureCounts(files="mapping_results_SE.bam",strandSpecific=1)

Summarize paired-end reads and counting fragments (instead of reads):
featureCounts(files="mapping_results_PE.bam",isPairedEnd=TRUE)

Count fragments satisfying the fragment length criteria, eg. [50bp, 600bp]:
featureCounts(files="mapping_results_PE.bam",isPairedEnd=TRUE,
checkFragLength=TRUE,minFragLength=50,maxFragLength=600)

Count fragments that have both ends successfully aligned without checking the fragment length:
featureCounts(files="mapping_results_PE.bam",isPairedEnd=TRUE,requireBothEndsMapped=TRUE)

Exclude chimeric fragments from fragment counting:
featureCounts(files="mapping_results_PE.bam",isPairedEnd=TRUE,countChimericFragments=FALSE)

End(Not run)

findCommonVariants Finding the common variants among all input VCF files

Description

The common variants (inc. SNPs and indels) among all the input files are found. A data frame
containing these common variants is returned. The data frame has a similar format as VCF files.

Usage

findCommonVariants(VCF_files)

Arguments

VCF_files a character vector giving the names of VCF format files.

22 getInBuiltAnnotation

Details

This function loads all variants (SNPs and indels) from the input VCF files, and find the common
variants that are reported in all the VCF files. If a variant record in a input VCF file has multiple
alternative sequences (split by ‘,’), each alternative sequence is treated as a single variant. Two
variants in two VCF files are the same only if their genomic locations, their reference sequences,
their alternative sequences and their variant types are identical.

This function currently does not support other types of variants other than SNPs and indels.

There are eight columns in the returned data frame: chromosome name, position, identity, reference
sequence, alternative sequence, quality, filter and extra information. The input may have more
columns; these columns are not included in the data frame. If the identity, the quality, the filter and
the extra information for the same variant are different among the input VCF files, those information
associated with the lowest quality value of this variant among the VCF files is reported in the
resulted data frame. For example, if an SNP on chrX:12345 (A=>G) is reported in all the three
input VCF files, and the quality scores in the three VCF files are 100, 10, 50 respectively, the
identity, the quality, the filter and the extra information in the second VCF file are reported in the
resulted data frame for this SNP.

Value

A data frame containing the common variants among all the input VCF files is returned. The first
eight columns are: chromosome name, position, identity, reference sequence, alternative sequence,
quality, filter and extra information.

If there are not any common variants, this function returns an NA value.

Author(s)

Yang Liao and Wei Shi

Examples

Not run:
finding the common variants between to input VCF files: a.vcf and b.vcf
library(Rsubread)
findCommonVariants(c('a.vcf','b.vcf'))

End(Not run)

getInBuiltAnnotation Retrieve in-built annotations provided by featureCounts function

Description

Retrieve an in-built annotation and save it to a data frame

Usage

getInBuiltAnnotation(annotation="mm10")

processExons 23

Arguments

annotation a character string specifying the in-built annotation to be retrieved. It has four
possible values including mm10, mm9, hg38 and hg19, corresponding to the NCBI
RefSeq annotations for genomes ‘mm10’, ‘mm9’, ‘hg38’ and ‘hg19’, respec-
tively. mm10 by default.

Details

The featureCounts read summarization function provides in-built annotations for conveniently
summarizing reads to genes or exons, and this function allows users to have access to those in-built
annotations.

For more information about these annotations, please refer to the help page for featureCounts
function.

Value

A data frame with five columns including GeneID, Chr, Start, End and Strand.

Author(s)

Wei Shi

See Also

featureCounts

Examples

library(Rsubread)
x <- getInBuiltAnnotation("hg38")
x[1:5,]

processExons Obtain chromosomal coordiates of each exon using NCBI annotation

Description

This is for internal use.

Usage

processExons(filename="human_seq_gene.md", species="hg")

Arguments

filename a character string giving the name of input .md file (NCBI annotation file)

species a character string specifying the species

24 propmapped

Details

This is an internal function and should not be called by users directly.

It processes the NCBI mapview annotation data downloaded from the following links: (these anno-
tations include chromosomal coordinates of UTR and CDS regions of genes).

ftp://ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/mapview/seq_gene.md.gz

ftp://ftp.ncbi.nlm.nih.gov/genomes/M_musculus/mapview/seq_gene.md.gz

This function finds the chromosomal coordinates of intergenic regions (regions between neighbour-
ing genes) and then outputs them to a file. It also outputs to a file chromosomal coordinates of exons
of genes by concatenating UTRs with CDSs and merging overlapping CDSs within each gene. The
generated annotation files will then be used by detectionCallAnnotation function to produce
annotation data required by detectionCall function.

Value

Two annotation files are written to the current working directory. This function returns a NULL
object.

Author(s)

Zhiyin Dai and Wei Shi

propmapped Calculate the proportion of mapped reads/fragments in SAM/BAM
files

Description

Number of mapped reads/fragments will be counted and fraction of such reads/fragments will be
calculated.

Usage

propmapped(files,countFragments=TRUE,properlyPaired=FALSE)

Arguments

files a character vector giving the names of SAM/BAM format files. Format of input
files is automatically determined by the function.

countFragments logical, indicating whether reads or fragments (read pairs) should be counted.
If TRUE, fragments will be counted when paired-end read data are provided.
This function automatically detects if the data are single end or paired end. For
single end data, each read is treated as a fragment and therefore the value of this
parameter should be set to TRUE.

properlyPaired logical, indicating if only properly paired reads will be counted. This is only
applicable for paired end data. FALSE by default.

ftp://ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/mapview/seq_gene.md.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/M_musculus/mapview/seq_gene.md.gz

qualityScores 25

Details

This function uses the FLAG field in the SAM/BAM to look for mapped reads and count them.
Reads/fragments, which have more than one reported location, will be reported only once.

When counting single end reads, counting reads has the same meaning with counting fragments
(the results are identical).

Value

A data frame containing the total number of reads, number of mapped reads and proportion of
mapped reads for each library.

Author(s)

Wei Shi and Yang Liao

Examples

build an index using the sample reference sequence provided in the package
and save it to the current directory
library(Rsubread)
ref <- system.file("extdata","reference.fa",package="Rsubread")
buildindex(basename="./reference_index",reference=ref)

align the sample read data provided in this packge to the sample reference
and save the mapping results to the current directory
reads <- system.file("extdata","reads.txt.gz",package="Rsubread")
align(index="./reference_index",readfile1=reads,output_file="./Rsubread_alignment.BAM")

get the percentage of successfully mapped reads
propmapped("./Rsubread_alignment.BAM")

qualityScores Extract quality score data in a sequencing read dataset

Description

Extract quality strings and convert them to Phred scores

Usage

qualityScores(filename, input_format="gzFASTQ", offset=33, nreads=10000)

Arguments

filename character string giving the name of an input file containing sequence reads.

input_format character string specifying format of the input file. gzFASTQ (gzipped FASTQ)
by default. Acceptable formats include gzFASTQ, FASTQ, SAM and BAM. Character
string is case insensitive.

offset numeric value giving the offset added to the base-calling Phred scores. Possible
values include 33 and 64. By default, 33 is used.

nreads numeric value giving the number of reads from which quality scores are ex-
tracted. 10000 by default.

26 removeDupReads

Details

Quality scores of read bases are represented by ASCII characters in next-gen sequencing data. This
function extracts the quality characters from each base in each read and then converts them to Phred
scores using the provided offset value (offset).

If the total number of reads in a dataset is n, then every n/nreads read is extracted from the input
data.

Value

A data matrix containing Phred scores for read bases. Rows in the matrix are reads and columns are
base positions in each read.

Author(s)

Wei Shi, Yang Liao and Zhiyin Dai

Examples

library(Rsubread)
reads <- system.file("extdata","reads.txt.gz",package="Rsubread")
x <- qualityScores(filename=reads,offset=64,nreads=1000)
x[1:10,1:10]

removeDupReads Remove sequencing reads which are mapped to identical locations

Description

Remove reads which are mapped to identical locations, using mapping location of the first base of
each read.

Usage

removeDupReads(SAMfile,threshold=50,outputFile)

Arguments

SAMfile a character string giving the name of a SAM format input file.

threshold a numeric value giving the threshold for removing duplicated reads, 50 by de-
fault. Reads will be removed if they are found to be duplicated equal to or more
than threshold times.

outputFile a character string giving the base name of output files.

Details

This function uses the mapping location of first base of each read to find duplicated reads. Reads
are removed if they are duplicated more than threshold number of times.

Value

A SAM file including the remaining reads after duplicate removal.

repair 27

Author(s)

Yang Liao and Wei Shi

repair Re-order paired-end reads to place reads from the same pair next to
each other

Description

Fast re-odering of paired-end reads using read names and mapping locations.

Usage

repair(inFiles,inFormat="BAM",outFiles=paste(inFiles,"repair",sep="."),
addDummy=TRUE,fullData=TRUE,compress=FALSE,nthreads=8)

Arguments

inFiles a character vector giving names of input files. These files are typically location-
sorted BAM files.

inFormat a character string specifying format of input files. Supported formats include
BAM and SAM.

outFiles a character string giving names of output files. Re-ordered reads are saved to
BAM-format files.

addDummy logical indicating if a dummy read will be added to each singleton read which
has a missing pair in the input. TRUE by default.

fullData logical indicating if sequences and base-calling quality scores of reads will be
included in the output. TRUE by default.

compress logical indicating if compression should be turned on when generating BAM
output. FALSE by default.

nthreads a numeric value giving number of CPU threads. 8 by default.

Details

This function takes as input paired-end BAM or SAM files, re-orders reads to make reads from the
same pair be adajacent to each other and then outputs the re-ordered reads into BAM files.

The function makes use of both read names and mapping information of reads (eg. mapping coor-
dinates) to identify reads belonging to the same pair. This makes sure that all paired-end reads are
correctly re-ordered, especially those multi-mapping read pairs that include more than one reported
alignment in the input.

The BAM files produced by this function are comptible with featureCounts, meaning that no read
re-ordering will be performed when providing these files to featureCounts.

Value

No value is produced but BAM files with re-ordered reads are written to the current working direc-
tory.

Author(s)

Wei Shi and Yang Liao

28 sam2bed

RsubreadUsersGuide View Rsubread Users Guide

Description

Users Guide for Rsubread and Subread

Usage

RsubreadUsersGuide()

Details

The Subread/Rsubread Users Guide provides detailed description to the functions and programs
included in the Subread and Rsubread software packages. It also includes case studies for analyzing
next-gen sequencing data.

The Subread package is written in C and it can be downloaded from http://subread.sourceforge.
net. The Rsubread package provides R wrappers functions for many of the programs included in
Subread package.

Value

Character string giving the file location.

Author(s)

Wei Shi

See Also

vignette

sam2bed Convert a SAM format file to a BED format file

Description

SAM to BED conversion

Usage

sam2bed(samfile,bedfile,readlen)

Arguments

samfile character string giving the name of input file. Input format should be in SAM
format.

bedfile character string giving the name of output file. Output file is in BED format.

readlen numeric value giving the length of reads included in the input file.

http://subread.sourceforge.net
http://subread.sourceforge.net

sam2bed 29

Details

This function converts a SAM format file to a BED format file, which can then be displayed in a
genome browser like UCSC genome browser, IGB, IGV.

Value

No value is produced but a BED format file is written to the current working directory. This file
contains six columns including chromosomal name, start position, end position, name(‘.’), mapping
quality score and strandness.

Author(s)

Wei Shi

Index

∗Topic documentation
RsubreadUsersGuide, 28

align, 2, 10, 18
atgcContent, 8

buildindex, 7, 9

createAnnotationFile, 10

detectionCall, 11, 12, 24
detectionCallAnnotation, 12, 24

exactSNP, 12

featureCounts, 6, 14, 23, 27
findCommonVariants, 21

getInBuiltAnnotation, 19, 21, 22

processExons, 12, 23
propmapped, 24

qualityScores, 25

removeDupReads, 26
repair, 27
RsubreadUsersGuide, 28

sam2bed, 28
subjunc, 10, 18
subjunc (align), 2

vignette, 28

write.Rsubread (createAnnotationFile),
10

30

	align
	atgcContent
	buildindex
	createAnnotationFile
	detectionCall
	detectionCallAnnotation
	exactSNP
	featureCounts
	findCommonVariants
	getInBuiltAnnotation
	processExons
	propmapped
	qualityScores
	removeDupReads
	repair
	RsubreadUsersGuide
	sam2bed
	Index

