Package ‘RCAS’

April 15, 2017
Type Package
Title RNA Centric Annotation System
Version 1.0.2
Date 2016-12-26

Description RCAS is an automated system that provides dynamic genome
annotations for custom input files that contain transcriptomic regions.
Such transcriptomic regions could be, for instance, peak regions
detected by CLIP-Seq analysis that detect protein-RNA interactions,
RNA modifications (alias the epitranscriptome), CAGE-tag locations, or
any other collection of target regions at the level of the
transcriptome. RCAS is designed as a reporting tool for the functional
analysis of RNA-binding sites detected by high-throughput experiments.
It takes as input a BED format file containing the genomic coordinates
of the RNA binding sites and a GTF file that contains the genomic
annotation features usually provided by publicly available databases
such as Ensembl and UCSC. RCAS performs overlap operations between
the genomic coordinates of the RNA binding sites and the genomic
annotation features and produces in-depth annotation summaries
such as the distribution of binding sites with respect to gene features
(exons, introns, 5'/3' UTR regions, exon-intron boundaries, promoter
regions, and whole transcripts). Moreover, by detecting the collection of
targeted transcripts, RCAS can carry out functional annotation tables for
enriched gene sets (annotated by the Molecular Signatures Database) and
GO terms. As one of the most important questions that arise during
protein-RNA interaction analysis; RCAS has a module for detecting
sequence motifs enriched in the targeted regions of the transcriptome.

A full interactive report in HTML format can be generated that contains
interactive figures and tables that are ready for publication purposes.

License Artistic-2.0

LazyData TRUE

Depends R (>=3.3.0), plotly (>=4.5.2), DT (>= 0.2), data.table,
topGO, motifRG,

Imports biomaRt, AnnotationDbi, GenomicRanges,
BSgenome.Hsapiens.UCSC.hg19, GenomelnfoDb, Biostrings,
rtracklayer, org.Hs.eg.db, GenomicFeatures, genomation (>=
1.5.5), rmarkdown (>= 0.9.5), knitr (>= 1.12.3), BiocGenerics,
S4Vectors, stats,

RoxygenNote 5.0.1

R topics documented:

Suggests BSgenome.Mmusculus.UCSC.mm9, BSgenome.Celegans.UCSC.cel0,

BSgenome.Dmelanogaster. UCSC.dm3, org.Mm.eg.db, org.Ce.eg.db,
org.Dm.eg.db, testthat

SystemRequirements pandoc (>= 1.12.3)

VignetteBuilder knitr

biocViews Software, GeneTarget, MotifAnnotation, MotifDiscovery, GO,

Transcriptomics, GenomeAnnotation, GeneSetEnrichment, Coverage

NeedsCompilation no

Author Bora Uyar [aut, cre],

Dilmurat Yusuf [aut],
Ricardo Wurmus [aut],
Altuna Akalin [aut]

Maintainer Bora Uyar <bora.uyar@mdc-berlin.de>

R topics documented:

Index

calculateCoverageProfile 3
calculateCoverageProfileFromTxdb 3
calculateCoverageProfileList 4
calculateCoverageProfileListFromTxdb 5
createControlRegions L 6
createOrthologousGeneSetList 6
exXtractSeqUences e 7
GENESELS e e 8
getFeatureBoundaryCoverage oo 8
getFeatureBoundaryCoverageBin L 0oL 9
getMotifSummaryTable oL o 10
getTargetedGenesTable 11
getTxdbFeatures 12
getTxdbFeaturesFromGRanges L oo 12
eff 13
importBed 13
mportGtf L e e 14
parseMsigdb 15
printMsigdbDataset e 15
queryGEf L 16
queryRegions L e 17
retrieveOrthologs L 17
runGSEA . . . 18
runMotifRG e 19
runReport L e e e 20
runTopGO e 22
summarizeQueryRegions oL 23

calculateCoverageProfile 3

calculateCoverageProfile
calculateCoverageProfile

Description

This function checks overlaps between input query regions and annotation features, and then calcu-
lates coverage profile along target regions.

Usage

calculateCoverageProfile(queryRegions, targetRegions, sampleN = 0)

Arguments

queryRegions GRanges object imported from a BED file using importBed function
targetRegions GRanges object containing genomic coordinates of a target feature (e.g. exons)

sampleN If set to a positive integer, targetRegions will be downsampled to sampleN
regions

Value

A data.frame object consisting of two columns: 1. coverage level 2. bins. Target regions are divided
into 100 equal sized bins and coverage level is summarized in a strand-specific manner using the
genomation: :ScoreMatrixBin function.

Examples

data(gff)
data(queryRegions)
txdbFeatures <- getTxdbFeaturesFromGRanges(gffData = gff)
df <- calculateCoverageProfile(queryRegions = queryRegions,
targetRegions = txdbFeatures$exons,
sampleN = 1000)

calculateCoverageProfileFromTxdb
calculateCoverageProfileFromTxdb

Description
This function overlaps the input query regions with a target list of annotation features and calculates
the coverage profile along the target regions.

Usage

calculateCoverageProfileFromTxdb(queryRegions, txdb, type, sampleN = @)

4 calculateCoverageProfileList
Arguments
queryRegions GRanges object imported from a BED file using importBed function
txdb A txdb object obtained by using GenomicFeatures: :makeTxDb family of func-
tions
type A character string defining the type of gene feature for which a profile should be
calculated. The options are: transcripts, exons, introns, promoters, fiveUTRs,
threeUTRs, and cds.
sampleN If set to a positive integer, the targetRegions will be downsampled to sampleN
regions
Value
A data.frame object consisting of two columns: 1. coverage level 2. bins. The target regions are
divided into 100 equal sized bins and coverage level is summarized in a strand-specific manner
using the genomation: : ScoreMatrixBin function.
Examples
data(gff)
data(queryRegions)

txdb <- GenomicFeatures: :makeTxDbFromGRanges(gff)
df <- calculateCoverageProfileFromTxdb(queryRegions = queryRegions,

type = 'exons',
txdb = txdb,
sampleN = 1000)

calculateCoverageProfilelist

calculateCoverageProfileList

Description

This function checks overlaps between input query regions and a target list of annotation features,
and then calculates the coverage profile along the target regions.

Usage

calculateCoverageProfilelList(queryRegions, targetRegionsList, sampleN = 0)

Arguments
queryRegions GRanges object imported from a BED file using importBed function
targetRegionsList
A list of GRanges objects containing genomic coordinates of target features (e.g.
transcripts, exons, introns)
sampleN If set to a positive integer, targetRegions will be downsampled to sampleN

regions

calculateCoverageProfileListFromTxdb 5

Value

A list of data.frame objects consisting of two columns: 1. coverage level 2. bins. Target regions
are divided into 100 equal sized bins and coverage level is summarized in a strand-specific manner
using the genomation: : ScoreMatrixBin function.

Examples

data(gff)
data(queryRegions)
txdbFeatures <- getTxdbFeaturesFromGRanges(gffData = gff)
dfList <- calculateCoverageProfileList(queryRegions = queryRegions,
targetRegionsList = txdbFeatures,
sampleN = 1000)

calculateCoverageProfileListFromTxdb
calculateCoverageProfileListFromTxdb

Description
This function overlaps the input query regions with a target list of annotation features and calculates
the coverage profile along the target regions.

Usage

calculateCoverageProfilelListFromTxdb(queryRegions, txdb, sampleN = @)

Arguments

queryRegions GRanges object imported from a BED file using importBed function

txdb A txdb object obtained by using GenomicFeatures: :makeTxDb family of func-
tions
sampleN If set to a positive integer, targetRegions will be downsampled to sampleN
regions
Value

A list of data.frame objects consisting of two columns: 1. coverage level 2. bins. The target regions
are divided into 100 equal sized bins and coverage level is summarized in a strand-specific manner
using the genomation: : ScoreMatrixBin function.

Examples

data(gff)
data(queryRegions)
txdb <- GenomicFeatures: :makeTxDbFromGRanges(gff)
df <- calculateCoverageProfileListFromTxdb(queryRegions = queryRegions,
txdb = txdb,
sampleN = 1000)

6 createOrthologousGeneSetList

createControlRegions createControlRegions

Description
Given a GRanges object of query regions, create a background set of peaks that have the same
length distribution based on the flanking regions of the peaks.

Usage

createControlRegions(queryRegions)

Arguments
queryRegions GRanges object containing coordinates of input query regions imported by the
importBed function.
Value

GRanges object that contains the same number of regions as query regions

Examples

data(queryRegions)
controlRegions <- createControlRegions(queryRegions = queryRegions)

createOrthologousGeneSetList
createOrthologousMsigdbDataset

Description

Gene set annotations in public databases are usually geared towards human. This function is used
to utilize human gene set annotations to create such gene sets for other species such as mouse, fly,
and worm via orthologous relationships to human genes.

Usage
createOrthologousGeneSetList(referenceGeneSetList, refGenomeVersion = "hgl9",
targetGenomeVersion)
Arguments
referenceGeneSetlList
A named list of vectors where each vector consists of a set of Entrez gene ids
(for instance, returned by parseMsigdb function
refGenomeVersion
Genome version of a reference species. (default:hg19)
targetGenomeVersion

Genome version of a target species. Available options are mm9, dm3, and cel0

extractSequences 7

Value

A list of vectors where each vector consists of a set of Entrez gene ids

Examples

#Recommended gene sets (with Entrez Ids) from MSIGDB database can be downloaded
#from \url{http://software.broadinstitute.org/gsea/msigdb/collections. jsp#C2}
#Here we use built-in random gene sets to show how the function works
data(geneSets)
#Map the gene sets to a target genome (supported genomes: mm9, dm3, or cel@)
orthGeneSets <- createOrthologousGeneSetList(

referenceGeneSetList = geneSets,

refGenomeVersion = 'hgl9',
targetGenomeVersion = 'mm9’
)

extractSequences extractSequences

Description
Given a GRanges object and a genome version (hgl9, mm9, cel0 or dm3), this function extracts
the DNA sequences for all genomic regions found in an input object.

Usage

extractSequences(queryRegions, genomeVersion)

Arguments

queryRegions GRanges object containing coordinates of input query regions imported by the
importBed function

genomeVersion A character string to denote the BS genome library required to extract sequences.
Available options are hg19, mm9, cel10 and dm3.

Value

DNAStringSet object will be returned

Examples

data(queryRegions)
sequences <- extractSequences(queryRegions = queryRegions,
genomeVersion = 'hgl9')

8 getFeatureBoundaryCoverage

geneSets Random test gene sets

Description
This dataset contains random sets of genes with Entrez ids that is designed to represent the data that
can be parsed from MSIGDB database. using the parseMsigdb function.

Usage

geneSets

Format
A list of vectors, where each list element corresponds to a (randomized) gene set, where genes are
represented by Entrez ids.

Details

Actual curated datasets must be downloaded from the MSIGDB database

Value

A list object

getFeatureBoundaryCoverage
getFeatureBoundaryCoverage

Description

This function extracts the flanking regions of 5’ and 3’ boundaries of a given set of genomic features
and computes the per-base coverage of query regions across these boundaries.

Usage
getFeatureBoundaryCoverage(queryRegions, featureCoords, flankSize = 500,
sampleN = Q)
Arguments

queryRegions GRanges object imported from a BED file using importBed function
featureCoords GRanges object containing the target feature coordinates

flankSize Positive integer that determines the number of base pairs to extract around a
given genomic feature boundary

sampleN A positive integer value less than the total number of featuer coordinates that
determines whether the target feature coordinates should be randomly down-
sampled. If set to 0, no downsampling will happen. If

getFeatureBoundaryCoverageBin 9

Value

a data frame containin three columns. 1. fivePrime: Coverage at 5’ end of features 2. threePrime:
Coverage at 3’ end of features; 3. bases: distance (in bp) to the boundary

Examples

data(queryRegions)
data(gff)
txdb <- GenomicFeatures: :makeTxDbFromGRanges(gff)
transcriptCoords <- GenomicFeatures::transcripts(txdb)
transcriptEndCoverage <- getFeatureBoundaryCoverage (
queryRegions = queryRegions,
featureCoords = transcriptCoords,
flankSize = 100,
sampleN = 1000)

getFeatureBoundaryCoverageBin
getFeatureBoundaryCoverageBin

Description

This function extracts the flanking regions of 5” and 3’ boundaries of a given set of genomic features,
splits them into 100 equally sized bins and computes the per-bin coverage of query regions across
these boundaries.

Usage
getFeatureBoundaryCoverageBin(queryRegions, featureCoords, flankSize = 50,
sampleN = @)
Arguments

queryRegions GRanges object imported from a BED file using importBed function
featureCoords GRanges object containing the target feature coordinates

flankSize Positive integer that determines the number of base pairs to extract around a
given genomic feature boundary

sampleN A positive integer value less than the total number of featuer coordinates that
determines whether the target feature coordinates should be randomly down-
sampled. If set to 0, no downsampling will happen. If

Value

a data frame containin three columns. 1. fivePrime: Coverage at 5’ end of features 2. threePrime:
Coverage at 3’ end of features; 3. bases: distance (in bp) to the boundary

10 getMotifSummaryTable

Examples

data(queryRegions)

data(gff)

txdb <- GenomicFeatures: :makeTxDbFromGRanges(gff)

transcriptCoords <- GenomicFeatures::transcripts(txdb)

transcriptEndCoverageBin <- getFeatureBoundaryCoverageBin (
queryRegions = queryRegions,
featureCoords = transcriptCoords,
flankSize = 100,
sampleN = 1000)

getMotifSummaryTable getMotifSummaryTable

Description

A repurposed/simplified version of the motifRG: : summaryMotif function.

Usage

getMotifSummaryTable(motifResults)

Arguments

motifResults Output object of runMotifRG function

Value

A data.frame object containing summary statistics about the discovered motifs

Examples
data(queryRegions)
motifResults <- runMotifRG(queryRegions = queryRegions,
genomeVersion = 'hgl9',
motifN = 1,

nCores = 2)
motifSummary <- getMotifSummaryTable(motifResults)

getTargetedGenesTable 11

getTargetedGenesTable getTargetedGenesTable

Description

This function provides a list of genes which are targeted by query regions and their correspond-
ing numbers from an input BED file. Then, the hits are categorized by the gene features such as
promoters, introns, exons, 5°/3’° UTRs and whole transcripts.

Usage

getTargetedGenesTable(queryRegions, txdbFeatures)

Arguments

queryRegions GRanges object containing coordinates of input query regions imported by the
importBed function

txdbFeatures A list of GRanges objects where each GRanges object corresponds to the ge-
nomic coordinates of gene features such as promoters, introns, exons, 5°/3’
UTRs and whole transcripts. This list of GRanges objects are obtained by the
function getTxdbFeaturesFromGRanges or getTxdbFeatures.

Value

A data.frame object where rows correspond to genes and columns correspond to gene features

Examples

data(gff)

data(queryRegions)

txdbFeatures <- getTxdbFeaturesFromGRanges(gffData = gff)

featuresTable <- getTargetedGenesTable(queryRegions = queryRegions,
txdbFeatures = txdbFeatures)

#or

Not run:

txdb <- GenomicFeatures::makeTxDbFromGRanges(gff)

txdbFeatures <- getTxdbFeatures(txdb)

featuresTable <- getTargetedGenesTable(queryRegions = queryRegions,
txdbFeatures = txdbFeatures)

End(Not run)

12 getTxdbFeaturesFromGRanges

getTxdbFeatures getTxdbFeatures

Description

This function takes as input a txdb object from GenomicFeatures library. Then extracts the coordi-
nates of gene features such as promoters, introns, exons, 5°/3’ UTRs, and whole transcripts.

Usage

getTxdbFeatures(txdb)

Arguments

txdb A txdb object imported by GenomicFeatures::makeTxDb family of functions

Value

A list of GRanges objects

Examples

data(gff)
txdb <- GenomicFeatures: :makeTxDbFromGRanges(gff)
txdbFeatures <- getTxdbFeatures(txdb)

getTxdbFeaturesFromGRanges
getTxdbFeaturesFromGRanges

Description

This function takes as input a GRanges object that contains GTF file contents (e.g from the output
of importGtf function). Then extracts the coordinates of gene features such as promoters, introns,
exons, 5°/3° UTRs and whole transcripts.

Usage

getTxdbFeaturesFromGRanges(gffData)

Arguments

gffData A GRanges object imported by importGtf function

Value

A list of GRanges objects

gff 13

Examples

data(gff)
txdbFeatures <- getTxdbFeaturesFromGRanges(gffData = gff)

gff Sample GFF file imported as a GRanges object

Description

This dataset contains genomic annotation data from Ensembl version 75 for Homo sapiens down-
loaded from Ensembl. The GFF file is imported via the importGtf function and a subset of the data
is selected by choosing features found on ’chrl’.

Usage
gff

Format

GRanges object with 238010 ranges and 16 metadata columns

Value

A GRanges object

Source

ftp://ftp.ensembl.org/pub/release-75/gtf/homo_sapiens/Homo_sapiens.GRCh37.75.gtf.
gz

importBed importBed

Description

This function uses rtracklayer: :import.bed() function to import BED files

Usage
importBed(filePath, sampleN = @, keepStandardChr = TRUE)

Arguments
filePath Path to a GTF file
sampleN A positive integer value. The number of intervals in the input BED file are

randomly downsampled to include intervals as many as sampleN. The input will
be downsampled only if this value is larger than zero and less than the total
number of input intervals.

keepStandardChr
TRUE/FALSE (default:TRUE). If set to TRUE, will convert the seqlevelsStyle
to "UCSC’ and apply keepStandardChromosomes function to only keep data
from the standard chromosomes

ftp://ftp.ensembl.org/pub/release-75/gtf/homo_sapiens/Homo_sapiens.GRCh37.75.gtf.gz
ftp://ftp.ensembl.org/pub/release-75/gtf/homo_sapiens/Homo_sapiens.GRCh37.75.gtf.gz

14 importGtf

Value

A GRanges object containing the coordinates of the intervals from an input BED file

Examples

input <- system.file("extdata”, "testfile.bed”, package='RCAS')
importBed(filePath = input, keepStandardChr = TRUE)

importGtf importGtf

Description

This function uses rtracklayer: :import.gff () function to import genome annoatation data from
an Ensembl gtf file

Usage

importGtf(filePath, saveObjectAsRds = TRUE, readFromRds = TRUE,
overwriteObjectAsRds = FALSE, keepStandardChr = TRUE)

Arguments

filePath Path to a GTF file

saveObjectAsRds
TRUE/FALSE (default:TRUE). If it is set to TRUE, a GRanges object will be
created and saved in RDS format (<filePath>.granges.rds) so that importing can
re-use this .rds file in next run.

readFromRds TRUE/FALSE (default:TRUE). If it is set to TRUE, annotation data will be im-
ported from previously generated .rds file (<filePath>.granges.rds).

overwriteObjectAsRds
TRUE/FALSE (default:FALSE). If it is set to TRUE, existing .rds file (<filePath>.granges.rds)
will overwritten.

keepStandardChr
TRUE/FALSE (default: TRUE). If it is set to TRUE, seqlevelsStyle will be
converted to "UCSC’ and keepStandardChromosomes function will be applied
to only keep data from the standard chromosomes.
Value

A GRanges object containing the coordinates of the annotated genomic features in an input GTF file

Examples

#import the data and write it into a .rds file
Not run:
importGtf(filePath="./Ensembl75.hg19.gtf")

End(Not run)
#import the data but don't save it as RDS

parseMsigdb 15

Not run:
importGtf(filePath="'./Ensembl75.hg19.gtf', saveObjectAsRds = FALSE)

End(Not run)

#import the data and overwrite the previously generated
Not run:

importGtf(filePath="./Ensembl75.hg19.gtf"', overwriteObjectAsRds = TRUE)

End(Not run)

parseMsigdb parseMsigdb

Description

A function to import gene sets downloaded from the Molecular Signatures Database (MSIGDB)

Usage
parseMsigdb(filePath)

Arguments
filePath Path to a file containing gene sets from MSIGDB. The gene ids must be in Entrez
format.
Value

A list of vectors where each vector consists of a set of Entrez gene ids

Examples

#First Download gene sets (with Entrez Ids) from MSIGDB database
#from \url{http://software.broadinstitute.org/gsea/msigdb/collections. jsp#C2}

input <- system.file('extdata', 'msigdb_test.gmt', package='RCAS')
msigDB <- parseMsigdb (filePath = input)

printMsigdbDataset Print MSIGDB Dataset to a file This function is used to print a
MSIGDB dataset into a file. Mostly useful when human data is mapped
to another species, and that mapping is required to run the report.

Description

Print MSIGDB Dataset to a file This function is used to print a MSIGDB dataset into a file. Mostly
useful when human data is mapped to another species, and that mapping is required to run the
report.

16 queryGff

Usage

printMsigdbDataset(dataset, outputFilename)

Arguments

dataset A list of vectors containing gene sets from MSIGDB

outputFilename A character string that denotes the output file name

Value

A text file printed to the current directory

Examples

data(geneSets)
printMsigdbDataset(geneSets, 'output.gmt')

queryGff queryGff

Description

This function checks overlaps between the regions in input query and in reference. Input query
should be in BED format and reference should be in GFF format. Both data are imported as
GRanges object.

Usage

queryGff(queryRegions, gffData)

Arguments

queryRegions GRanges object imported from a BED file using importBed function

gffData GRanges object imported from a GTF file using importGtf function

Value

a GRanges object (a subset of input gff) with an additional column *overlappingQuery’ that contains
the coordinates of query regions that overlap the target annotation features

Examples

data(queryRegions)
data(gff)
overlaps <- queryGff(queryRegions = queryRegions, gffData = gff)

queryRegions 17

queryRegions Sample BED file imported as a GRanges object

Description

This dataset contains a randomly selected sample of human LIN28A protein binding sites detected
by HITS-CLIP analysis downloaded from DoRina database (LIN28A HITS-CLIP hESCs (Wilbert
2012)). The BED file is imported via the importBed function and a subset of the data is selected by
randomly choosing 10000 regions.

Usage

queryRegions

Format

GRanges object with 10000 ranges and 2 metadata columns

Value

A GRanges object

Source

http://dorina.mdc-berlin.de/regulators

retrieveOrthologs retrieveOrthologs

Description
Given two biomart connections and a set of entrez gene identifiers; retrieve orthologs between mart1
and mart2 for the given list of genes

Usage

retrieveOrthologs(mart1, mart2, geneSet)

Arguments
marti An Ensembl biomart connection for reference species created using the biomaRt: :useMart ()
function
mart?2 An Ensembl biomart connection for target species created using the biomaRt: : useMart ()
function
geneSet A vector of Entrez gene ids from a reference species (should be available at the
biomart object, mart1)
Value

A data.frame object containing a mapping of orthologouse genes from two mart objects

http://dorina.mdc-berlin.de/regulators

18 runGSEA

Examples

mart1_hg19 <- biomaRt::useMart(biomart = 'ENSEMBL_MART_ENSEMBL',
host 'feb2014.archive.ensembl.org',
dataset = "hsapiens_gene_ensembl")
mart2_mm9 <- biomaRt::useMart(biomart = 'ENSEMBL_MART_ENSEMBL',
host 'may2012.archive.ensembl.org',
dataset = "mmusculus_gene_ensembl")
genes <- c('2645','5232"', '5230','5162','5160")
orthologs <- retrieveOrthologs(mart1l = marti_hgl9,
mart2 = mart2_mm9,
geneSet = genes)

runGSEA runGSEA

Description

This function is used to facilitate gene set enrichment analysis (GSEA) for a given set of genes

Usage
runGSEA(geneSetList, species = "human”, backgroundGenes, targetedGenes)
Arguments
geneSetlList A named list of vectors where each vector consists of a set of Entrez gene ids
(for instance, returned by parseMsigdb function)
species A character string denoting the species under analysis. Options are "human’,
’mouse’, "fly’ and *worm’.
backgroundGenes

A vector of Ensembl gene ids that serve as background set of genes for GO term
enrichment. In the context of RCAS, this should be the whole set of genes found
in an input GTF file.

targetedGenes A vector of Ensembl gene ids that serve as the set for which GSEA should be
carried out. In the context of RCAS, this should be the set of genes that overlap
the query regions

Value

A data.frame object containing enriched gene sets and associated statistics

Examples

#load test data

data(geneSets)

data(gff)

data(queryRegions)

#get all genes from the gff data
backgroundGenes <- unique(gff$gene_id)
#get genes that overlap query regions
overlaps <- queryGff(queryRegions, gff)

runMotifRG 19

targetedGenes <- unique(overlaps$gene_id)
resultsGSEA <- runGSEA(geneSetList = geneSets,
species = 'human',
backgroundGenes = backgroundGenes,
targetedGenes = targetedGenes)

runMotifRG runMotifRG

Description

This function makes use of motifRG library to carry out de novo motif discovery from input query
regions

Usage

runMotifRG(queryRegions, genomeVersion, motifN = 5, nCores = 4)

Arguments

queryRegions GRanges object containing coordinates of input query regions imported by the
importBed function

genomeVersion A character string to denote the BS genome library required to extract sequences.
Available options are hg19, mm9, cel10 and dm3.

motifN A positive integer (default:5) denoting the maximum number of motifs that
should be sought by the motifRG: : findMotifFgBg function

nCores A positive integer (default:4) number of cores used for parallel execution.

Value

a list of objects returned by the motifRG: : findMotif function

Examples
data(queryRegions)
motifResults <- runMotifRG(queryRegions = queryRegions,
genomeVersion = 'hgl9',
motifN = 1,

nCores = 2)

20

runReport

runReport Generate a RCAS Report for a list of transcriptome-level segments

Description

This is the main report generation function for RCAS. This function can take a BED file, a GTF
file and optionally an MSIGDB gene set annotation (or any text file containing annotations with
the same structure as defined in MSIGDB); and use these input to run multiple RCAS functions to
create a summary report regarding the annotation data that overlap the input BED file, enrichment

analysis for GO terms, gene sets from MSIGDB, and motif analysis.

Usage

runReport(queryFilePath = "testdata”, gffFilePath = "testdata”,
msigdbFilePath = "testdata”, annotationSummary = TRUE,
goAnalysis = TRUE, msigdbAnalysis = TRUE, motifAnalysis = TRUE,
genomeVersion = "hgl19"”, outDir = getwd(), printProcessedTables = FALSE,
sampleN = @, quiet = FALSE, selfContained = TRUE)

Arguments

queryFilePath a BED format file which contains genomic coordinates of protein-RNA binding

sites

gffFilePath A GTF format file which contains genome annotations (preferably from EN-

SEMBL)

msigdbFilePath Gene set annotations for Homo sapiens from Molecular Signatures Database or

any text file that has the same structure. Regardless of which species is being
studied (see genomeVersion parameter), msigdbFilePath must contain annota-
tions for human genes. The gene sets will be mapped from human to other
species if genomeVersion is set to anything except human genome versions (e.g.
mm9 or dm3).

annotationSummary

TRUE/FALSE (default: TRUE) A switch to decide if RCAS should provide
annotation summaries from overlap operations

goAnalysis TRUE/FALSE (default: TRUE) A switch to decide if RCAS should run GO

term enrichment analysis

msigdbAnalysis TRUE/FALSE (default: TRUE) A switch to decide if RCAS should run gene set

enrichment analysis

motifAnalysis TRUE/FALSE (default: TRUE) A switch to decide if RCAS should run motif

analysis

genomeVersion A character string to denote for which genome version the analysis is being

done. Available options are hgl9 (human), mm9 (mouse), cel0 (worm) and

dm3 (fly).
outDir Path to the output directory. (default: current working directory)
printProcessedTables

boolean value (default: FALSE). If set to TRUE, raw data tables that are used
for plots/tables will be printed to text files.

runReport 21

sampleN integer value (default: 0). A parameter to determine if the input query regions
should be downsampled to a smaller size in order to make report generation
quicker. When set to 0, downsampling won’t be done. To activate the sampling
a positive integer value that is smaller than the total number of query regions
should be given.

quiet boolean value (default: FALSE). If set to TRUE, progress bars and chunk labels
will be suppressed while knitting the Rmd file.

selfContained boolean value (default: TRUE). By default, the generated html file will be self-
contained, which means that all figures and tables will be embedded in a single
html file with no external dependencies (See rmarkdown::html_document)

Value

An html generated using rmarkdown/knitr/pandoc that contains interactive figures, tables, and text
that provide an overview of the experiment

Examples

#Default run will generate a report using built-in test data for hgl9 genome.
Not run:
runReport ()

End(Not run)

#A custom run for human

Not run:

runReport(queryFilePath = 'input.BED',
gffFilePath = 'annotation.gtf"',
msigdbFilePath = '"human_msigdb.gmt')

End(Not run)

To turn off certain modules of the report

Not run:

runReport(queryFilePath = 'input.BED',
gffFilePath = 'annotation.gtf"',
msigdbFilePath = "human_msigdb.gmt',
motifAnalysis = FALSE,
goAnalysis = FALSE)

End(Not run)

To run the pipeline for species other than human

If the msigdb module is needed, the msigdbFilePath

must be set to the MSIGDB annotations for 'human'.

MSIGDB datasets for other species will be calculated

in the background using the createOrthologousMsigdbDataset
function

Not run:

runReport(queryFilePath = 'input.mm9.BED',
gffFilePath = 'annotation.mm9.gtf',
msigdbFilePath = 'msigdb.human.gmt',
genomeVersion = 'mm9"')

End(Not run)

22 runTopGO

runTopGO runTopGO

Description

A wrapper function to facilitate GO term enrichment analysis using topGO package

Usage
runTopGO(ontology = "BP", species = "human"”, backgroundGenes, targetedGenes)
Arguments
ontology A character string denoting which type of GO ontology to use. Options are
BP (biological processes), MF (molecular functions) and CC (cellular compart-
ments).
species A character string denoting which species is under analysis. Options are "hu-
man’, "'mouse’, 'fly’ and *worm’.
backgroundGenes

A vector of Ensembl gene ids that serve as background set of genes for GO term
enrichment. In the context of RCAS, this should be the whole set of genes found
in an input GTF data.

targetedGenes A vector of Ensembl gene ids that serve as the set for which GO term enrichment
should be carried out. In the context of RCAS, this should be the set of genes
that overlap with the query regions in an input BED file.

Value

A data.frame object containing enriched GO terms and associated statistics

Examples

Not run:

#get all genes from the gff data

data(gff)

data(queryRegions)

backgroundGenes <- unique(gff$gene_id)

#get genes that overlap query regions

overlaps <- queryGff(queryRegions, gff)

targetedGenes <- unique(overlaps$gene_id)

#run TopGO

goResults = runTopGO(ontology = 'BP',
species = 'human',
backgroundGenes = backgroundGenes,
targetedGenes = targetedGenes)

End(Not run)

summarizeQueryRegions 23

summarizeQueryRegions summarizeQueryRegions

Description

This function counts number of query regions that overlap with different types of gene features.

Usage

summarizeQueryRegions(queryRegions, txdbFeatures)

Arguments

queryRegions GRanges object imported from a BED file using importBed function

txdbFeatures List of GRanges objects - outputs of getTxdbFeaturesFromGRanges and getTxdbFeatures
functions

Value

A data frame with two columns where first column holds features and second column holds corre-
sponding counts

Examples

data(gff)

data(queryRegions)

txdbFeatures <- getTxdbFeaturesFromGRanges(gffData = gff)

summary <- summarizeQueryRegions(queryRegions = queryRegions,
txdbFeatures = txdbFeatures)

Index

*Topic datasets
geneSets, 8
gff, 13
queryRegions, 17

calculateCoverageProfile, 3

calculateCoverageProfileFromTxdb, 3

calculateCoverageProfilelist, 4

calculateCoverageProfileListFromTxdb
5

createControlRegions, 6

createOrthologousGeneSetList, 6

extractSequences, 7

geneSets, 8
getFeatureBoundaryCoverage, 8
getFeatureBoundaryCoverageBin, 9
getMotifSummaryTable, 10
getTargetedGenesTable, 11
getTxdbFeatures, 11, 12
getTxdbFeaturesFromGRanges, 11, 12
gff, 13

importBed, 6, 7, 11, 13, 19
importGtf, 14

parseMsigdb, 15
printMsigdbDataset, 15

queryGff, 16
queryRegions, 17

retrieveOrthologs, 17
runGSEA, 18
runMotifRG, 19
runReport, 20
runTopGO, 22

summarizeQueryRegions, 23

24

	calculateCoverageProfile
	calculateCoverageProfileFromTxdb
	calculateCoverageProfileList
	calculateCoverageProfileListFromTxdb
	createControlRegions
	createOrthologousGeneSetList
	extractSequences
	geneSets
	getFeatureBoundaryCoverage
	getFeatureBoundaryCoverageBin
	getMotifSummaryTable
	getTargetedGenesTable
	getTxdbFeatures
	getTxdbFeaturesFromGRanges
	gff
	importBed
	importGtf
	parseMsigdb
	printMsigdbDataset
	queryGff
	queryRegions
	retrieveOrthologs
	runGSEA
	runMotifRG
	runReport
	runTopGO
	summarizeQueryRegions
	Index

